Donor 6633 # **Genetic Testing Summary** Fairfax Cryobank recommends reviewing this genetic testing summary with your healthcare provider to determine suitability. Last Updated: 08/25/23 Donor Reported Ancestry: Honduran Jewish Ancestry: No | Genetic Test* | Result | Comments/Donor's Residual | |---------------|--------|---------------------------| | | | Risk** | | Chromosome analysis (karyotype) | Normal male karyotype | No evidence of clinically significant chromosome abnormalities | |---|---|--| | Hemoglobin evaluation | Normal hemoglobin fractionation and MCV/MCH results | Reduced risk to be a carrier for sickle cell anemia, beta thalassemia, alpha thalassemia trait (aa/ and a-/a-) and other hemoglobinopathies | | Expanded Genetic Disease Carrier
Screening Panel attached- 514 diseases
by gene sequencing. | Carrier: CERKL-related conditions (CERKL) Carrier: Congenital adrenal hyperplasia due to 21-hydroxylase deficiency (CYP21A2) | Partner testing recommended before using this donor. Residual risks for negative results can be seen here: https://www.invitae.com/carrier-residual- | | | Negative for other genes sequenced. | risks/ | ^{*}No single test can screen for all genetic disorders. A negative screening result significantly reduces, but cannot eliminate, the risk for these conditions in a pregnancy. ^{**}Donor residual risk is the chance the donor is still a carrier after testing negative. Patient name: **Donor 6633** DOB: Sex assigned at birth: Male Gender: Patient ID (MRN): Sample type: Blood Sample collection date: 08-FEB-2023 Sample accession date: 09-FEB-2023 Report date: 22-MAR-2023 Invitae #: Clinical team: #### Reason for testing Gamete donor #### Test performed Invitae Comprehensive Carrier Screen without X-linked Disorders - Primary Panel (CF, SMA) - Add-on Comprehensive Carrier Screen without X-linked Disorders genes # **RESULT: POSITIVE** This carrier test evaluated 514 gene(s) for genetic changes (variants) that are associated with an increased risk of having a child with a genetic condition. Knowledge of carrier status for one of these conditions may provide information that can be used to assist with family planning and/or preparation. Carrier screening is not intended for diagnostic purposes. To identify a potential genetic basis for a condition in the individual being tested, diagnostic testing for the gene(s) of interest is recommended. This test shows the presence of clinically significant genetic change(s) in this individual in the gene(s) indicated below. No other clinically significant changes were identified in the remaining genes evaluated with this test. | RESULTS | GENE | VARIANT(S) | INHERITANCE | PARTNER TESTING
RECOMMENDED | |---|---------|---------------------------|---------------------|--------------------------------| | Carrier: CERKL-related conditions | CERKL | Deletion (Exon 12) | Autosomal recessive | Yes | | Carrier: Congenital adrenal hyperplasia due to 21-hydroxylase deficiency | CYP21A2 | c.844G>T
(p.Val282Leu) | Autosomal recessive | Yes | Invitae #: # **Next steps** - See the table above for recommendations regarding testing of this individual's reproductive partner. - Even for genes that have a negative test result, there is always a small risk that an individual could still be a carrier. This is called "residual risk." See the Carrier detection rates and residual risks document. - Discussion with a physician and/or genetic counselor is recommended to further review the implications of this test result and to understand these results in the context of any family history of a genetic condition. - All patients, regardless of result, may wish to consider additional screening for hemoglobinopathies by complete blood count (CBC) and hemoglobin electrophoresis, if this has not already been completed. - Individuals can register their tests at https://www.invitae.com/patients/ to access online results, educational resources, and next steps. Invitae #: DOB: # **RESULT: CARRIER** ### **CERKL-related conditions** A single Pathogenic variant, Deletion (Exon 12), was identified in CERKL. #### What are CERKL-related conditions? CERKL-related conditions include cone-rod dystrophy (CRD) and retinitis pigmentosa (RP), which are retinal dystrophies, a class of inherited eye conditions characterized by degeneration of the rods and cones (photoreceptors) which are the cells in the retina that respond to light, as well as degeneration of the layer of tissue beneath the photoreceptors (retinal pigment epithelium [RPE]). Each of these conditions can be caused by changes in several different genes. Symptoms of CRD typically begin in childhood or adolescence and become more severe over time. Symptoms include reduced visual acuity (farsightedness or nearsightedness), loss of color perception, increased sensitivity to light (photophobia), and difficulty seeing in low light settings (night blindness). Some affected individuals develop involuntary eye movements (nystagmus), and most are legally blind by mid-adulthood. The first symptom of RP is often night blindness, which usually occurs during childhood or adolescence. Vision loss continues over years or decades and typically progresses to a loss of side (peripheral) vision, causing tunnel vision. Ultimately, central vision loss occurs. Many individuals with RP are legally blind by adulthood, though the severity of symptoms and age of onset varies by individual. Intelligence and life expectancy are not typically affected. Early initiation of medical, educational, and social services is recommended for affected individuals to maximize outcomes. # **Next steps** Carrier testing for the reproductive partner is recommended. # + If your partner tests positive: In autosomal recessive inheritance, an individual must have disease-causing genetic changes in each copy of the CERKL gene to be affected. Carriers, who have a disease-causing genetic change in only one copy of the gene, typically do not have symptoms. When both reproductive partners are carriers of an autosomal recessive condition, there is a 25% chance for each child to have the condition. # If your partner tests negative: A negative carrier test result reduces, but does not eliminate, the chance that a person may be a carrier. The risk that a person could still be a carrier, even after a negative test result, is called a residual risk. See the table below for your partner's hypothetical residual risk after testing negative for CERKL-related conditions. These values are provided only as a guide, are based on the detection rate for the condition as tested at Invitae, and assume a negative family history, the absence of symptoms, and vary based on the ethnic background of an individual. For genes associated with both dominant and recessive inheritance, the numbers provided apply to the recessive condition(s) associated with the gene. | DISORDER (INHERITANCE) | GENE | ETHNICITY | | CARRIER RESIDUAL RISK
AFTER NEGATIVE RESULT | |--|-------|------------|----------|--| | CERKL-related conditions (AR) NM_001030311.2 | CERKL | Pan-ethnic | 1 in 137 | 1 in 13600 | DOB: Invitae #: # Congenital adrenal hyperplasia due to 21-hydroxylase deficiency A single Pathogenic variant, c.844G>T (p.Val282Leu), was identified in CYP21A2. This variant is primarily associated with non-classic congenital adrenal hyperplasia due to 21-hydroxylase deficiency?" and Variant details for additional information. #### What is congenital adrenal hyperplasia due to 21-hydroxylase deficiency? 21-hydroxylase deficiency (21-OHD) is one of a group of conditions called congenital adrenal hyperplasia (CAH), which impair hormone production by the adrenal glands. The adrenal glands produce hormones that regulate many essential functions in the body, including sexual development and maturation. There are several types of CAH, which are caused by changes in different genes. Symptoms of 21-OHD CAH range in severity, and are caused by the adrenal glands producing excess male sex hormones (androgens). There are three types of 21-OHD which include two classic forms, known as the salt-wasting and simple virilizing types, and the third is called the non-classic type. The salt-wasting type is the most severe, the simple virilizing type is less severe, and the non-classic type is the mildest form. Individuals with the salt-wasting type of 21-OHD lose large amounts of sodium in the urine, which can be life-threatening in early infancy. Infants with the simple virilizing type of 21-OHD do not experience salt-wasting. Female infants with classic 21-OHD usually have external genitalia that do not look clearly male or female (ambiguous genitalia). Male infants with classic 21-OHD usually have normal genitalia, although the testes may be smaller than typical. Individuals with a classic form of 21-OHD may have decreased fertility. Females with non-classic 21-OHD are born with typical external genitalia. They may experience irregular menstruation, decreased fertility, excess hair growth on the face and body (hirsutism), and male-pattern baldness. Males with non-classic 21-OHD may experience early beard growth and have small testes. Some individuals with non-classic 21-OHD may not have signs or symptoms of the condition (asymptomatic). The form(s) of 21-OHD CAH for which an individual would be at risk depends on the specific CYP21A2 variants inherited from the reproductive parents. Follow-up
depends on each affected individual's specific situation, and discussion with a healthcare provider should be considered. # **Next steps** Carrier testing for the reproductive partner is recommended. # + If your partner tests positive: The various forms of congenital adrenal hyperplasia due to 21-hydroxylase deficiency are inherited in an autosomal recessive fashion. In autosomal recessive inheritance, an individual must have disease-causing genetic changes in each copy of the CYP21A2 gene to be affected. Carriers, who have a disease-causing genetic change in only one copy of the gene, typically do not have symptoms. When both reproductive partners are carriers of an autosomal recessive condition, there is a 25% chance for each child to have the condition. The form(s) of 21-OHD CAH for which an individual's offspring would be at risk depends on the specific CYP21A2 variants inherited from the reproductive parents. When an individual has a CYP21A2 variant on each chromosome (in trans), and at least one of the variants is most commonly associated with the non-classic form of the condition, then the individual is most likely to be at risk to have non-classic 21-OHD. #### If your partner tests negative: A negative carrier test result reduces, but does not eliminate, the chance that a person may be a carrier. The risk that a person could still be a carrier, even after a negative test result, is called a residual risk. See the table below for your partner's hypothetical residual risk after testing negative for congenital adrenal hyperplasia due to 21-hydroxylase deficiency. These values are provided only as a guide, are based on the detection rate for the condition as tested at Invitae, and assume a negative family history, the absence of symptoms, and vary based on the ethnic background of an individual. For genes associated with both dominant and recessive inheritance, the numbers provided apply to the recessive condition(s) associated with the gene. Patient name: Donor 6633 DOB: | DISORDER (INHERITANCE) | GENE | ETHNICITY | CARRIER FREQUENCY
BEFORE SCREENING | CARRIER RESIDUAL RISK
AFTER NEGATIVE RESULT | |--|---------|------------|---------------------------------------|--| | Congenital adrenal hyperplasia due to 21-hydroxylase deficiency (AR) NM_000500.7 | CYP21A2 | Pan-ethnic | 1 in 61 | 1 in 751 | Invitae #: DOB: ### Results to note #### SMN1 Negative result. SMN1: 3 copies #### Pseudodeficiency allele(s) - Benign changes, c.742G>A (p.Asp248Asn) and c.1685T>C (p.Ile562Thr), known to be pseudodeficiency alleles, identified in the GALC gene. Pseudodeficiency alleles are not known to be associated with disease, including Krabbe disease. - The presence of a pseudodeficiency allele does not impact this individual's risk to be a carrier. Individuals with pseudodeficiency alleles may exhibit false positive results on related biochemical tests, including newborn screening. However, pseudodeficiency alleles are not known to cause disease, even when there are two copies of the variant (homozygous) or when in combination with another disease-causing variant (compound heterozygous). Carrier testing for the reproductive partner is not indicated based on this result. ## Variant details #### CERKL, Deletion (Exon 12), heterozygous, PATHOGENIC - This variant is a gross deletion of the genomic region encompassing exon(s) 12 of the CERKL gene. This deletion is out-of-frame, and is expected to create a premature termination codon and result in an absent or disrupted protein product. Loss-of-function variants in CERKL are known to be pathogenic (PMID: 14681825, 23591405, 24043777). - This variant has not been reported in the literature in individuals affected with CERKL-related conditions. - For these reasons, this variant has been classified as Pathogenic. #### CYP21A2, Exon 7, c.844G>T (p.Val282Leu), heterozygous, PATHOGENIC - This sequence change replaces valine, which is neutral and non-polar, with leucine, which is neutral and non-polar, at codon 282 of the CYP21A2 protein (p.Val282Leu). - The frequency data for this variant in the population databases (gnomAD) is considered unreliable due to the presence of homologous sequence, such as pseudogenes or paralogs, in the genome. - This missense change has been observed in individual(s) with primarily non-classic, and less frequently, classic salt-wasting or simple virilizing, congenital adrenal hyperplasia due to 21-hydroxylase deficiency (PMID: 1644925, 23359698, 24953648, 26804566, 31344365). In at least one individual the data is consistent with being in trans (on the opposite chromosome) from a pathogenic variant. It has also been observed to segregate with disease in related individuals. - This variant is also known as V281L. - ClinVar contains an entry for this variant (Variation ID: 12151). - Advanced modeling of protein sequence and biophysical properties (such as structural, functional, and spatial information, amino acid conservation, physicochemical variation, residue mobility, and thermodynamic stability) performed at Invitae indicates that this missense variant is not expected to disrupt CYP21A2 protein function. - Experimental studies have shown that this missense change affects CYP21A2 function (PMID: 1864962, 2249999, 31344365). - For these reasons, this variant has been classified as Pathogenic. ### Residual risk No carrier test can detect 100% of carriers. There still remains a small risk of being a carrier after a negative test (residual risk). Residual risk values assume a negative family history and are inferred from published carrier frequencies and estimated detection rates based on testing technologies used at Patient name: Donor 6633 DOB: Invitae #: Invitae. You can view Invitae's complete Carrier detection rates and residual risks document (containing all carrier genes) online at https://www.invitae.com/carrier-residual-risks/. Additionally, the order-specific information for this report is available to download in the portal (under this order's documents) or can be requested by contacting Invitae Client Services. The complete Carrier detection rates and residual risks document will not be applicable for any genes with specimen-specific limitations in sequencing and/or deletion/duplication coverage. Please see the final bullet point in the Limitations section of this report to view if this specimen had any gene-specific coverage gaps. Invitae #: DOB: # Genes analyzed This table represents a complete list of genes analyzed for this individual, including the relevant gene transcript(s). If more than one transcript is listed for a single gene, variants were reported using the first transcript listed unless otherwise indicated in the report. An asterisk (*) indicates that this gene has a limitation. Please see the Limitations section for details. Results are negative, unless otherwise indicated in the report. | GENE | TRANSCRIPT | |----------|-------------| | AAAS | NM_015665.5 | | ABCA12 | NM_173076.2 | | ABCA3 | NM_001089.2 | | ABCA4 | NM_000350.2 | | ABCB11 | NM_003742.2 | | ABCB4 | NM_000443.3 | | ABCC2* | NM_000392.4 | | ABCC8 | NM_000352.4 | | ACAD9 | NM_014049.4 | | ACADM | NM_000016.5 | | ACADVL | NM_000018.3 | | ACAT1 | NM_000019.3 | | ACOX1 | NM_004035.6 | | ACSF3 | NM_174917.4 | | ADA | NM_000022.2 | | ADAMTS2 | NM_014244.4 | | ADAMTSL4 | NM_019032.5 | | ADGRG1 | NM_005682.6 | | ADGRV1 | NM_032119.3 | | AGA | NM_000027.3 | | AGL | NM_000642.2 | | AGPS | NM_003659.3 | | AGXT | NM_000030.2 | | AHI1 | NM_017651.4 | | AIPL1* | NM_014336.4 | | AIRE | NM_000383.3 | | ALDH3A2 | NM_000382.2 | | ALDH7A1 | NM_001182.4 | | ALDOB | NM_000035.3 | | ALG1 | NM_019109.4 | | ALG6 | NM_013339.3 | | ALMS1 | NM_015120.4 | | ALPL | NM_000478.5 | | AMN* | NM_030943.3 | | AMT | NM_000481.3 | | ANO10* | NM_018075.3 | | APIS1 NM_001283.3 AQP2 NM_000486.5 ARG1 NM_000045.3 ARL6 NM_177976.2 ARSA NM_000487.5 ARSB NM_000046.3 ASL NM_000048.3 ASNS NM_133436.3 ASPA NM_000050.4 ATM* NM_000051.3 ATP6V1B1 NM_001692.3 ATP7B NM_00053.3 ATP8B1* NM_024649.4 BBS1 NM_024685.3 BBS1 NM_024685.3 BBS12 NM_152618.2 BBS2 NM_031885.3 BBS4 NM_033028.4 BBS5 NM_152384.2 BBS7 NM_176824.2 BBS9* NM_198428.2 BCKDHA NM_000709.3 BCKDHB NM_000057.3 BLOC153 NM_212550.4 BLOC156 NM_012388.3 BRIP1 NM_032043.2 BSND NM_057176.2 BTD NM_000060.3 CAD NM_000070.2 CASQ2 NM_001232.3 | GENE | TRANSCRIPT | |--|----------|-------------------------| | ARG1 NM_00045.3 ARL6 NM_177976.2 ARSA NM_000487.5 ARSB NM_000046.3 ASL NM_000048.3 ASNS NM_133436.3 ASPA NM_000050.4 ATM* NM_000051.3 ATP6V1B1 NM_001692.3 ATP7B NM_00053.3 ATP8B1* NM_024649.4 BBS1 NM_024685.3 BBS1 NM_024685.3 BBS12 NM_152618.2 BBS2 NM_031885.3 BBS4 NM_033028.4 BBS5 NM_152384.2 BBS7 NM_176824.2 BBS9* NM_198428.2 BCKDHA NM_000709.3 BCKDHB NM_00057.3 BLOC1S3 NM_212550.4 BLOC1S6 NM_012388.3 BMP1 NM_00060.3 CAD NM_004341.4 CANT1 NM_138793.3 CAPN3 NM_000070.2 | AP1S1 | NM_001283.3 | | ARL6 NM_177976.2 ARSA NM_000487.5 ARSB NM_000046.3 ASL NM_000048.3 ASNS NM_133436.3 ASPA NM_000049.2 ASS1 NM_000050.4 ATM* NM_000051.3 ATP6V1B1 NM_001692.3 ATP7B NM_000503.4 BBS1 NM_024649.4 BBS10 NM_024685.3 BBS12
NM_152618.2 BBS2 NM_031885.3 BBS4 NM_033028.4 BBS5 NM_152384.2 BBS7 NM_176824.2 BBS9* NM_198428.2 BCKDHA NM_000709.3 BCKDHB NM_00032.3 BCKDHB NM_183050.2 BCS1L NM_004328.4 BLM NM_00037.3 BLOC1S3 NM_212550.4 BLOC1S6 NM_012388.3 BMP1 NM_0032043.2 BSND NM_057176.2 BTD NM_00060.3 CAD NM_004341.4 CANT1 NM_138793.3 CAPN3 NM_000070.2 | AQP2 | NM_000486.5 | | ARSA NM_000487.5 ARSB NM_000046.3 ASL NM_000048.3 ASNS NM_133436.3 ASPA NM_000050.4 ATM* NM_000051.3 ATP6V1B1 NM_001692.3 ATP7B NM_00053.3 ATP8B1* NM_024649.4 BBS10 NM_024685.3 BBS12 NM_152618.2 BBS2 NM_031885.3 BBS4 NM_033028.4 BBS5 NM_152384.2 BBS7 NM_176824.2 BBS9* NM_198428.2 BCKDHA NM_000709.3 BCKDHB NM_000057.3 BLOC156 NM_012388.3 BBND NM_0212550.4 BCND NM_032043.2 BSND NM_057176.2 BTD NM_000060.3 CAD NM_00070.2 | ARG1 | NM_000045.3 | | ARSB NM_000046.3 ASL NM_000048.3 ASNS NM_133436.3 ASPA NM_000049.2 ASS1 NM_000050.4 ATM* NM_000051.3 ATP6V1B1 NM_001692.3 ATP7B NM_00053.3 ATP8B1* NM_024649.4 BBS1 NM_024649.4 BBS1 NM_024685.3 BBS12 NM_152618.2 BBS2 NM_031885.3 BBS4 NM_033028.4 BBS5 NM_152384.2 BBS7 NM_176824.2 BBS9* NM_198428.2 BCKDHA NM_000709.3 BCKDHB NM_183050.2 BCS1L NM_00057.3 BLOC1S3 NM_212550.4 BLOC1S6 NM_012388.3 BRIP1 NM_0006129.4;NM_001199.3 BRIP1 NM_032043.2 BSND NM_057176.2 BTD NM_00060.3 CAD NM_00070.2 | ARL6 | NM_177976.2 | | ASL NM_000048.3 ASNS NM_133436.3 ASPA NM_000049.2 ASS1 NM_000050.4 ATM* NM_000051.3 ATP6V1B1 NM_001692.3 ATP7B NM_00053.3 ATP8B1* NM_026603.4 BBS1 NM_024649.4 BBS10 NM_024685.3 BBS12 NM_152618.2 BBS2 NM_031885.3 BBS4 NM_033028.4 BBS5 NM_152384.2 BBS7 NM_176824.2 BBS9* NM_198428.2 BCKDHA NM_000709.3 BCKDHB NM_183050.2 BCS1L NM_004328.4 BLM NM_000057.3 BLOC1S3 NM_212550.4 BLOC1S6 NM_012388.3 BMP1 NM_0006129.4;NM_001199.3 BRIP1 NM_032043.2 BSND NM_057176.2 BTD NM_00060.3 CAD NM_004341.4 CANT1 NM_138793.3 CAPN3 NM_000070.2 | ARSA | NM_000487.5 | | ASNS NM_133436.3 ASPA NM_000049.2 ASS1 NM_000050.4 ATM* NM_000051.3 ATP6V1B1 NM_001692.3 ATP7B NM_00053.3 ATP8B1* NM_026603.4 BBS1 NM_024649.4 BBS10 NM_024685.3 BBS12 NM_152618.2 BBS2 NM_031885.3 BBS4 NM_033028.4 BBS5 NM_152384.2 BBS7 NM_152384.2 BBS7 NM_176824.2 BBS9* NM_198428.2 BCKDHA NM_000709.3 BCKDHB NM_183050.2 BCS1L NM_004328.4 BLM NM_000057.3 BLOC1S3 NM_212550.4 BLOC1S6 NM_012388.3 BMP1 NM_0006129.4;NM_001199.3 BRIP1 NM_032043.2 BSND NM_057176.2 BTD NM_00060.3 CAD NM_004341.4 CANT1 NM_138793.3 CAPN3 NM_000070.2 | ARSB | NM_000046.3 | | ASPA ASS1 NM_000049.2 ASS1 NM_000050.4 ATM* NM_000051.3 ATP6V1B1 NM_001692.3 ATP7B NM_000503.4 BBS1 NM_0264649.4 BBS10 NM_024685.3 BBS12 NM_152618.2 BBS2 NM_031885.3 BBS4 NM_033028.4 BBS5 NM_152384.2 BBS7 NM_176824.2 BBS9* NM_198428.2 BCKDHA NM_000709.3 BCKDHB NM_183050.2 BCS1L NM_004328.4 BLM NM_000057.3 BLOC1S3 NM_212550.4 BLOC1S6 NM_012388.3 BMP1 NM_006129.4;NM_001199.3 BRIP1 NM_032043.2 BSND NM_057176.2 BTD NM_00060.3 CAD NM_000070.2 | ASL | NM_000048.3 | | ASS1 NM_000050.4 ATM* NM_000051.3 ATP6V1B1 NM_001692.3 ATP7B NM_00053.3 ATP8B1* NM_005603.4 BBS1 NM_024649.4 BBS10 NM_024685.3 BBS12 NM_152618.2 BBS2 NM_031885.3 BBS4 NM_033028.4 BBS5 NM_152384.2 BBS7 NM_176824.2 BBS9* NM_176824.2 BBS9* NM_198428.2 BCKDHA NM_000709.3 BCKDHB NM_183050.2 BCS1L NM_004328.4 BLM NM_00057.3 BLOC1S3 NM_212550.4 BLOC1S6 NM_012388.3 BMP1 NM_006129.4;NM_001199.3 BRIP1 NM_032043.2 BSND NM_057176.2 BTD NM_00060.3 CAD NM_004341.4 CANT1 NM_138793.3 CAPN3 NM_000070.2 | ASNS | NM_133436.3 | | ATM* NM_000051.3 ATP6V1B1 NM_001692.3 ATP7B NM_000053.3 ATP8B1* NM_005603.4 BBS1 NM_024649.4 BBS10 NM_024685.3 BBS12 NM_152618.2 BBS2 NM_031885.3 BBS4 NM_033028.4 BBS5 NM_152384.2 BBS7 NM_152384.2 BBS7 NM_176824.2 BBS9* NM_198428.2 BCKDHA NM_000709.3 BCKDHB NM_183050.2 BCS1L NM_004328.4 BLM NM_000057.3 BLOC1S3 NM_212550.4 BLOC1S6 NM_012388.3 BMP1 NM_006129.4;NM_001199.3 BRIP1 NM_032043.2 BSND NM_057176.2 BTD NM_00060.3 CAD NM_004341.4 CANT1 NM_138793.3 CAPN3 NM_000070.2 | ASPA | NM_000049.2 | | ATP6V1B1 NM_001692.3 ATP7B NM_000053.3 ATP8B1* NM_005603.4 BBS1 NM_024649.4 BBS10 NM_024685.3 BBS12 NM_152618.2 BBS2 NM_031885.3 BBS4 NM_033028.4 BBS5 NM_152384.2 BBS7 NM_176824.2 BBS7 NM_198428.2 BCKDHA NM_000709.3 BCKDHB NM_183050.2 BCS1L NM_004328.4 BLM NM_000057.3 BLOC1S3 NM_212550.4 BLOC1S6 NM_012388.3 BMP1 NM_006129.4;NM_001199.3 BRIP1 NM_032043.2 BSND NM_057176.2 BTD NM_00060.3 CAD NM_004341.4 CANT1 NM_138793.3 CAPN3 NM_000070.2 | ASS1 | NM_000050.4 | | ATP7B NM_00053.3 ATP8B1* NM_000503.4 BBS1 NM_024649.4 BBS10 NM_024685.3 BBS12 NM_152618.2 BBS2 NM_031885.3 BBS4 NM_033028.4 BBS5 NM_152384.2 BBS7 NM_176824.2 BBS9* NM_198428.2 BCKDHA NM_000709.3 BCKDHB NM_183050.2 BCS1L NM_004328.4 BLM NM_000057.3 BLOC1S3 NM_212550.4 BLOC1S6 NM_012388.3 BMP1 NM_006129.4;NM_001199.3 BRIP1 NM_032043.2 BSND NM_057176.2 BTD NM_00060.3 CAD NM_004341.4 CANT1 NM_138793.3 CAPN3 NM_000070.2 | ATM* | NM_000051.3 | | ATP8B1* NM_005603.4 BBS1 NM_024649.4 BBS10 NM_024685.3 BBS12 NM_152618.2 BBS2 NM_031885.3 BBS4 NM_033028.4 BBS5 NM_152384.2 BBS7 NM_176824.2 BBS9* NM_198428.2 BCKDHA NM_000709.3 BCKDHB NM_183050.2 BCS1L NM_004328.4 BLM NM_000057.3 BLOC1S3 NM_212550.4 BLOC1S6 NM_012388.3 BMP1 NM_006129.4;NM_001199.3 BRIP1 NM_032043.2 BSND NM_057176.2 BTD NM_00060.3 CAD NM_004341.4 CANT1 NM_138793.3 CAPN3 NM_000070.2 | ATP6V1B1 | NM_001692.3 | | BBS1 NM_024649.4 BBS10 NM_024685.3 BBS12 NM_152618.2 BBS2 NM_031885.3 BBS4 NM_033028.4 BBS5 NM_152384.2 BBS7 NM_176824.2 BBS9* NM_198428.2 BCKDHA NM_000709.3 BCKDHB NM_183050.2 BCS1L NM_004328.4 BLM NM_000057.3 BLOC1S3 NM_212550.4 BLOC1S6 NM_012388.3 BMP1 NM_006129.4;NM_001199.3 BRIP1 NM_032043.2 BSND NM_057176.2 BTD NM_00060.3 CAD NM_004341.4 CANT1 NM_138793.3 CAPN3 NM_000070.2 | ATP7B | NM_000053.3 | | BBS10 NM_024685.3 BBS12 NM_152618.2 BBS2 NM_031885.3 BBS4 NM_033028.4 BBS5 NM_152384.2 BBS7 NM_176824.2 BBS9* NM_198428.2 BCKDHA NM_000709.3 BCKDHB NM_183050.2 BCS1L NM_004328.4 BLM NM_000057.3 BLOC1S3 NM_212550.4 BLOC1S6 NM_012388.3 BMP1 NM_006129.4;NM_001199.3 BRIP1 NM_032043.2 BSND NM_057176.2 BTD NM_00060.3 CAD NM_004341.4 CANT1 NM_138793.3 CAPN3 NM_000070.2 | ATP8B1* | NM_005603.4 | | BBS12 NM_152618.2 BBS2 NM_031885.3 BBS4 NM_033028.4 BBS5 NM_152384.2 BBS7 NM_176824.2 BBS9* NM_198428.2 BCKDHA NM_000709.3 BCKDHB NM_183050.2 BCS1L NM_004328.4 BLM NM_00057.3 BLOC1S3 NM_212550.4 BLOC1S6 NM_012388.3 BMP1 NM_006129.4;NM_001199.3 BRIP1 NM_032043.2 BSND NM_057176.2 BTD NM_000060.3 CAD NM_004341.4 CANT1 NM_138793.3 CAPN3 NM_000070.2 | BBS1 | NM_024649.4 | | BBS2 NM_031885.3 BBS4 NM_033028.4 BBS5 NM_152384.2 BBS7 NM_176824.2 BBS9* NM_198428.2 BCKDHA NM_000709.3 BCKDHB NM_183050.2 BCS1L NM_004328.4 BLM NM_000057.3 BLOC1S3 NM_212550.4 BLOC1S6 NM_012388.3 BMP1 NM_006129.4;NM_001199.3 BRIP1 NM_032043.2 BSND NM_057176.2 BTD NM_00060.3 CAD NM_004341.4 CANT1 NM_138793.3 CAPN3 NM_000070.2 | BBS10 | NM_024685.3 | | BBS4 NM_033028.4 BBS5 NM_152384.2 BBS7 NM_176824.2 BBS9* NM_198428.2 BCKDHA NM_000709.3 BCKDHB NM_183050.2 BCS1L NM_004328.4 BLM NM_000057.3 BLOC1S3 NM_212550.4 BLOC1S6 NM_012388.3 BMP1 NM_006129.4;NM_001199.3 BRIP1 NM_032043.2 BSND NM_057176.2 BTD NM_000060.3 CAD NM_004341.4 CANT1 NM_138793.3 CAPN3 NM_000070.2 | BBS12 | NM_152618.2 | | BBS5 NM_152384.2 BBS7 NM_176824.2 BBS9* NM_198428.2 BCKDHA NM_000709.3 BCKDHB NM_183050.2 BCS1L NM_004328.4 BLM NM_000057.3 BLOC1S3 NM_212550.4 BLOC1S6 NM_012388.3 BMP1 NM_006129.4;NM_001199.3 BRIP1 NM_032043.2 BSND NM_057176.2 BTD NM_00060.3 CAD NM_004341.4 CANT1 NM_138793.3 CAPN3 NM_000070.2 | BBS2 | NM_031885.3 | | BBS7 NM_176824.2 BBS9* NM_198428.2 BCKDHA NM_000709.3 BCKDHB NM_183050.2 BCS1L NM_004328.4 BLM NM_000057.3 BLOC153 NM_212550.4 BLOC156 NM_012388.3 BMP1 NM_006129.4;NM_001199.3 BRIP1 NM_032043.2 BSND NM_057176.2 BTD NM_00060.3 CAD NM_004341.4 CANT1 NM_138793.3 CAPN3 NM_000070.2 | BBS4 | NM_033028.4 | | BBS9* NM_198428.2 BCKDHA NM_000709.3 BCKDHB NM_183050.2 BCS1L NM_004328.4 BLM NM_000057.3 BLOC1S3 NM_212550.4 BLOC1S6 NM_012388.3 BMP1 NM_006129.4;NM_001199.3 BRIP1 NM_032043.2 BSND NM_057176.2 BTD NM_000060.3 CAD NM_004341.4 CANT1 NM_138793.3 CAPN3 NM_000070.2 | BBS5 | NM_152384.2 | | BCKDHA NM_000709.3 BCKDHB NM_183050.2 BCS1L NM_004328.4 BLM NM_00057.3 BLOC1S3 NM_212550.4 BLOC1S6 NM_012388.3 BMP1 NM_006129.4;NM_001199.3 BRIP1 NM_032043.2 BSND NM_057176.2 BTD NM_000060.3 CAD NM_004341.4 CANT1 NM_138793.3 CAPN3 NM_000070.2 | BBS7 | NM_176824.2 | | BCKDHB NM_183050.2 BCS1L NM_004328.4 BLM NM_000057.3 BLOC1S3 NM_212550.4 BLOC1S6 NM_012388.3 BMP1 NM_006129.4;NM_001199.3 BRIP1 NM_032043.2 BSND NM_057176.2 BTD NM_000060.3 CAD NM_004341.4 CANT1 NM_138793.3 CAPN3 NM_000070.2 | BBS9* | NM_198428.2 | | BCS1L NM_004328.4 BLM NM_000057.3 BLOC1S3 NM_212550.4 BLOC1S6 NM_012388.3 BMP1 NM_006129.4;NM_001199.3 BRIP1 NM_032043.2 BSND NM_057176.2 BTD NM_00060.3 CAD NM_004341.4 CANT1 NM_138793.3 CAPN3 NM_000070.2 | BCKDHA | NM_000709.3 | | BLM NM_000057.3 BLOC1S3 NM_212550.4 BLOC1S6 NM_012388.3 BMP1 NM_006129.4;NM_001199.3 BRIP1 NM_032043.2 BSND NM_057176.2 BTD NM_000060.3 CAD NM_004341.4 CANT1 NM_138793.3 CAPN3 NM_000070.2 | ВСКДНВ | NM_183050.2 | | BLOC1S3 NM_212550.4 BLOC1S6 NM_012388.3 BMP1 NM_006129.4;NM_001199.3 BRIP1 NM_032043.2 BSND NM_057176.2 BTD NM_000060.3 CAD NM_004341.4 CANT1 NM_138793.3 CAPN3 NM_000070.2 | BCS1L | NM_004328.4 | | BLOC1S6 NM_012388.3 BMP1 NM_006129.4;NM_001199.3 BRIP1 NM_032043.2 BSND NM_057176.2 BTD NM_00060.3 CAD NM_004341.4 CANT1 NM_138793.3 CAPN3 NM_000070.2 | BLM | NM_000057.3 | | BMP1 NM_006129.4;NM_001199.3 BRIP1 NM_032043.2 BSND NM_057176.2 BTD NM_00060.3 CAD NM_004341.4 CANT1 NM_138793.3 CAPN3 NM_000070.2 | BLOC1S3 | NM_212550.4 | | BRIP1 NM_032043.2 BSND NM_057176.2 BTD NM_000060.3 CAD NM_004341.4 CANT1 NM_138793.3 CAPN3 NM_000070.2 | BLOC1S6 | NM_012388.3 | | BSND NM_057176.2 BTD NM_000060.3 CAD NM_004341.4 CANT1 NM_138793.3 CAPN3 NM_000070.2 | ВМР1 | NM_006129.4;NM_001199.3 | | BTD NM_000060.3 CAD NM_004341.4 CANT1 NM_138793.3 CAPN3 NM_000070.2 | BRIP1 | NM_032043.2 | | CAD NM_004341.4 CANT1 NM_138793.3 CAPN3 NM_000070.2 | BSND | NM_057176.2 | | CANT1 NM_138793.3
CAPN3 NM_000070.2 | BTD | NM_000060.3 | |
CAPN3 NM_000070.2 | CAD | NM_004341.4 | | | CANT1 | NM_138793.3 | | CASQ2 NM_001232.3 | CAPN3 | NM_000070.2 | | | CASQ2 | NM_001232.3 | | GENE | TRANSCRIPT | |----------|----------------| | CBS | NM_000071.2 | | CC2D1A | NM_017721.5 | | CC2D2A | NM_001080522.2 | | CCDC103 | NM_213607.2 | | CCDC39 | NM_181426.1 | | CCDC88C | NM_001080414.3 | | CD3D | NM_000732.4 | | CD3E | NM_000733.3 | | CD40 | NM_001250.5 | | CD59 | NM_203330.2 | | CDH23 | NM_022124.5 | | CEP152 | NM_014985.3 | | CEP290 | NM_025114.3 | | CERKL | NM_001030311.2 | | CFTR* | NM_000492.3 | | CHAT | NM_020549.4 | | CHRNE | NM_000080.3 | | CHRNG | NM_005199.4 | | CIITA | NM_000246.3 | | CLCN1 | NM_000083.2 | | CLN3 | NM_001042432.1 | | CLN5 | NM_006493.2 | | CLN6 | NM_017882.2 | | CLN8 | NM_018941.3 | | CLRN1 | NM_174878.2 | | CNGB3 | NM_019098.4 | | COL11A2* | NM_080680.2 | | COL17A1 | NM_000494.3 | | COL27A1 | NM_032888.3 | | COL4A3 | NM_000091.4 | | COL4A4 | NM_000092.4 | | COL7A1 | NM_000094.3 | | COX15 | NM_004376.6 | | CPS1 | NM_001875.4 | | CPT1A | NM_001876.3 | | CPT2 | NM_000098.2 | DOB: | GENE | TRANSCRIPT | |-----------------|----------------| | CRB1 | NM_201253.2 | | CRTAP | NM_006371.4 | | CTNS | NM_004937.2 | | CTSA | NM_000308.3 | | CTSC | NM_001814.5 | | CTSD | NM_001909.4 | | CTSK | NM_000396.3 | | CYBA | NM_000101.3 | | CYP11A1 | NM_000781.2 | | CYP11B1 | NM_000497.3 | | CYP11B2 | NM_000498.3 | | CYP17A1 | NM_000102.3 | | CYP19A1 | NM_031226.2 | | CYP1B1 | NM_000104.3 | | CYP21A2* | NM_000500.7 | | CYP27A1 | NM_000784.3 | | CYP27B1 | NM_000785.3 | | CYP7B1 | NM_004820.3 | | DBT | NM_001918.3 | | DCAF17 | NM_025000.3 | | DCLRE1C | NM_001033855.2 | | DDX11* | NM_030653.3 | | DFNB59 | NM_001042702.3 | | DGAT1 | NM_012079.5 | | DGUOK | NM_080916.2 | | DHCR7 | NM_001360.2 | | DHDDS | NM_024887.3 | | DLD | NM_000108.4 | | DLL3 | NM_016941.3 | | DNAH11 | NM_001277115.1 | | DNAH5 | NM_001369.2 | | DNAI1 | NM_012144.3 | | DNAI2 | NM_023036.4 | | DNMT3B | NM_006892.3 | | DOK7 | NM_173660.4 | | DUOX2* | NINA 034000 4 | | | NM_014080.4 | | DYNC2H1 | NM_001080463.1 | | DYNC2H1
DYSF | | | GENE | TRANSCRIPT | |---------|----------------| | EIF2B1 | NM_001414.3 | | EIF2B2 | NM_014239.3 | | EIF2B3 | NM_020365.4 | | EIF2B4 | NM_015636.3 | | EIF2B5 | NM_003907.2 | | ELP1 | NM_003640.3 | | EPG5 | NM_020964.2 | | ERCC2 | NM_000400.3 | | ERCC6 | NM_000124.3 | | ERCC8 | NM_000082.3 | | ESCO2 | NM_001017420.2 | | ETFA | NM_000126.3 | | ETFB | NM_001985.2 | | ETFDH | NM_004453.3 | | ETHE1 | NM_014297.3 | | EVC | NM_153717.2 | | EVC2 | NM_147127.4 | | EXOSC3 | NM_016042.3 | | EYS* | NM_001142800.1 | | FAH* | NM_000137.2 | | FAM161A | NM_001201543.1 | | FANCA | NM_000135.2 | | FANCC | NM_000136.2 | | FANCD2* | NM_033084.3 | | FANCE | NM_021922.2 | | FANCG | NM_004629.1 | | FANCI | NM_001113378.1 | | FANCL* | NM_018062.3 | | FBP1 | NM_000507.3 | | FBXO7 | NM_012179.3 | | FH* | NM_000143.3 | | FKBP10 | NM_021939.3 | | FKRP | NM_024301.4 | | FKTN | NM_001079802.1 | | FMO3 | NM_006894.6 | | FOXN1 | NM_003593.2 | | FOXRED1 | NM_017547.3 | | FRAS1 | NM_025074.6 | | FREM2 | NM_207361.5 | | GENE | TRANSCRIPT | |--------|----------------| | FUCA1 | NM_000147.4 | | G6PC | NM_000151.3 | | G6PC3 | NM_138387.3 | | GAA | NM_000152.3 | | GALC* | NM_000153.3 | | GALE* | NM_000403.3 | | GALK1 | NM_000154.1 | | GALNS | NM_000512.4 | | GALNT3 | NM_004482.3 | | GALT | NM_000155.3 | | GAMT | NM_000156.5 | | GATM | NM_001482.2 | | GBA* | NM_001005741.2 | | GBE1 | NM_000158.3 | | GCDH | NM_000159.3 | | GCH1 | NM_000161.2 | | GDF5 | NM_000557.4 | | GFM1 | NM_024996.5 | | GHR* | NM_000163.4 | | GJB2 | NM_004004.5 | | GLB1 | NM_000404.2 | | GLDC | NM_000170.2 | | GLE1 | NM_001003722.1 | | GNE* | NM_001128227.2 | | GNPAT | NM_014236.3 | | GNPTAB | NM_024312.4 | | GNPTG | NM_032520.4 | | GNS | NM_002076.3 | | GORAB | NM_152281.2 | | GRHPR | NM_012203.1 | | GRIP1 | NM_021150.3 | | GSS | NM_000178.2 | | GUCY2D | NM_000180.3 | | GUSB | NM_000181.3 | | HADH | NM_005327.4 | | HADHA | NM_000182.4 | | HADHB | NM_000183.2 | | НАМР | NM_021175.2 | | HAX1 | NM_006118.3 | DOB: | GENE | TRANSCRIPT | |---------|----------------| | HBA1* | NM_000558.4 | | HBA2 | NM_000517.4 | | НВВ | NM_000518.4 | | HEXA | NM_000520.4 | | HEXB | NM_000521.3 | | HGSNAT | NM_152419.2 | | ну | NM_213653.3 | | HLCS | NM_000411.6 | | HMGCL | NM_000191.2 | | HMOX1 | NM_002133.2 | | HOGA1 | NM_138413.3 | | HPD | NM_002150.2 | | HPS1 | NM_000195.4 | | HPS3 | NM_032383.4 | | HPS4 | NM_022081.5 | | HPS5 | NM_181507.1 | | HPS6 | NM_024747.5 | | HSD17B3 | NM_000197.1 | | HSD17B4 | NM_000414.3 | | HSD3B2 | NM_000198.3 | | HYAL1 | NM_153281.1 | | HYLS1 | NM_145014.2 | | IDUA | NM_000203.4 | | IGHMBP2 | NM_002180.2 | | IKBKB | NM_001556.2 | | IL7R | NM_002185.3 | | INVS | NM_014425.3 | | ITGA6 | NM_000210.3 | | ITGB3 | NM_000212.2 | | ITGB4 | NM_001005731.2 | | IVD | NM_002225.3 | | JAK3 | NM_000215.3 | | KCNJ1 | NM_000220.4 | | KCNJ11 | NM_000525.3 | | LAMA2 | NM_000426.3 | | LAMA3 | NM_000227.4 | | LAMB3 | NM_000228.2 | | LAMC2 | NM_005562.2 | | LARGE1 | NM_004737.4 | | GENE | TRANSCRIPT | |---------|----------------| | LCA5 | NM_181714.3 | | LDLR | NM_000527.4 | | LDLRAP1 | NM_015627.2 | | LHX3 | NM_014564.4 | | LIFR* | NM_002310.5 | | LIG4 | NM_002312.3 | | LIPA | NM_000235.3 | | LMBRD1 | NM_018368.3 | | LOXHD1 | NM_144612.6 | | LPL | NM_000237.2 | | LRAT | NM_004744.4 | | LRP2 | NM_004525.2 | | LRPPRC | NM_133259.3 | | LYST | NM_000081.3 | | MAK | NM_001242957.2 | | MAN2B1 | NM_000528.3 | | MANBA | NM_005908.3 | | MCEE | NM_032601.3 | | MCOLN1 | NM_020533.2 | | MCPH1 | NM_024596.4 | | MECR | NM_016011.3 | | MED17 | NM_004268.4 | | MESP2 | NM_001039958.1 | | MFSD8 | NM_152778.2 | | MKKS | NM_018848.3 | | MKS1 | NM_017777.3 | | MLC1* | NM_015166.3 | | MLYCD | NM_012213.2 | | MMAA | NM_172250.2 | | MMAB | NM_052845.3 | | MMACHC | NM_015506.2 | | MMADHC | NM_015702.2 | | MOCS1 | NM_001358530.2 | | MOCS2A | NM_176806.3 | | MOCS2B | NM_004531.4 | | MPI | NM_002435.2 | | MPL | NM_005373.2 | | MPV17 | NM_002437.4 | | MRE11 | NM_005591.3 | | GENE | TRANSCRIPT | |---------|-------------------------| | MTHFR* | NM_005957.4 | | MTR | NM_000254.2 | | MTRR | NM_002454.2 | | MTTP | NM_000253.3 | | MUSK | NM_005592.3 | | MUT | NM_000255.3 | | MVK | NM_000431.3 | | MYO15A | NM_016239.3 | | MYO7A | NM_000260.3 | | NAGA | NM_000262.2 | | NAGLU | NM_000263.3 | | NAGS | NM_153006.2 | | NBN | NM_002485.4 | | NCF2 | NM_000433.3 | | NDRG1 | NM_006096.3 | | NDUFAF2 | NM_174889.4 | | NDUFAF5 | NM_024120.4 | | NDUFS4 | NM_002495.3 | | NDUFS6 | NM_004553.4 | | NDUFS7 | NM_024407.4 | | NDUFV1 | NM_007103.3 | | NEB* | NM_001271208.1 | | NEU1 | NM_000434.3 | | NGLY1 | NM_018297.3 | | NPC1 | NM_000271.4 | | NPC2 | NM_006432.3 | | NPHP1 | NM_000272.3 | | NPHS1 | NM_004646.3 | | NPHS2 | NM_014625.3 | | NR2E3 | NM_014249.3 | | NSMCE3 | NM_138704.3 | | NTRK1 | NM_001012331.1 | | OAT* | NM_000274.3 | | OCA2 | NM_000275.2 | | OPA3 | NM_025136.3 | | OSTM1 | NM_014028.3 | | OTOA* | NM_144672.3 | | OTOF | NM_194248.2;NM_194323.2 | | P3H1 | NM_022356.3 | DOB: | PAH NM_000277.1 PANK2 NM_153638.2 PC NM_000920.3 PCBD1 NM_000281.3 PCCA NM_000282.3 PCCB NM_000332.4 PCDH1S NM_033056.3 PCNT NM_00631.5 PDHB NM_000925.3 PEPD NM_000285.3 PET100 NM_001171155.1 PEX1* NM_000466.2 PEX10 NM_153818.1 PEX12 NM_000286.2 PEX13 NM_000286.2 PEX14 NM_0004813.2 PEX2 NM_000318.2 PEX2 NM_001131025.1 PEX5 NM_001131025.1 PEX6 NM_000287.3 PEX7 NM_000288.3 PFKM NM_000289.5 PGM3 NM_001131025.1 PHGDH NM_000289.5 PGM3 NM_000199917.1 PHGDH NM_000623.3 PHKB NM_000293.2;NM_00103183 5.2 PHKB NM_0176787.4 PKD1 | GENE | TRANSCRIPT | |--|---------|----------------| | PC NM_000920.3 PCBD1 NM_000281.3 PCCA NM_000282.3 PCCB NM_000532.4 PCDH15 NM_033056.3 PCNT NM_006031.5 PDHB NM_000285.3 PEPD NM_000285.3 PET100 NM_01171155.1 PEX1* NM_000466.2 PEX10 NM_153818.1 PEX12 NM_000286.2 PEX13 NM_002618.3 PEX2 NM_000318.2 PEX2 NM_000318.2 PEX2 NM_000318.2 PEX2 NM_001131025.1 PEX5 NM_017929.5 PEX5 NM_01131025.1 PEX6 NM_000287.3 PFKM NM_000288.3 PFKM NM_000289.5 PGM3 NM_001199917.1 PHGDH NM_006623.3 PHKB NM_000294.2 PHYH NM_006214.3 PIGN NM_176787.4 PKHD1* NM_138694.3 PLA2G6 NM_00303.2 PLAGG NM_000303.2 PNPO NM_018129.3 POLG NM_0017739.3 POLG NM_0017739.3 POMT1 NM_017739.3 POMT1 NM_017739.3 POMT1 NM_017739.3 | PAH | NM_000277.1 | | PCBD1 NM_000281.3 PCCA NM_000282.3 PCCB NM_000532.4 PCDH15 NM_033056.3 PCNT NM_006031.5 PDHB NM_000285.3 PEPD NM_000285.3 PETIO0 NM_01171155.1 PEX1* NM_000466.2 PEX10 NM_153818.1 PEX12 NM_000286.2 PEX13 NM_002618.3 PEX16 NM_004813.2 PEX2 NM_000318.2 PEX2 NM_001131025.1 PEX6 NM_017929.5 PEX6 NM_017929.5 PEX7 NM_000288.3 PFKM NM_000287.3 PEX7 NM_000288.3 PFKM NM_000289.5 PGM3 NM_001199917.1 PHGDH NM_006623.3 PHKB NM_000293.2;NM_00103183 S.2 PHKG2 NM_000294.2 PHYH NM_006214.3 PIGN NM_176787.4 PKHD1* NM_138694.3 PLA2G6 NM_003560.2 PLEKHG5 NM_000303.2 PNPO NM_018129.3 POLG NM_0017739.3 POMT1 NM_017739.3 POMT1 NM_017739.3 | PANK2 |
NM_153638.2 | | PCCA NM_000282.3 PCCB NM_000532.4 PCDH15 NM_033056.3 PCNT NM_006031.5 PDHB NM_000925.3 PEPD NM_000285.3 PET100 NM_001171155.1 PEX1* NM_000466.2 PEX10 NM_153818.1 PEX12 NM_000286.2 PEX13 NM_002618.3 PEX16 NM_004813.2 PEX2 NM_000318.2 PEX2 NM_0017929.5 PEX5 NM_001131025.1 PEX6 NM_000287.3 PEX7 NM_000288.3 PFKM NM_000289.5 PGM3 NM_001199917.1 PHGDH NM_006623.3 PHKB NM_000293.2; NM_00103183 S.2 PHKB NM_006214.3 PIGN NM_176787.4 PKHD1* NM_006214.3 PIGN NM_138694.3 PLA2G6 NM_003560.2 PLEKHG5 NM_003602.3 PMM2 NM_000303.2 PN | PC | NM_000920.3 | | PCCB NM_000532.4 PCDH15 NM_033056.3 PCNT NM_0033056.3 PCNT NM_0006031.5 PDHB NM_000925.3 PEPD NM_000285.3 PET100 NM_001171155.1 PEX1* NM_000466.2 PEX10 NM_153818.1 PEX12 NM_000286.2 PEX13 NM_000286.2 PEX14 NM_0004813.2 PEX2 NM_000318.2 PEX2 NM_000318.2 PEX5 NM_001731025.1 PEX6 NM_000287.3 PEX7 NM_000288.3 PFKM NM_000288.3 PFKM NM_000289.5 PGM3 NM_001199917.1 PHGDH NM_006623.3 PHKB NM_0006623.3 PHKB NM_000293.2;NM_00103183 PLYH NM_006214.3 PIGN NM_138694.3 PLAZG6 NM_003560.2 PLEKHG5 NM_0020631.4 PLOD1 NM_000300.3 PMM2 <th< td=""><td>PCBD1</td><td>NM_000281.3</td></th<> | PCBD1 | NM_000281.3 | | PCDH15 NM_033056.3 PCNT NM_006031.5 PDHB NM_000925.3 PEPD NM_000285.3 PET100 NM_001171155.1 PEX1* NM_000466.2 PEX10 NM_153818.1 PEX12 NM_000286.2 PEX13 NM_002618.3 PEX16 NM_004813.2 PEX2 NM_000318.2 PEX2 NM_001131025.1 PEX6 NM_001131025.1 PEX6 NM_000287.3 PEX7 NM_000288.3 PFKM NM_000289.5 PGM3 NM_001199917.1 PHGDH NM_006623.3 PHKB NM_000293.2;NM_00103183 5.2 PHKB NM_000294.2 PHYH NM_006214.3 PIGN NM_176787.4 PKHD1* NM_138694.3 PLA2G6 NM_003560.2 PLEKHG5 NM_00303.2 PNPO NM_018129.3 POLG NM_00693.2 POLG NM_00693.2 POLG NM_006502.2 POMGNT1 NM_017739.3 POMT1 NM_017739.3 | PCCA | NM_000282.3 | | PCNT NM_006031.5 PDHB NM_000925.3 PEPD NM_000285.3 PET100 NM_001171155.1 PEX1* NM_000466.2 PEX10 NM_153818.1 PEX12 NM_000286.2 PEX13 NM_00286.2 PEX13 NM_002813.2 PEX2 NM_00318.2 PEX2 NM_001131025.1 PEX6 NM_017929.5 PEX5 NM_001287.3 PEX7 NM_000288.3 PFKM NM_000289.5 PGM3 NM_001199917.1 PHGDH NM_006623.3 PHKB NM_000293.2;NM_00103183 5.2 PHKG2 NM_000294.2 PHYH NM_006214.3 PIGN NM_176787.4 PKHD1* NM_138694.3 PLA2G6 NM_003560.2 PLEKHG5 NM_00303.2 PNPO NM_018129.3 POLG NM_006502.2 POMGNT1 NM_006502.2 POMGNT1 NM_017739.3 POMT1 NM_017739.3 | PCCB | NM_000532.4 | | PDHB NM_000925.3 PEPD NM_000285.3 PET100 NM_001171155.1 PEX1* NM_000466.2 PEX10 NM_153818.1 PEX12 NM_000286.2 PEX13 NM_002618.3 PEX16 NM_004813.2 PEX2 NM_000318.2 PEX2 NM_001131025.1 PEX6 NM_001131025.1 PEX6 NM_000287.3 PEX7 NM_000288.3 PFKM NM_000289.5 PGM3 NM_001199917.1 PHGDH NM_006623.3 PHKB NM_000293.2;NM_00103183 5.2 PHKG2 NM_000294.2 PHYH NM_006214.3 PIGN NM_176787.4 PKHD1* NM_138694.3 PLA2G6 NM_003560.2 PLEKHG5 NM_000303.2 PNPO NM_018129.3 POLG NM_006502.2 POMGNT1 NM_006502.2 POMGNT1 NM_017739.3 POMT1 NM_017739.3 | PCDH15 | NM_033056.3 | | PEPD NM_000285.3 PET100 NM_001171155.1 PEX1* NM_000466.2 PEX10 NM_153818.1 PEX12 NM_000286.2 PEX13 NM_002618.3 PEX16 NM_004813.2 PEX2 NM_000318.2 PEX2 NM_017929.5 PEX5 NM_001131025.1 PEX6 NM_000287.3 PEX7 NM_000288.3 PFKM NM_000289.5 PGM3 NM_001199917.1 PHGDH NM_006623.3 PHKB NM_000293.2; NM_00103183 S.2 PHKB NM_000294.2 PHYH NM_006214.3 PIGN NM_176787.4 PKHD1* NM_038694.3 PLA2G6 NM_003560.2 PLEKHG5 NM_000302.3 PMM2 NM_000303.2 PNPO NM_018129.3 POLG NM_006502.2 POMGNT1 NM_007171.3 | PCNT | NM_006031.5 | | PET100 NM_001171155.1 PEX1* NM_000466.2 PEX10 NM_153818.1 PEX12 NM_000286.2 PEX13 NM_002618.3 PEX16 NM_004813.2 PEX2 NM_000318.2 PEX26 NM_017929.5 PEX5 NM_001131025.1 PEX6 NM_000287.3 PEX7 NM_000288.3 PFKM NM_000289.5 PGM3 NM_001199917.1 PHGDH NM_006623.3 PHKB NM_000293.2;NM_00103183 5.2 PHKG2 NM_000294.2 PHYH NM_006214.3 PIGN NM_176787.4 PKHD1* NM_138694.3 PLA2G6 NM_003560.2 PLEKHG5 NM_000303.2 PNPO NM_018129.3 POLG NM_002693.2 POLG NM_006502.2 POMGNT1 NM_017739.3 POMT1 NM_017739.3 POMT1 NM_017739.3 | PDHB | NM_000925.3 | | PEX1* NM_000466.2 PEX10 NM_153818.1 PEX12 NM_000286.2 PEX13 NM_002618.3 PEX16 NM_004813.2 PEX2 NM_000318.2 PEX26 NM_017929.5 PEX5 NM_001131025.1 PEX6 NM_000287.3 PEX7 NM_000288.3 PFKM NM_000289.5 PGM3 NM_001199917.1 PHGDH NM_006623.3 PHKB NM_000293.2;NM_00103183 5.2 PHKG2 NM_000294.2 PHYH NM_006214.3 PIGN NM_176787.4 PKHD1* NM_138694.3 PLA2G6 NM_003560.2 PLEKHG5 NM_000303.2 PNPO NM_018129.3 POLG NM_002693.2 POLG NM_002693.2 POLH NM_006502.2 POMGNT1 NM_017739.3 POMT1 NM_017739.3 | PEPD | NM_000285.3 | | PEX10 | PET100 | NM_001171155.1 | | PEX12 NM_000286.2 PEX13 NM_002618.3 PEX16 NM_004813.2 PEX2 NM_000318.2 PEX26 NM_017929.5 PEX5 NM_001131025.1 PEX6 NM_000287.3 PEX7 NM_000288.3 PFKM NM_000289.5 PGM3 NM_001199917.1 PHGDH NM_006623.3 PHKB NM_000293.2;NM_00103183 5.2 PHKG2 NM_000294.2 PHYH NM_006214.3 PIGN NM_176787.4 PKHD1* NM_038694.3 PLA2G6 NM_003560.2 PLEKHG5 NM_00303.1.4 PLOD1 NM_000303.2 PNPO NM_018129.3 POLG NM_006502.2 POMGNT1 NM_017739.3 POMT1 NM_007171.3 | PEX1* | NM_000466.2 | | PEX13 NM_002618.3 PEX16 NM_004813.2 PEX2 NM_000318.2 PEX26 NM_017929.5 PEX5 NM_001131025.1 PEX6 NM_000287.3 PEX7 NM_000288.3 PFKM NM_000289.5 PGM3 NM_001199917.1 PHGDH NM_006623.3 PHKB NM_000293.2;NM_00103183 5.2 PHKG2 NM_000294.2 PHYH NM_006214.3 PIGN NM_176787.4 PKHD1* NM_038694.3 PLA2G6 NM_003560.2 PLEKHG5 NM_000302.3 PMM2 NM_000303.2 PNPO NM_018129.3 POLG NM_006502.2 POMGNTI NM_017739.3 POMT1 NM_007171.3 | PEX10 | NM_153818.1 | | PEX16 NM_004813.2 PEX2 NM_000318.2 PEX26 NM_017929.5 PEX5 NM_001131025.1 PEX6 NM_000287.3 PEX7 NM_000288.3 PFKM NM_000289.5 PGM3 NM_001199917.1 PHGDH NM_006623.3 PHKB NM_000293.2;NM_00103183 5.2 PHKG2 NM_000294.2 PHYH NM_006214.3 PIGN NM_176787.4 PKHD1* NM_138694.3 PLA2G6 NM_003560.2 PLEKHG5 NM_003560.2 PLEKHG5 NM_00303.2 PLOD1 NM_000302.3 PMM2 NM_000303.2 PNPO NM_018129.3 POLG NM_002693.2 POLG NM_006502.2 POMGNT1 NM_017739.3 POMT1 NM_017739.3 | PEX12 | NM_000286.2 | | PEX2 NM_000318.2 PEX26 NM_017929.5 PEX5 NM_001131025.1 PEX6 NM_000287.3 PEX7 NM_000288.3 PFKM NM_000289.5 PGM3 NM_001199917.1 PHGDH NM_006623.3 PHKB NM_000293.2;NM_00103183 5.2 PHKG2 NM_000294.2 PHYH NM_006214.3 PIGN NM_176787.4 PKHD1* NM_138694.3 PLA2G6 NM_003560.2 PLEKHG5 NM_003560.2 PLEKHG5 NM_000302.3 PMM2 NM_000302.3 PMM2 NM_000302.3 PMM2 NM_000302.3 PMM2 NM_000303.2 PNPO NM_018129.3 POLG NM_002693.2 POLH NM_006502.2 POMGNT1 NM_017739.3 POMT1 NM_007171.3 | PEX13 | NM_002618.3 | | PEX26 NM_017929.5 PEX5 NM_001131025.1 PEX6 NM_000287.3 PEX7 NM_000288.3 PFKM NM_000289.5 PGM3 NM_001199917.1 PHGDH NM_006623.3 PHKB NM_000293.2;NM_00103183 5.2 PHKG2 NM_000294.2 PHYH NM_006214.3 PIGN NM_176787.4 PKHD1* NM_138694.3 PLA2G6 NM_003560.2 PLEKHG5 NM_00303.2 PLOD1 NM_000302.3 PMM2 NM_000303.2 PNPO NM_018129.3 POLG NM_002693.2 POLH NM_0017739.3 POMT1 NM_007171.3 | PEX16 | NM_004813.2 | | PEX5 NM_001131025.1 PEX6 NM_000287.3 PEX7 NM_000288.3 PFKM NM_000289.5 PGM3 NM_001199917.1 PHGDH NM_006623.3 PHKB NM_000293.2;NM_00103183 5.2 PHKG2 NM_000294.2 PHYH NM_006214.3 PIGN NM_176787.4 PKHD1* NM_138694.3 PLA2G6 NM_003560.2 PLEKHG5 NM_00303.1.4 PLOD1 NM_000302.3 PMM2 NM_000303.2 PNPO NM_018129.3 POLG NM_002693.2 POLH NM_0017739.3 POMT1 NM_007171.3 | PEX2 | NM_000318.2 | | PEX6 NM_000287.3 PEX7 NM_000288.3 PFKM NM_000289.5 PGM3 NM_001199917.1 PHGDH NM_006623.3 PHKB NM_000293.2;NM_00103183 5.2 PHKG2 NM_000294.2 PHYH NM_006214.3 PIGN NM_176787.4 PKHD1* NM_138694.3 PLA2G6 NM_003560.2 PLEKHG5 NM_003560.2 PLEKHG5 NM_00303.2 PLOD1 NM_000302.3 PMM2 NM_000303.2 PNPO NM_018129.3 POLG NM_002693.2 POLG NM_006502.2 POMGNT1 NM_017739.3 POMT1 NM_017739.3 | PEX26 | NM_017929.5 | | PEX7 NM_000288.3 PFKM NM_000289.5 PGM3 NM_001199917.1 PHGDH NM_00623.3 PHKB NM_000293.2;NM_00103183 5.2 PHKG2 PHYH NM_000294.2 PHYH NM_006214.3 PIGN NM_176787.4 PKHD1* NM_0138694.3 PLA2G6 NM_003560.2 PLEKHG5 NM_000302.3 PMM2 NM_000302.3 PMM2 NM_000303.2 PNPO NM_018129.3 POLG NM_002693.2 POLH NM_006502.2 POMGNT1 NM_017739.3 POMT1 NM_007171.3 | PEX5 | NM_001131025.1 | | PFKM NM_000289.5 PGM3 NM_001199917.1 PHGDH NM_006623.3 PHKB NM_000293.2;NM_00103183 5.2 PHKG2 NM_000294.2 PHYH NM_006214.3 PIGN NM_176787.4 PKHD1* NM_038694.3 PLA2G6 NM_003560.2 PLEKHG5 NM_000302.3 PMM2 NM_000302.3 PMM2 NM_000303.2 PNPO NM_018129.3 POLG NM_002693.2 POLH NM_0071739.3 POMGNT1 NM_017739.3 POMT1 NM_007171.3 | PEX6 | NM_000287.3 | | PGM3 NM_001199917.1 PHGDH NM_006623.3 PHKB NM_000293.2;NM_00103183 5.2 S.2 PHKG2 NM_000294.2 PHYH NM_006214.3 PIGN NM_176787.4 PKHD1* NM_138694.3 PLA2G6 NM_003560.2 PLEKHG5 NM_000302.3 PMM2 NM_000303.2 PNPO NM_018129.3 POLG NM_002693.2 POLH NM_00717739.3 POMGNT1 NM_0177739.3 POMT1 NM_007171.3 | PEX7 | NM_000288.3 | | PHGDH NM_006623.3 PHKB NM_000623.3 PHKB NM_000293.2;NM_00103183 5.2 PHKG2 NM_000294.2 PHYH NM_006214.3 PIGN NM_176787.4 PKHD1* NM_138694.3 PLA2G6 NM_003560.2 PLEKHG5 NM_020631.4 PLOD1 NM_000302.3 PMM2 NM_000303.2 PNPO NM_018129.3 POLG NM_002693.2 POLH NM_006502.2 POMGNT1 NM_017739.3 POMT1 NM_007171.3 | PFKM | NM_000289.5 | | PHKB NM_000293.2;NM_00103183 5.2 PHKG2 NM_000294.2 PHYH NM_006214.3 PIGN NM_176787.4 PKHD1* NM_138694.3 PLA2G6 NM_003560.2 PLEKHG5 NM_020631.4 PLOD1 NM_000302.3 PMM2 NM_000303.2 PNPO NM_018129.3 POLG NM_002693.2 POLH NM_006502.2 POMGNT1 NM_017739.3 POMT1 NM_007171.3 | PGM3 | NM_001199917.1 | | 5.2 PHKG2 NM_000294.2 PHYH NM_006214.3 PIGN NM_176787.4 PKHD1* NM_038694.3 PLA2G6 NM_003560.2 PLEKHG5 NM_020631.4 PLOD1 NM_000302.3 PMM2 NM_000303.2 PNPO NM_018129.3 POLG NM_002693.2 POLH NM_006502.2 POMGNT1 NM_017739.3 POMT1 NM_007171.3 | PHGDH | NM_006623.3 | | PHYH NM_006214.3 PIGN NM_176787.4 PKHD1* NM_038694.3 PLA2G6 NM_003560.2 PLEKHG5 NM_020631.4 PLOD1 NM_000302.3 PMM2 NM_000303.2 PNPO NM_018129.3 POLG NM_002693.2 POLH NM_006502.2 POMGNT1 NM_017739.3 POMT1 NM_007171.3 | РНКВ | | | PIGN NM_176787.4 PKHD1* NM_138694.3 PLA2G6 NM_003560.2 PLEKHG5 NM_020631.4 PLOD1 NM_000302.3 PMM2 NM_000303.2 PNPO NM_018129.3 POLG NM_002693.2 POLH NM_006502.2 POMGNT1 NM_017739.3 POMT1 NM_007171.3 | PHKG2 | NM_000294.2 | | PKHD1* NM_138694.3 PLA2G6 NM_003560.2 PLEKHG5 NM_020631.4 PLOD1 NM_000302.3 PMM2 NM_000303.2 PNPO NM_018129.3 POLG
NM_002693.2 POLH NM_006502.2 POMGNT1 NM_017739.3 POMT1 NM_007171.3 | PHYH | NM_006214.3 | | PLA2G6 NM_003560.2 PLEKHG5 NM_020631.4 PLOD1 NM_000302.3 PMM2 NM_000303.2 PNPO NM_018129.3 POLG NM_002693.2 POLH NM_006502.2 POMGNT1 NM_017739.3 POMT1 NM_007171.3 | PIGN | NM_176787.4 | | PLEKHG5 NM_020631.4 PLOD1 NM_000302.3 PMM2 NM_000303.2 PNPO NM_018129.3 POLG NM_002693.2 POLH NM_006502.2 POMGNT1 NM_017739.3 POMT1 NM_007171.3 | PKHD1* | NM_138694.3 | | PLOD1 NM_000302.3 PMM2 NM_000303.2 PNPO NM_018129.3 POLG NM_002693.2 POLH NM_006502.2 POMGNT1 NM_017739.3 POMT1 NM_007171.3 | PLA2G6 | NM_003560.2 | | PMM2 NM_000303.2 PNPO NM_018129.3 POLG NM_002693.2 POLH NM_006502.2 POMGNT1 NM_017739.3 POMT1 NM_007171.3 | PLEKHG5 | NM_020631.4 | | PNPO NM_018129.3 POLG NM_002693.2 POLH NM_006502.2 POMGNT1 NM_017739.3 POMT1 NM_007171.3 | PLOD1 | NM_000302.3 | | POLG NM_002693.2 POLH NM_006502.2 POMGNT1 NM_017739.3 POMT1 NM_007171.3 | PMM2 | NM_000303.2 | | POLH NM_006502.2 POMGNT1 NM_017739.3 POMT1 NM_007171.3 | PNPO | NM_018129.3 | | POMGNT1 NM_017739.3 POMT1 NM_007171.3 | POLG | NM_002693.2 | | POMT1 NM_007171.3 | POLH | NM_006502.2 | | | POMGNT1 | NM_017739.3 | | POMT2 NM_013382.5 | POMT1 | NM_007171.3 | | | POMT2 | NM_013382.5 | | GENE | TRANSCRIPT | |----------|----------------| | POR | NM_000941.2 | | POU1F1 | NM_000306.3 | | PPT1 | NM_000310.3 | | PRCD | NM_001077620.2 | | PRDM5 | NM_018699.3 | | PRF1 | NM_001083116.1 | | PROP1 | NM_006261.4 | | PSAP | NM_002778.3 | | PTPRC* | NM_002838.4 | | PTS | NM_000317.2 | | PUS1 | NM_025215.5 | | PYGM | NM_005609.3 | | QDPR | NM_000320.2 | | RAB23 | NM_183227.2 | | RAG1 | NM_000448.2 | | RAG2 | NM_000536.3 | | RAPSN | NM_005055.4 | | RARS2 | NM_020320.3 | | RDH12 | NM_152443.2 | | RLBP1 | NM_000326.4 | | RMRP | NR_003051.3 | | RNASEH2A | NM_006397.2 | | RNASEH2B | NM_024570.3 | | RNASEH2C | NM_032193.3 | | RPE65 | NM_000329.2 | | RPGRIP1L | NM_015272.2 | | RTEL1 | NM_001283009.1 | | RXYLT1 | NM_014254.2 | | RYR1 | NM_000540.2 | | SACS | NM_014363.5 | | SAMD9 | NM_017654.3 | | SAMHD1 | NM_015474.3 | | SCO2 | NM_005138.2 | | SEC23B | NM_006363.4 | | SEPSECS | NM_016955.3 | | SGCA | NM_000023.2 | | SGCB | NM_000232.4 | | SGCD | NM_000337.5 | | SGCG | NM_000231.2 | | GENE | TRANSCRIPT | |----------|----------------| | SGSH | NM_000199.3 | | SKIV2L | NM_006929.4 | | SLC12A1 | NM_000338.2 | | SLC12A3 | NM_000339.2 | | SLC12A6 | NM_133647.1 | | SLC17A5 | NM_012434.4 | | SLC19A2 | NM_006996.2 | | SLC19A3 | NM_025243.3 | | SLC1A4 | NM_003038.4 | | SLC22A5 | NM_003060.3 | | SLC25A13 | NM_014251.2 | | SLC25A15 | NM_014252.3 | | SLC25A20 | NM_000387.5 | | SLC26A2 | NM_000112.3 | | SLC26A3 | NM_000111.2 | | SLC26A4 | NM_000441.1 | | SLC27A4 | NM_005094.3 | | SLC35A3 | NM_012243.2 | | SLC37A4 | NM_001164277.1 | | SLC38A8 | NM_001080442.2 | | SLC39A4 | NM_130849.3 | | SLC45A2 | NM_016180.4 | | SLC4A11 | NM_032034.3 | | SLC5A5 | NM_000453.2 | | SLC7A7 | NM_001126106.2 | | SMARCAL1 | NM_014140.3 | | SMN1* | NM_000344.3 | | SMPD1 | NM_000543.4 | | SNAP29 | NM_004782.3 | | SPG11 | NM_025137.3 | | SPR | NM_003124.4 | | SRD5A2 | NM_000348.3 | | ST3GAL5 | NM_003896.3 | | STAR | NM_000349.2 | | STX11 | NM_003764.3 | | STXBP2 | NM_006949.3 | | SUMF1 | NM_182760.3 | | SUOX | NM_000456.2 | | SURF1 | NM_003172.3 | DOB: Invitae #: | GENE | TRANSCRIPT | |---------|----------------| | SYNE4 | NM_001039876.2 | | TANGO2 | NM_152906.6 | | TAT | NM_000353.2 | | TBCD | NM_005993.4 | | TBCE* | NM_003193.4 | | TCIRG1 | NM_006019.3 | | TCN2 | NM_000355.3 | | TECPR2 | NM_014844.3 | | TERT | NM_198253.2 | | TF | NM_001063.3 | | TFR2 | NM_003227.3 | | TG* | NM_003235.4 | | TGM1 | NM_000359.2 | | TH | NM_199292.2 | | TK2 | NM_004614.4 | | TMC1 | NM_138691.2 | | TMEM216 | NM_001173990.2 | | TMEM67 | NM_153704.5 | | TMPRSS3 | NM_024022.2 | | TPO | NM_000547.5 | | TPP1 | NM_000391.3 | | TREX1 | NM_033629.4 | | TRIM32 | NM_012210.3 | | TRIM37 | NM_015294.4 | | TRMU | NM_018006.4 | | TSEN54 | NM_207346.2 | | TSFM* | NM_001172696.1 | | | | NM_000549.4 NM_000369.2 NM_014639.3 NM_000370.3 NM_003322.4 NM_001953.4 NM_000372.4 NM_000550.2 NM_174916.2 NM_199242.2 NM_005709.3 NM_206933.2 TSHB TSHR TTC37 TTPA TULP1 TYMP TYR* TYRP1 UBR1 UNC13D USH1C* USH2A | GENE | TRANSCRIPT | | |---------|----------------|--| | VDR | NM_001017535.1 | | | VLDLR | NM_003383.4 | | | VPS11 | NM_021729.5 | | | VPS13A* | NM_033305.2 | | | VPS13B | NM_017890.4 | | | VPS45 | NM_007259.4 | | | VPS53* | NM_001128159.2 | | | VRK1 | NM_003384.2 | | | VSX2 | NM_182894.2 | | | WISP3 | NM_003880.3 | | | WNT10A | NM_025216.2 | | | WRN* | NM_000553.4 | | | XPA | NM_000380.3 | | | XPC | NM_004628.4 | | | ZBTB24 | NM_014797.2 | | | ZFYVE26 | NM_015346.3 | | | ZNF469 | NM_001127464.2 | | Invitae #: nor 6633 **DOB:** ### **Methods** - Genomic DNA obtained from the submitted sample is enriched for targeted regions using a hybridization-based protocol, and sequenced using Illumina technology. Unless otherwise indicated, all targeted regions are sequenced with ≥50x depth or are supplemented with additional analysis. Reads are aligned to a reference sequence (GRCh37), and sequence changes are identified and interpreted in the context of a single clinically relevant transcript, indicated in the Genes analyzed section. Enrichment and analysis focus on the coding sequence of the indicated transcripts, 20bp of flanking intronic sequence, and other specific genomic regions demonstrated to be causative of disease at the time of assay design. Promoters, untranslated regions, and other non-coding regions are not otherwise interrogated. Exonic deletions and duplications are called using an in-house algorithm that determines copy number at each target by comparing the read depth for each target in the proband sequence with both mean read-depth and read-depth distribution, obtained from a set of clinical samples. Markers across the X and Y chromosomes are analyzed for quality control purposes and may detect deviations from the expected sex chromosome complement. Such deviations may be included in the report in accordance with internal guidelines. Invitae utilizes a classification methodology to identify next-generation sequencing (NGS)-detected variants that require orthogonal confirmation (Lincoln, et al. J Mol Diagn. 2019 Mar;21(2):318-329.). Confirmation of the presence and location of reportable variants is performed based on stringent criteria established by Invitae (1400 16th Street, San Francisco, CA 94103, #05D2040778), as needed, using one of several validated orthogonal approaches (PubMed ID 30610921). The following analyses are performed if relevant to the requisition. For GBA the reference genome has been modified to mask the sites of polymorphic paralog sequence variants (PSVs) in both the gene and pseudogene. For CYP21A2 and GBA, if one or more reportable variants, gene conversion, or fusion event is identified via our NGS pipeline (see Limitations), these variants are confirmed by PacBio sequencing of an amplicon generated by long-range PCR and subsequent short-range PCR. In some cases, it may not be possible to disambiguate between the gene and pseudogene. For GJB2, the reportable range includes large upstream deletions overlapping GJB6. For HBA1/2, the reference genome has been modified to force some sequencing reads derived from HBA1 to align to HBA2, and variant calling algorithms are modified to support an expectation of 4 alleles in these regions. HBA1/2 copy number calling is performed by a custom hypothesis testing algorithm which generates diplotype calls. If sequence data for a sample does not support a unique high confidence match from among hypotheses tested, that sample is flagged for manual review. Copy number variation is only reported for coding sequence of HBA1 and HBA2 and the HS-40 region. This assay does not distinguish among the $-\alpha$ 3.7 subtypes, and all -a3.7 variants are called as HBA1 deletions. This assay may not detect overlapping copy gain and copy loss events when the breakpoints of those events are similar. For FMR1, triplet repeats are detected by PCR with fluorescently labeled primers followed by capillary electrophoresis. Reference ranges: Normal: <45 CGG repeats, intermediate: 45-54 CGG repeats, premutation: 55-200 CGG repeats, full mutation: >200 CGG repeats. For alleles with 55-90 triplet repeats, the region surrounding the FMR1 repeat is amplified by PCR. The PCR amplicons are then processed through PacBio SMRTBell library prep and sequenced using PacBio long read technology. The number of AGG interruptions within the 55-90 triplet repeat is read directly from the resulting DNA sequences. Technical component of confirmatory sequencing is performed by Invitae Corporation (1400 16th Street, San Francisco, CA 94103, #05D2040778). - This report only includes variants that have a clinically significant association with the conditions tested as of the report date. Variants of uncertain significance, benign variants, and likely benign variants are not included in this report. However, if additional evidence becomes available to indicate that the clinical significance of a variant has changed, Invitae may update this report and provide notification. - A PMID is a unique identifier referring to a published, scientific paper. Search by PMID at http://www.ncbi.nlm.nih.gov/pubmed. - An rsID is a unique identifier referring to a single genomic position, and is used to associate population frequency information with sequence changes at that position. Reported population frequencies are derived from a number of public sites that aggregate data from large-scale population sequencing projects, including ExAC (http://exac.broadinstitute.org), gnomAD (http://gnomad.broadinstitute.org), and dbSNP (http://ncbi.nlm.nih.gov/SNP). ## **Disclaimer** DNA studies do not constitute a definitive test for the selected condition(s) in all individuals. It should be realized that there are possible sources of error. Errors can result from trace contamination, rare
technical errors, rare genetic variants that interfere with analysis, recent scientific developments, and alternative classification systems. This test should be one of many aspects used by the healthcare provider to help with a diagnosis and treatment plan, but it is not a diagnosis itself. This test was developed and its performance characteristics determined by Invitae. It has not been cleared or approved by the FDA. The laboratory is regulated under the Clinical Laboratory Improvement Act (CLIA) as qualified to perform high-complexity clinical tests (CLIA ID: 05D2040778). This test is used for clinical purposes. It should not be regarded as investigational or for research. DOB: Invitae #: ### Limitations - Based on validation study results, this assay achieves >99% analytical sensitivity and specificity for single nucleotide variants, insertions and deletions <15bp in length, and exon-level deletions and duplications. Invitae's methods also detect insertions and deletions larger than 15bp but smaller than a full exon but sensitivity for these may be marginally reduced. Invitae's deletion/duplication analysis determines copy number at a single exon resolution at virtually all targeted exons. However, in rare situations, single-exon copy number events may not be analyzed due to inherent sequence properties or isolated reduction in data quality. Certain types of variants, such as structural rearrangements (e.g. inversions, gene conversion events, translocations, etc.) or variants embedded in sequence with complex architecture (e.g. short tandem repeats or segmental duplications), may not be detected. Additionally, it may not be possible to fully resolve certain details about variants, such as mosaicism, phasing, or mapping ambiguity. Unless explicitly guaranteed, sequence changes in the promoter, non-coding exons, and other non-coding regions are not covered by this assay. Please consult the test definition on our website for details regarding regions or types of variants that are covered or excluded for this test. This report reflects the analysis of an extracted genomic DNA sample. While this test is intended to reflect the analysis of extracted genomic DNA from a referred patient, in very rare cases the analyzed DNA may not represent that individual's constitutional genome, such as in the case of a circulating hematolymphoid neoplasm, bone marrow transplant, blood transfusion, chimerism, culture artifact or maternal cell contamination. - VPS53: Sequencing analysis for exons 14 includes only cds +/- 5 bp. FH: Sequencing analysis for exons 9 includes only cds +/- 10 bp. GALC: Deletion/duplication analysis is not offered for exon 6. GNE: Sequencing analysis for exons 8 includes only cds +/- 10 bp. AIPL1: Sequencing analysis for exons 2 includes only cds +/- 10 bp. FANCL: Sequencing analysis for exons 4, 10 includes only cds +/- 10 bp. TG: Deletion/duplication analysis is not offered for exon 18. Sequencing analysis for exons 44 includes only cds +/- 0 bp. EYS: Sequencing analysis for exons 30 includes only cds +/- 0 bp. HBA1/2: This assay is designed to detect deletions and duplications of HBA1 and/or HBA2, resulting from the -alpha20.5, --MED, --SEA, --FIL/--THAI, -alpha3.7, -alpha4.2, anti3.7 and anti4.2. Sensitivity to detect other copy number variants may be reduced. Detection of overlapping deletion and duplication events will be limited to combinations of events with significantly differing boundaries. In addition, deletion of the enhancer element HS-40 and the sequence variant, Constant Spring (NM_000517.4:c.427T>C), can be identified by this assay. GHR: Deletion/duplication and sequencing analysis is not offered for exon 3. CYP21A2: Analysis includes the most common variants (c.92C>T(p.Pro31Leu), c.293-13C>G (intronic), c.332_339delGAGACTAC (p.Gly111Valfs*21), c.518T>A (p.Ile173Asn), c.710T>A (p.Ile237Asn), c.713T>A (p.Val238Glu), c.719T>A (p.Met240Lys), c.844G>T (p.Val282Leu), c.923dupT (p.Leu308Phefs*6), c.955C>T (p.Gln319*), c.1069C>T(p.Arg357Trp), c.1360C>T (p.Pro454Ser) and the 30Kb deletion) as well as select rare HGMD variants only (list available upon request). Full gene duplications are reported only in the presence of a pathogenic variant(s). When a duplication and a pathogenic variant(s) is identified, phase (cis/trans) cannot be determined. Full gene deletion analysis is not offered. Sensitivity to detect these variants, if they result from complex gene conversion/fusion events, may be reduced. ABCC2: Deletion/duplication analysis is not offered for exons 24-25. LIFR: Sequencing analysis for exons 3 includes only cds +/- 5 bp. MLC1: Sequencing analysis for exons 11 includes only cds +/- 10 bp. MTHFR: The NM_005957.4:c.665C>T (p.Ala222Val) (aka 677C>T) and c.1286A>C (p.Glu429Ala) (aka 1298A>C) variants are not reported in our primary report. NEB: Deletion/ duplication analysis is not offered for exons 82-105. NEB variants in this region with no evidence towards pathogenicity are not included in this report, but are available upon request. PEX1: Sequencing analysis for exons 16 includes only cds +/- 0 bp. PKHD1: Deletion/duplication analysis is not offered for exon 13. FAH: Deletion/duplication analysis is not offered for exon 14. USH1C: Deletion/duplication analysis is not offered for exons 5-6. DUOX2: Deletion/duplication and sequencing analysis is not offered for exons 6-7. FANCD2: Deletion/duplication analysis is not offered for exons 14-17, 22 and sequencing analysis is not offered for exons 15-17. Sequencing analysis for exons 6, 14, 18, 20, 23, 25, 34 includes only cds +/- 10 bp. GALE: Sequencing analysis for exons 10 includes only cds +/- 5 bp. BBS9: Deletion/duplication analysis is not offered for exon 4. ATM: Sequencing analysis for exons 6, 24, 43 includes only cds +/- 10 bp. WRN: Deletion/duplication analysis is not offered for exons 10-11. Sequencing analysis for exons 8, 10-11 includes only cds +/- 10 bp. TSFM: Sequencing analysis is not offered for exon 5. VPS13A: Deletion/ duplication analysis is not offered for exons 2-3, 27-28. ATP8B1: Sequencing analysis for exons 19 includes only cds +/- 10 bp. OTOA: Deletion/ duplication and sequencing analysis is not offered for exons 20-28. TYR: Deletion/duplication and sequencing analysis is not offered for exon 5. PTPRC: Sequencing analysis is not offered for exons 3, 15. DDX11: NM_030653.3:c.1763-1G>C variant only. COL11A2: Deletion/duplication analysis is not offered for exon 36. ANO10: Sequencing analysis for exons 8 includes only cds +/- 0 bp. TBCE: Sequencing analysis for exons 2 includes only cds +/- 10 bp. SMN1: Systematic exon numbering is used for all genes, including SMN1, and for this reason the exon typically referred to as exon 7 in the literature (PMID: 8838816) is referred to as exon 8 in this report. This assay unambiguously detects SMN1 exon 8 copy number. The presence of the g.27134T>G variant (also known as c.*3+80T>G) is reported if SMN1 copy number = 2. SMN1 or SMN2: NM_000344.3:c.*3+80T>G variant only. AMN: Deletion/duplication analysis is not offered for exon 1. CFTR: Sequencing analysis for exons 7 includes only cds +/- 10 bp. GBA: c.84dupG (p.Leu29Alafs*18), c.115+1G>A (Splice donor), c.222_224delTAC (p.Thr75del), c.475C>T (p.Arg159Trp), c.595_596delCT (p.Leu199Aspfs*62), c.680A>G (p.Asn227Ser), c.721G>A (p.Gly241Arg), c.754T>A (p.Phe252lle), c.1226A>G (p.Asn409Ser), c.1246G>A (p.Gly416Ser), c.1263_1317del (p.Leu422Profs*4), c.1297G>T (p.Val433Leu), c.1342G>C (p.Asp448His), c.1343A>T (p.Asp448Val), c.1448T>C (p.Leu483Pro), c.1504C>T (p.Arg502Cys), c.1505G>A (p.Arg502His), c.1603C>T (p.Arg535Cys), c.1604G>A MarkeNang Patient name: Donor 6633 DOB: Invitae #: (p.Arg535His) variants only. Rarely, sensitivity to detect these variants may be reduced. When sensitivity is reduced, zygosity may be reported as "unknown". OAT: Deletion/duplication analysis is not offered for exon 2. This report has been reviewed and approved by: Matteo Vatta, Ph.D., FACMG Clinical Molecular Geneticist # **Donor 6633, Donor 6633** DOB: **Patient Report** labcorp Patient ID: Account Number: Age: Specimen ID: Sex: Male Ordering Physician: Date Collected: 02/08/2023 Date Received: 02/08/2023 Date Reported: 03/01/2023 Fasting: No ; Chromosome, Blood, Routine; Hgb Fractionation Cascade; Ordered Items: # Chromosome, Blood, Routine | Test | Current Result and Flag | Previous Result and Date | Units | Reference Interval | |------------------------------|-------------------------|--------------------------|-------|--------------------| | Specimen Type 02 | Comment: | | | | | | BLOOD | | | | | Cells Counted 02 | 20 | | | | | Cells Analyzed ⁰² | 20 | | | | | Cells Karyotyped 02 | 2 | | | | | GTG Band Resolution | | | | | | Achieved 02 | 500 | | | | | Cytogenetic Result 02 | Comment: | | | | | | 46, XY | | | | ### **Donor 6633, Donor 6633** Patient ID: # **Patient Report** Date Collected: 02/08/2023 # Chromosome, Blood, Routine (Cont.) Interpretation 02 Comment: NORMAL MALE KARYOTYPE Cytogenetic analysis of PHA stimulated cultures has revealed a MALE karyotype with an apparently normal GTG banding pattern in all cells observed. This result does not exclude the possibility of subtle rearrangements below the resolution of cytogenetics or congenital anomalies due to other etiologies. Technical Component-Processing performed by LabCorp CLIA 34D1008914, 1904 TW Alexander Dr, Research Triangle Park, NC 27709. Medical Director, Anjen Chenn, M.D., Ph.D. Technical Component-Chromosome analysis performed by LabCorp, CLIA 45D0674994. 7207 North Gessner Rd., Houston, TX 77040. Laboratory Director, Venkateswara R Potluri PhD. | Director Review: 02 | Comment: | | |---------------------|--------------------|--| | | ANDREA PENTON, PHD | | | PDF | | | # **Hgb Fractionation Cascade** | Test | Current Result and Flag | Previous Result and Date | Units | Reference Interval | |-----------------------------|-------------------------|--------------------------|-------
--------------------| | Hgb Fractionation by CE: 01 | | | | | | Hgb F ⁰¹ | 0.0 | | % | 0.0-2.0 | | Hgb A ⁰¹ | 97.1 | | % | 96.4-98.8 | | Hgb A2 01 | 2.9 | | % | 1.8-3.2 | | Hgb S ⁰¹ | 0.0 | | % | 0.0 | | Interpretation: 01 | | | | | Normal hemoglobin present; no hemoglobin variant or beta thalassemia identified. \\\\ Note: Alpha thalassemia may not be detected by the Hgb Fractionation Cascade panel. If alpha thalassemia is suspected, Labcorp offers Alpha-Thalassemia DNA Analysis (#511172).