

Donor 5617

Genetic Testing Summary

Fairfax Cryobank recommends reviewing this genetic testing summary with your healthcare provider to determine suitability.

Last Updated: 04/29/24

Donor Reported Ancestry: Irish, Spanish, Mexican Jewish Ancestry: No

Genetic Test* Result Comments/Donor's Residual Ris
--

Chromosome analysis (karyotype)	Normal male karyotype	No evidence of clinically significant chromosome abnormalities
Hemoglobin evaluation	Normal hemoglobin fractionation and MCV/MCH results	Reduced risk to be a carrier for sickle cell anemia, beta thalassemia, alpha thalassemia trait (aa/ and a-/a-) and other hemoglobinopathies
Cystic Fibrosis (CF) carrier screening	Negative by sequencing in the CFTR gene	1/1250
Spinal Muscular Atrophy (SMA) carrier screening	Negative for deletions of exon 7 in the SMN1 gene	1/632
Expanded Genetic Disease Testing Panel attached- 289 diseases by gene sequencing	Carrier: Limb-Girdle Muscular Dystrophy: Type 2I (FKRP) Negative for other genes sequenced.	Carrier testing recommended for those using this donor
Special Testing		
Genes: SURF1. LIG4, CNGB1, SLC22A5, CEP290, CYP21A2,GBA, SEPSECS	Negative by gene sequencing	See results attached.

^{*}No single test can screen for all genetic disorders. A negative screening result significantly reduces, but cannot eliminate, the risk for these conditions in a pregnancy.

^{**}Donor residual risk is the chance the donor is still a carrier after testing negative.

Reprogenetics**

Recombine Genesis Genetics

Ordering Practice

Practice Code: Fairfax Cryobank -

Physician:

Report Generated: 2018-06-26

Donor 5617

DOB: Gender: Male Ethnicity: European Procedure ID: 105,636

Kit Barcode:
Specimen: Blood, #107, 101
Specimen Collection: 2017-10-06
Specimen Received: 2017-10-07
Specimen Analyzed: 2018-06-22

TEST INFORMATION

Test: Carriermap SEG (Genotyping & Sequencing)
Panel: CarrierMap Expanded v3 - Sequencing

Diseases Tested: 289 Genes Tested: 278 Genes Sequenced: 273

Partner Not Tested

SUMMARY OF RESULTS: MUTATION(S) IDENTIFIED

Disease Donor 5617 Partner Not Tested

Limb-Girdle Muscular Dystrophy: Type 21 (FKRP)

High Impact

Carrier (1 abnormal copy)

Mutation: c. 1387A>G (p.N463D)

Method: Sequencing

Reproductive Risk & Next Steps: Reproductive risk detected. Consider partner

testing.

No other pathogenic mutations were identified in the genes tested, reducing but not eliminating the chance to be a carrier for the associated genetic diseases. CarrierMap assesses carrier status for genetic disease via molecular methods including targeted mutation analysis and/or next-generation sequencing; other methodologies such as CBC and hemoglobin electrophoresis for hemoglobinopathies and enzyme analysis for Tay-Sachs disease may further refine risks for these conditions. Results should be interpreted in the context of clinical findings, family history, and/or other testing. A list of all the diseases and mutations screened for is included at the end of the report. This test does not screen for every possible genetic disease.

For additional disease information, please visit www.coopergenomics.com/diseases . To speak with a genetic counselor, call 855.687.4363 .

Assay performed by Reprogenetics CLIA ID:31D1054821 3 Regent Street, Livingston, NJ 07039 Lab Technician: Bo Chu Recombine CLIA ID: 31D2100763 Reviewed by: Pere Colls, PhD, HCLD

ADDITIONAL RESULTS

The following results **ARE NOT** associated with an increased reproductive risk.

	Donor 5617	Partner Not Tested
CFTR Results	No Mutations Detected Method: Sequencing & Genotyping Interpretation: NORMAL	
SMN1 Copy Number † Spinal Muscular Atrophy	SMN1 Copy Number: 2 or more copies Method: dPCR & Genotyping Interpretation: NORMAL (See Tables Below)	

 $^{^\}dagger$ SMA Risk Information for Individuals with No Family History of SMA

	Detection Rate	Pre-Test Carrier Risk	Post-Test Carrier Risk (2 SMN1 copies)	Post-Test Carrier Risk (3 SMN1 copies)
European	95%	1/35	1/632	1/3,500
Ashkenazi Jewish	90%	1/41	1/350	1/4,000
Asian	93%	1/53	1/628	1/5,000
African American	71%	1/66	1/121	1/3,000
Hispanic	91%	1/117	1/1,061	1/11,000

For other unspecified ethnicities, post-test carrier risk is assumed to be <1%. For individuals with multiple ethnicities, it is recommended to use the most conservative risk estimate.

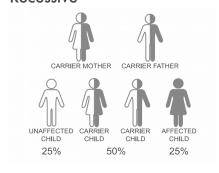
Limb-Girdle Muscular Dystrophy: Type 21

Limb-Girdle Muscular Dystrophy causes weakness and wasting of the muscles in the arms and legs. In the type 21 form of this disease, the FKRP gene responsible for anchoring muscle fibers is defective. As a result, muscle fibers lose strength and resilience, especially in the shoulders, upper arms, pelvic area, and thighs. Affected patients develop difficulty walking and running by age 11.5 years and become wheelchair bound 23-26 years later. Weakening of the respiratory muscles, which can lead to mild to severe breathing problems, and heart muscles occur in many patients with the type 21 form of this disease. Weakening of the respiratory and heart muscles can lead to early death.

OHigh Impact

These diseases have a significant impact on life expectancy and quality of life.

Clinical Information


✓ Physical Impairment

Cognitive Impairment

✓ Shortened Lifespan

Effective Treatment

Inheritance: Autosomal Recessive

Prognosis

Prognosis is mild to moderate. More severely affected individuals may eventually rely on wheelchairs for mobility and experience a shortened lifespan as a result of respiratory and cardiac problems.

Treatment

No specific treatment is indicated for LGMD 21. Physical therapy and stretching exercises are recommended to improve mobility. Surgical intervention may be indicated for orthopedic issues such as scoliosis. Respiratory aids may be used as indicated. Treatment for cardiac involvement is supportive.

Risk Information

Ethnicity	Detection Rate	Pre-Test Risk	Post-Test Risk
Brazilian	34.62%	Unknown	Unknown
Danish	85.53%	1/100	1/691
General	43.18%	Unknown	Unknown
German	82.50%	1/300	1/1714

For other unspecified ethnicities, post-test carrier risk is assumed to be <1%. For individuals with multiple ethnicities, it is recommended to use the most conservative risk estimate.

To learn more, visit www.coopergenomics.com/diseases

Reprogenetics[™] Recom

Recombine[™] Genesis Genetics[™]

Methods and Limitations

Genotyping: Genotyping is performed using the Illumina Infinium Custom HD Genotyping assay to identify mutations in the genes tested. The assay is not validated for homozygous mutations, and it is possible that individuals affected with disease may not be accurately genotyped.

Sequencing: Sequencing is performed using a custom next-generation sequencing (NGS) platform. Only the described exons for each gene listed are sequenced. Variants outside of these regions may not be identified. Some splicing mutations may not be identified. Triplet repeat expansions, intronic mutations, and large insertions and deletions may not be detected. All identified variants are curated, and determination of the likelihood of their pathogenicity is made based on examining allele frequency, segregation studies, predicted effect, functional studies, case/control studies, and other analyses. All variants identified via sequencing that are reported to cause disease in the primary scientific literature will be reported. Variants considered to be benign and variants of unknown significance (VUS) are NOT reported. VUS reporting can be requested and will be assessed on a case-by-case basis. Variants may be re-curated over time due to emerging literature or other information. In the sequencing process, interval drop-out may occur, leading to intervals of insufficient coverage. Intervals of insufficient coverage will be reported if they occur.

Spinal Muscular Atrophy: Carrier status for SMA is assessed via copy number analysis by dPCR and via genotyping. Some individuals with a normal number of SMN1 copies (2 copies) may carry both copies of the gene on the same allele/chromosome; this analysis is not able to detect these individuals. Thus, a normal SMN1 result significantly reduces but does not eliminate the risk of being a carrier. Additionally, SMA may be caused by non-deletion mutations in the SMN1 gene; CarrierMap tests for some, but not all, of these mutations. Some SMA cases arise as the result of de novo mutation events which will not be detected by carrier testing.

Limitations: In some cases, genetic variations other than that which is being assayed may interfere with mutation detection, resulting in false-negative or false-positive results. Additional sources of error include, but are not limited to: sample contamination, sample mix-up, bone marrow transplantation, blood transfusions, and technical errors. The test does not test for all forms of genetic disease, birth defects, and intellectual disability. All results should be interpreted in the context of family history; additional evaluation may be indicated based on a history of these conditions. Additional testing may be necessary to determine mutation phase in individuals identified to carry more than one mutation in the same gene. All existing mutations within the genes assayed may not be detected, and additional testing may be appropriate for some individuals.

This test was developed and its performance determined by Recombine, Inc., and it has not been cleared or approved by the U.S. Food and Drug Administration (FDA). The FDA does not currently regulate laboratory developed tests (LDTs).

Reprogenetics**

Recombine™ Genesis Genetics™

Diseases & Mutations Assayed

11-Beta-Hydroxylase-Deficient Congenital Adrenal Hyperplasia (CYP11B1): Mutation(s) (1): 6 Genotyping | c.1343G>A (p.R448H) | Sequencing | NM_000497:1-9 17-Alpha-Hydroxylase Deficiency (CYP17A1): Mutation(s) (20): of Genotyping | c.1024C>A (p.P342T), c.1039C>T (p.R347C), c.1040G>A (p.R347H), c.1073G>A (p.R358Q), c.1084C>T (p.R362C), c.1216T>C (p.W406R), c.1226C>G (p.P409R), c.1250T>G (p.F417C), c.157_159delTTC (p.53delF), c.278T>G (p.F93C), c.286C>T (p.R96W), c.287G>A (p.R96Q), c.316T>C (p.S106P), c.340T>G (p.F114V), c.347A>T (p.D116V), c.51G>A (p.W17X), c.601T>A (p.Y201N), c.715C>T (p.R239X), c.81C>A (p.Y27X), c.985T>G (p.Y329D) | Sequencing | NM 000102:1-8

17-Beta-Hydroxysteroid Dehydrogenase Deficiency (HSD17B3): Mutation(s) (8): 07 Genotyping | c.166G>A (p.A56T), c.238C>T (p.R80W), c.239G>A (p.R80Q), c.389A>G (p.N130S), c.608C>T (p.A203V), c.695C>T (p.S232L), c.703A>G (p.M235V), c.803G>A (p.C268Y) | Sequencing | NM_000197:1-11

21-Hydroxylase-Deficient Classical Congenital Adrenal Hyperplasia (CYP21A2): Mutation(s) (1): ♂ Genotyping | c.293-13C>G

21-Hydroxylase-Deficient Nonclassical Congenital Adrenal Hyperplasia (CYP21A2): Mutation(s) (1): ♂ Genotyping | c.1360C>T (p.P454S)

3-Beta-Hydroxysteroid Dehydrogenase Deficiency (HSD3B2): Mutation(s) (6): 07 Genotyping | c.29C>A (p.A10E), c.424G>A (p.E142K), c.512G>A (p.W171X), c.664C>A (p.P222T), c.742_747delGTCCGAinsAACTA (p.V248NfsR249X), c.745C>T (p.R249X) Sequencing | NM_000198:2-4

3-Methylcrotonyl-CoA Carboxylase Deficiency: MCCA Related (MCCC1): Mutation(s) (2): 6 Genotyping | c.1155A>C (p.R385S), c.1310T>C (p.L437P) | Sequencing |

3-Methylcrotonyl-CoA Carboxylase Deficiency: MCCB Related (MCCC2): Mutation(s) (8): of Genotyping | c.1309A>G (p.1437V), c.295G>C (p.E99Q), c.464G>A (p.R155Q), c.499T>C (p.C167R), c.569A>G (p.H190R), c.803G>C (p.R268T), c.838G>T (p.D280Y), c.929C>G (p.P310R) | Sequencing | NM_022132:1-17

3-Methylglutaconic Aciduria: Type 3 (OPA3): Mutation(s) (3): of Genotyping | c.143-1G>C, c.320_337delAGCAGCGCCACAAGGAGG (p.Q108_E113del), c.415C>T (p.Q139X) | Sequencing | NM 025136:1-2

3-Phosphoglycerate Dehydrogenase Deficiency (PHGDH): Mutation(s) (7): o Genotyping | c.1117G>A (p.A373T), c.1129G>A (p.G377S), c.1273G>A (p.V425M), c.1468G>A (p.V490M), c.403C>T (p.R135W), c.712delG (p.G238fsX), c.781G>A (p.V261M) | Sequencing

5-Alpha Reductase Deficiency (SRD5A2): Mutation(s) (10): of Genotyping | c.164T>A (p.L55Q), c.344G>A (p.G115D), c.547G>A (p.G183S), c.586G>A (p.G196S), c.591G>T (p.E197D), c.635C>G (p.P212R), c.679C>T (p.R227X), c.682G>A (p.A228T), c.692A>G (p.H231R), c.736C>T (p.R246W) | Sequencing | NM_000348:1-5

6-Pyruvoyl-Tetrahydropterin Synthase Deficiency (PTS): Mutation(s) (6): 07 Genotyping | c.155A>G (p.N52S), c.259C>T (p.P87S), c.286G>A (p.D96N), c.347A>G (p.D116G), c.46C>T (p.R16C), c.74G>A (p.R25Q) | Sequencing | NM_000317:1-6

ARSACS (SACS): Mutation(s) (6): of Genotyping | c.12973C>T (p.R4325X), c.3161T>C (p.F1054S), c.5836T>C (p.W1946R), c.7504C>T (p.R2502X), c.8844delT (p.I2949fs), c.9742T>C (p.W3248R) | Sequencing | NM_014363:2-10

Abetalipoproteinemia (MTTP): Mutation(s) (2): of Genotyping | c.2211 delT, c.2593G>T (p.G865X) | Sequencing | NM_000253:2-19

Acrodermatitis Enteropathica (SLC39A4): Mutation(s) (7): 🗗 Genotyping | c.1120G>A (p.G374R), c.1223-1227delCCGGG, c.318C>A (p.N106K), c.599C>T (p.P200L), c.909G>C (p.Q303H), c.968-971 delAGTC, c.989G>A (p.G330D) | Sequencing | NM_130849:1-12 Acute Infantile Liver Failure: TRMU Related (TRMU): Mutation(s) (5): of Genotyping c.1102-3C>G, c.229T>C (p.Y77H), c.2T>A (p.M1K), c.815G>A (p.G272D), c.835G>A (p.V279M) | Sequencing | NM_018006:1-11

Acyl-CoA Oxidase I Deficiency (ACOX1): Mutation(s) (5): O' Genotyping c.372delCATGCCCGCCTGGAACTT, c.442C>T (p.R148X), c.532G>T (p.G178C), c.832A>G (p.M278V), c.926A>G (p.Q309R) | Sequencing | NM_004035:1-14

Adenosine Deaminase Deficiency (ADA): Mutation(s) (22): of Genotyping | c.220G>T (p.G74C), c.248C>A (p.A83D), c.301C>T (p.R101W), c.302G>A (p.R101Q), c.302G>T (p.R101L), c.320T>C (p.L107P), c.385G>A (p.V129M), c.419G>A (p.G140E), c.43C>G (p.H15D), c.445C>T (p.R149W), c.454C>A (p.L152M), c.466C>T (p.R156C), c.467G>A (p.R156H), c.529G>A (p.V177M), c.536C>A (p.A179D), c.58G>A (p.G20R), c.596A>C (p.Q199P), c.631C>T (p.R211C), c.632G>A (p.R211H), c.646G>A (p.G216R), c.872C>T (p.S291L), c.986C>T (p.A329V) | Sequencing | NM_000022:1-12

Alkaptonuria (HGD): Mutation(s) (14): of Genotyping | c.1102A>G (p.M368V), c.1111_1112insC, c.1112A>G (p.H371R), c.140C>T (p.S47L), c.16-1G>A (IVS1-1G>A), c.174delA, c.342+1G>A (IVS5+1G>A), c.360T>G (p.C120W), c.457_458insG, c.481G>A (p.G161R), c.688C>T (p.P230S), c.808G>A (p.G270R), c.899T>G (p.V300G), c.990G>T (p.R330S) | Sequencing | NM_000187:1-14

Alpha Thalassemia (HBA1,HBA2): Mutation(s) (9): 07 Genotyping | SEA deletion, c.*+94A>G, c.207C>A (p.N69K), c.207C>G (p.N69K), c.223G>C (p.D75H), c.2T>C, c.340_351 delCTCCCGCCGAG (p.L114_E117del), c.377T>C (p.L126P), c.427T>C

Alpha-1-Antitrypsin Deficiency (SERPINA1): Mutation(s) (4): 0" Genotyping | c.1096G>A (p.E366K), c.1131 A>T (p.L377F), c.187C>T (p.R63C), c.226_228delTTC (p.76delF) | Sequencing | NM 001127701:1-7

Alpha-Mannosidosis (MAN2B1): Mutation(s) (3): of Genotyping | c.1830+1G>C (p.V549_E610del), c.2248C>T (p.R750W), c.2426T>C (p.L809P) | Sequencing | NM 000528:1-24

Alport Syndrome: COL4A3 Related (COL4A3): Mutation(s) (3): O' Genotyping | c.4420_4424delCTTTT, c.4441C>T (p.R1481X), c.4571C>G (p.S1524X) | Sequencing | NM_000091:2-52

Alport Syndrome: COL4A4 Related (COL4A4): Mutation(s) (5): ♂ Genotyping | c.3601G>A (p.G1201S), c.3713C>G (p.S1238X), c.4129C>T (p.R1377X), c.4715C>T (p.P1572L), c.4923C>A (p.C1641X) | Sequencing | NM_000092:2-48

Amegakaryocytic Thrombocytopenia (MPL): Mutation(s) (23): of Genotyping | c.127C>T (p.R43X), c.1305G>C (p.W435C), c.1473G>A (p.W491X), c.1499delT (p.L500fs), c.1566-1G>T (IVS10-1G>T), c.1781T>G (p.L594W), c.1904C>T (p.P635L), c.213-1G>A (IVS2-1G>A), c.235_236delCT (p.L79fs), c.268C>T (p.R90X), c.304C>T (p.R102C), c.305G>C (p.R102P), c.311T>C (p.F104S), c.367C>T (p.R123X), c.376delT (F126Lfs), c.407C>A (p.P136H), c.407C>T (p.P136L), c.460T>C (p.W154R), c.556C>T (p.Q186X), c.769C>T (p.R257C), c.770G>T (p.R257L), c.79+2T>A (IVS1+2T>A), c.823C>A (p.P275T) | Sequencing | NM_005373:1-12 Andermann Syndrome (SLC12A6): Mutation(s) (5): of Genotyping | c.2023C>T (p.R675X), c.2436delG (p.T813fsX813), c.3031C>T (p.R1011X), c.619C>T (p.R207C), c.901delA | Sequencing | NM_133647:1-25

Antley-Bixler Syndrome (POR): Mutation(s) (4): 07 Genotyping | c.1370G>A (p.R457H), c.1475T>A (p.V492E), c.1615G>A (p.G539R), c.859G>C (p.A287P) | Sequencing |

Argininemia (ARG1): Mutation(s) (13): & Genotyping | c.263_266delAGAA (p.K88fs), c.32T>C (p.I11T), c.365G>A (p.W122X), c.413G>T (p.G138V), c.466-2A>G, c.57+1G>A, c.61C>T (p.R21X), c.703G>A (p.G235R), c.703G>C (p.G235R), c.77delA (p.E26fs), c.844delC (p.L282fs), c.869C>G (p.T290S), c.871C>T (p.R291X) | Sequencing | NM_000045:1-8

Argininosuccinate Lyase Deficiency (ASL): Mutation(s) (7): ♂ Genotyping | c.1060C>T (p.Q354X), c.1135C>T (p.R379C), c.1153C>T (p.R385C), c.283C>T (p.R95C), c.446+1G>A (IVS5+1G>A), c.532G>A (p.V178M), c.857A>G (p.Q286R) | Sequencing | NM_000048:2-17 Aromatase Deficiency (CYP19A1): Mutation(s) (10): of Genotyping | c.1094G>A (p.R365Q), c.1123C>T (p.R375C), c.1224delC (p.K409fs), c.1303C>T (p.R435C), c.1310G>A (p.C437Y), c.296+1G>A (IVS3+1G>A), c.468delC, c.628G>A (p.E210K), c.629-3C>A (IVS4-3C>A), c.743+2T>C (IVS6+2T>C) | Sequencing | NM_000103:2-10

Arthrogryposis, Mental Retardation, & Seizures (SLC35A3): Mutation(s) (2): 07 Genotyping | c.1012A>G (p.S338G), c.514C>T (p.Q172X) | Sequencing | NM_001271685:1-8 Asparagine Synthetase Deficiency (ASNS): Mutation(s) (1): & Genotyping | c.1084T>G (p.F362V) | Sequencing | NM_001673:3-13

Aspartylglycosaminuria (AGA): Mutation(s) (7): of Genotyping | c.179G>A (p.G60D), c.200_201delAG, c.214T>C (p.S72P), c.302C>T (p.A101V), c.488G>C (p.C163S), c.904G>A (p.G302R), c.916T>C (p.C306R) | Sequencing | NM_000027:1-9

Ataxia with Vitamin E Deficiency (TTPA): Mutation(s) (14): of Genotyping | c.175C>T (p.R59W), c.205-1G>C, c.219_220insAT, c.303T>G (p.H101Q), c.306A>G (p.G102G), $c.358G>A\ (p.A120T),\ c.400C>T\ (p.R134X),\ c.421G>A\ (p.E141K),\ c.486delT\ (p.W163Gfs),$ c.513_514insTT (p.T172fs), c.575G>A (p.R192H), c.661C>T (p.R221W), c.736G>C (p.G246R), c.744delA | Sequencing | NM_000370:2-5

Ataxia-Telangiectasia (ATM): Mutation(s) (20): of Genotyping | c.103C>T (p.R35X), c.1564_1565delGA (p.E522fs), c.3245delATCinsTGAT (p.H1082fs), c.3576G>A (p.K1192K), c.3894insT, c.5712_5713insA (p.S1905fs), c.5762+1126A>G, c.5908C>T (p.Q1970X), c.5932G>T (p.E1978X), c.7268A>G (p.E2423G), c.7271T>G (p.V2424G), c.7327C>T (p.R2443X), c.7449G>A (p.W2483X), c.7517_7520delGAGA (p.R2506fs), c.7630-2A>C, c.7638_7646delTAGAATTTC (p.R2547_S2549delRIS), c.7876G>C (p.A2626P), c.7967T>C (p.L2656P), c.8030A>G (p.Y2677C), c.8480T>G (p.F2827C) | Sequencing | NM_000051:2-

Autosomal Recessive Polycystic Kidney Disease (PKHD1): Mutation(s) (40): 07 Genotyping | c.10036T>C (p.C3346R), c.10174C>T (p.Q3392X), c.10364delC (p.S3455fs),

c.10402A>G (p.13468V), c.10412T>G (p.V3471G), c.10505A>T (p.E3502V), c.10637delT (p.V3546fs), c.10658T>C (p.13553T), c.107C>T (p.T36M), c.10856delA (p.K3619fs), c.10865G>A (p.C3622Y), c.11612G>A (p.W3871X), c.1486C>T (p.R496X), c.1529delG (p.G510fs), c.2269A>C (p.1757L), c.2414C>T (p.P805L), c.3229-2A>C (IVS28-2A>C), c.3747T>G (p.C1249W), c.3761_3762delCCinsG (p.A 1254fs), c.383delC, c.4165C>A (p.P1389T), c.4220T>G (p.L1407R), c.4991C>T (p.S1664F), c.50C>T (p.A17V), c.5221G>A (p.V1741M), c.5381-9T>G (IVS33-9T>G), c.5513A>G (p.Y1838C), c.5750A>G (p.Q1917R), c.5895insA (p.L1966fx1969), c.5984A>G (p.E1995G), c.657C>T (p.G219G), c.664A>G (p.1222V), c.6992T>A (p.12331K), c.7350+653A>G (IVS46+653A>G), c.8011C>T (p.R2671X), c.8063G>T (p.C2688F), c.8870T>C (p.12957T), c.9053C>T (p.S3018F), c.9530T>C (p.13177T), c.9689delA (p.D3230fs) | Sequencing | NM_138694:2-67

Bardet-Biedl Syndrome: BBS1 Related (BBS1): Mutation(s) (3): 07 Genotyping | c.11697>G (p.M390R), c.1645G>T (p.E549X), c.851delA | Sequencing | NM_024649:1-17 Bardet-Biedl Syndrome: BBS10 Related (BBS10): Mutation(s) (3): 07 Genotyping | c.101G>C (p.R34P), c.271_273ins1bp (p.C91fsX95), c.931T>G (p.S311A) | Sequencing | NM_024685:1-2

Bardet-Biedl Syndrome: BBS11 Related (TRIM32): Mutation(s) (1): O* Genotyping | c.388C>T (p.P130S) | Sequencing | NM_001099679:2

Bardet-Biedl Syndrome: BBS12 Related (BBS12): Mutation(s) (5): & Genotyping | c.1063C>T (p.R355X), c.1114_1115delTT (p.F372X), c.1483_1484delGA (p.E495fsX498), c.335_337delTAG, c.865G>C (p.A289P) | Sequencing | NM_152618:1-2

Bardet-Biedl Syndrome: BBS2 Related (BBS2): Mutation(s) (8): 67 Genotyping | c.1206_1207insA (p.R403fs), c.1895G>C (p.R632P), c.224T>G (p.V75G), c.311A>C (p.D104A), c.72C>G (p.Y24X), c.814C>T (p.R272X), c.823C>T (p.R275X), c.940delA | Sequencing | NM 031885:1-17

Bare Lymphocyte Syndrome: Type II (CIITA): Mutation(s) (3): d' Genotyping | c.1141G>T (p.E381X), c.2888+1G>A (IVS13+1G>A), c.3317+1G>A (IVS18+1G>A) | Sequencing | NM 000246:1-19

Bartter Syndrome: Type 4A (BSND): Mutation(s) (6): o* Genotyping | c.139G>A (p.G47R), c.1A>T, c.22C>T (p.R8W), c.23G>T (p.R8L), c.28G>A (p.G10S), c.3G>A (p.M1I) | Sequencing | NM_057176:1-4

Beta Thalassemia (HBB): Mutation(s) (81): of Genotyping | c.-136C>G, c.-137c>g, c.-137c>t, c.-138c>t, c.-140c>t, c.-142C>T, c.-151C>T, c.-29G>A, c.-50A>C, c.-78a>g, c.-79A>G, c.-80t>a, c.-81A>G, c.112delT, c.113G>A (p.W38X), c.114G>A (p.W38X), c.118C>T (p.Q40X), c.124_127delTTCT (p.F42Lfs), c.126delC, c.135delC (p.F46fs), c.154delC (p.P52fs), c.169G>C (p.G57R), c.17_18delCT, c.1A>G, c.203_204delTG (p.V68Afs), c.20delA (p.E7Gfs), c.217_218insA (p.S73Kfs), c.223+702_444+342del620insAAGTAGA, c.225delC, c.230delC, c.250delG, c.25_26delAA, c.271G>T (p.E91X), c.287_288insA (p.L97fs), c.295G>A (p.V99M), c.2T>C, c.2T>G, c.315+1G>A, c.315+2T>C, c.315+745C>G, c.316-146T>G, c.316-197C>T, c.316-1G>A, c.316-1G>C, c.316-1G>T, c.316-2A>C, c.316-2A>G, c.316-3C>A, c.316-3C>G, c.321_322insG (p.N109fs), c.36delT (p.T13fs), c.383_385delAGG (p.Q128_A129delQAinsP), c.415G>C (p.A139P), c.444+111A>G, c.444+113A>G, c.45_46insG (p.W16fs), c.46delT (p.W16Gfs), c.47G>A (p.W16X), c.48G>A (p.W16X), c.4delG (p.V2Cfs), c.51delC (p.K18Rfs), c.52A>T (p.K18X), c.59A>G (p.N2OS), c.68_74delAAGTTGG, c.75T>A (p.G25G), c.84_85insC (p.L29fs), c.90C>T (p.G30G), c.92+1G>A, c.92+1G>T, c.92+2T>A, c.92+2T>C, c.92+5G>A, c.92+5G>C, c.92+5G>T, c.92+6T>C, c.92G>C (p.R31T), c.93-15T>G, c.93-1G>A, c.93-1G>C, c.93-1G>T, c.93-21G>A | Sequencing | NM_000518:1-3

Beta-Hexosaminidase Pseudodeficiency (HEXA): Mutation(s) (2): O* Genotyping | c.739C>T (p.R247W), c.745C>T (p.R249W) | Sequencing | NM_000520:1-14

Beta-Ketothiolase Deficiency (ACAT1): Mutation(s) (19): of Genotyping | c.1006-1G>C, c.1006-2A>C, c.1083insA, c.1136G>T (p.G379V), c.1138G>A (p.A380T), c.149delC (p.T50Nfs), c.253_255delGAA (p.85delE), c.278A>G (p.N93S), c.2T>A (p.M1K), c.371A>G (p.K124R), c.380C>T (p.A127V), c.433C>G (p.Q145E), c.455G>C (p.G152A), c.547G>A (p.G183R), c.814C>T (p.Q272X), c.826+1G>T, c.935T>C (p.I312T), c.997G>C (p.A333P), c.99T>A (p.Y33X) | Sequencing | NM_000019:1-12

Biotinidase Deficiency (BTD): Mutation(s) (21): & Genotyping | c.100G>A (p.G34S), c.1049delC (p.A350fs), c.1052delC (p.T351fs), c.1207T>G (p.F403V), c.1239delC (p.Y414lfs), c.1240_1251delTATCTCCACGTC (p.Y414_V417del), c.1330G>C (p.D444H), c.1368A>C (p.Q456H), c.1489C>T (p.P497S), c.1595C>T (p.T532M), c.1612C>T (p.R538C), c.235C>T (p.R79C), c.278A>G (p.Y93C), c.341G>T (p.G114V), c.393delC (p.F131Lfs), c.470G>A (p.R157H), c.511G>A (p.A171T), c.595G>A (p.V199M), c.755A>G (p.D252G), c.933delT (p.S311Rfs), c.98_104delGCGGCTGinsTCC (p.C33FfsX68) | Sequencing | NM_000060:1-4 Bloom Syndrome (BLM): Mutation(s) (25): & Genotyping | c.1284G>A (p.W428X), c.1642C>T (p.Q548X), c.1701G>A (p.W567X), c.1933C>T (p.Q645X), c.2074+2T>A, c.2193+1_2193+9del9, c.2207_2212delATCTGAinsTAGATTC (p.Y736Lfs), c.2343_2344dupGA (p.781EfsX), c.2407insT, c.2528C>T (p.T843I), c.2695C>T (p.R899X), c.2923delC (p.Q975K), c.3107G>T (p.C1036F), c.3143delA (p.1048NfsX), c.318_319insT (p.L107fs), c.3281C>A (p.S1094X), c.3558+1G>T, c.3564delC (p.1188Dfs), c.356_357delTA (p.C120Hfs), c.380delC

(p. 127Tfs), c.3875-2A>G, c.4008delG (p. 1336Rfs), c.4076+1delG, c.557_559delCAA (p.S186X), c.947C>G (p.S316X) | Sequencing | NM_000057:2-22

Canavan Disease (ASPA): Mutation(s) (8): of Genotyping | c.2T>C (p.M1T), c.433-2A>G, c.654C>A (p.C218X), c.693C>A (p.Y231X), c.71A>G (p.E24G), c.79G>A (p.G27R), c.854A>C (p.E285A), c.914C>A (p.A305E) | Sequencing | NM_000049:1-6

Carnitine Palmitoyltransferase IA Deficiency (CPT1A): Mutation(s) (10): o* Genotyping | c.1079A>G (p.E360G), c.1241C>T (p.A414V), c.1339C>T (p.R447X), c.1361A>G (p.D454G), c.1436C>T (p.P479L), c.1493A>G (p.Y498C), c.2126G>A (p.G709E), c.2129G>A (p.G710E), c.2156G>A (p.G719D), c.96T>G (p.Y32X) | Sequencing | NM_001876:2-19

Carnitine Palmitoyltransferase II Deficiency (CPT2): Mutation(s) (20): o* Genotyping | c.109_110insGC, c.1148T>A (p.F383Y), c.1238_1239delAG, c.1342T>C (p.F448L), c.149C>A (p.P50H), c.1646G>A (p.G549D), c.1649A>G (p.Q550R), c.1737delC, c.1810C>T (p.P604S), c.1883A>C (p.Y628S), c.1891C>T (p.R631C), c.1923_1935delGAAGGCCTTAGAA, c.338C>T (p.S113L), c.359A>G (p.Y120C), c.370C>T (p.R124X), c.452G>A (p.R151Q), c.520G>A (p.E174K), c.534_558delGAACCCTGCAAAAAGTGACACTATCinsT, c.680C>T (p.P227L), c.983A>G (p.D328G) | Sequencing | NM_000098:1-5

Carnitine-Acylcarnitine Translocase Deficiency (SLC25A20): Mutation(s) (7): o* Genotyping | c.106-2A>T, c.199-10T>G (IVS2-10T>G), c.496C>T (p.R166X), c.576G>A (p.W192X), c.713A>G (p.Q238R), c.84delT (p.H29Tfs), c.897_898insC (p.N300fs) | Sequencing | NM_000387:1-9

Carpenter Syndrome (RAB23): Mutation(s) (2): & Genotyping | c.408_409insT (p.136fsX), c.434T>A (p.L145X) | Sequencing | NM_016277:2-7

Cartilage-Hair Hypoplasia (RMRP): Mutation(s) (2): σ Genotyping | c.263G>T, n.71A>G | Sequencing | NR_003051:1

Cerebrotendinous Xanthomatosis (CYP27A1): Mutation(s) (14): 0° Genotyping | c.1016C>T (p.T339M), c.1183C>A (p.R395S), c.1183C>T (p.R395C), c.1214G>A (p.R405Q), c.1263+1G>A, c.1420C>T (p.R474W), c.1421G>A (p.R474Q), c.1435C>T (p.R479C), c.379C>T (p.R127W), c.434G>A (p.G145E), c.583G>T (p.E195X), c.646G>C (p.A216P), c.819delT (p.D273fs), c.844+1G>A | Sequencing | NM_000784:1-9

Chediak-Higashi Syndrome (LYST): Mutation(s) (4): & Genotyping | c.118_119insG (p.A40fs), c.1902_1903insA (p.A635Sfs), c.3085C>T (p.Q1029X), c.9590delA (p.Y3197fs) | Sequencing | NM_000081:3-53

Cholesteryl Ester Storage Disease (LIPA): Mutation(s) (4): of Genotyping | c.1024G>A (p.G342R), c.652C>T (p.R218X), c.883C>T (p.H295Y), c.894G>A (p.Q298X) | Sequencing | NM 001127605:2-10

 $\label{eq:choreoacanthocytosis} $$ $$ Choreoacanthocytosis (VPS13A): Mutation(s) (1): σ^{n} Genotyping | c.6058delC (p.P2020fs) | Sequencing | NM_033305:1-72$

Chronic Granulomatous Disease: CYBA Related (CYBA): Mutation(s) (12): O* Genotyping | c.171_172insG (p.K58fs), c.174delG (p.K58fs), c.244delC (p.P82fs), c.281A>G (p.H94R), c.354C>A (p.S118R), c.369+1G>A (IVS5+1G>A), c.373G>A (p.A125T), c.385_388delGAGC (p.E129SfsX61), c.467C>A (p.P156Q), c.70G>A (p.G24R), c.71G>A (p.G24E), c.7C>T (p.Q3X) | Sequencing | NM_000101:1-5

Citrin Deficiency (SLC25A13): Mutation(s) (8): & Genotyping | c.1180+1G>A, c.1180G>A (p.G394S), c.1314+1G>A, c.1663_1664insGAGATTACAGGTGGCTGCCCGGG (p.A555fs), c.1766G>A (p.R589Q), c.1802_1803insA (p.Y601fs), c.674C>A (p.S225X), c.851_854delGTAT (p.R284fs) | Sequencing | NM_001160210:1-18

Citrullinemia: Type I (ASS1): Mutation(s) (11): 6^a Genotyping | c.1085G>T (p.G362V), c.1168G>A (p.G390R), c.1194-1G>C, c.421-2A>G (IVS6-2A>G), c.470G>A (p.R157H), c.535T>C (p.W179R), c.539G>A (p.S180N), c.835C>T (p.R279X), c.928A>C (p.K310Q), c.970+5G>A, c.970G>A (p.G324S) | Sequencing | NM_000050:3-16

Classical Galactosemia (GALT): Mutation(s) (18): of Genotyping | c.-1039_753del3162, c.1138T>C (p.X380R), c.134_138delCAGCT, c.221T>C (p.L74P), c.253-2A>G, c.404C>G (p.S135W), c.404C>T (p.S135L), c.413C>T (p.T138M), c.425T>A (p.M142K), c.505C>A (p.Q169K), c.512T>C (p.F171S), c.563A>G (p.Q188R), c.584T>C (p.L195P), c.607G>A (p.E203K), c.626A>G (p.Y209C), c.820+51_*789del2294ins12, c.855G>T (p.K285N), c.997C>G (p.R333G) | Sequencing | NM_000155:1-11

Cockayne Syndrome: Type A (ERCC8): Mutation(s) (3): of Genotyping | c.37G>T (p.E13X), c.479C>T (p.A160V), c.966C>A (p.Y322X) | Sequencing | NM_000082:1-12

Cockayne Syndrome: Type B (ERCC6): Mutation(s) (7): of Genotyping | c.1034_1035insT (p.K345fs), c.1357C>T (p.R453X), c.1518delG (p.K506Nfs), c.1550G>A (p.W517X), c.1974_1975insTGTC (p.T659fs), c.2203C>T (p.R735X), c.972_973insA (p.E325Rfs) |
Sequencing | NM_000124:2-21

Cohen Syndrome (VPS13B): Mutation(s) (9): d* Genotyping | c.10888C>T (p.Q3630X), c.2911C>T (p.R971X), c.3348_3349delCT (p.C1117fx), c.4471G>T (p.E1491X), c.6578T>G (p.L2193R), c.7051C>T (p.R2351X), c.7934G>A (p.G2645D), c.8459T>C (p.12820T), c.9259_9260insT (p.L3087fs) | Sequencing | NM_017890:2-51,53-62

Carrier Map[™]

Combined Pituitary Hormone Deficiency: PROP1 Related (PROP1): Mutation(s) (11): σ^x Genotyping | c.109+1G>T, c.112_124delTCGAGTGCTCCAC (p.S38fsX), c.150delA (p.G50fsX), c.157delA (p.R53fsX), c.212G>A (p.R71H), c.217C>T (p.R73C), c.218G>A (p.R73H), c.2T>C, c.301delAG (p.S101fsX), c.358C>T (p.R120C), c.582G>A (p.W194X) | Sequencing | NM_006261:1-3

Congenital Disorder of Glycosylation: Type 1A: PMM2 Related (PMM2): Mutation(s) (5): σ Genotyping | c.338C>T (p.P113L), c.357C>A (p.F119L), c.422G>A (p.R141H), c.470T>C (p.F157S), c.691G>A (p.V231M) | Sequencing | NM_000303:1-8

Congenital Disorder of Glycosylation: Type 1B: MPI Related (MPI): Mutation(s) (1): σ Genotyping | c.884G>A (p.R295H) | Sequencing | NM_002435:1-8

Congenital Disorder of Glycosylation: Type 1C: ALG6 Related (ALG6): Mutation(s) (4): σ Genotyping | c.1432T>C (p.S478P), c.257+5G>A, c.895_897delATA, c.998C>T (p.A333V) | Sequencing | NM_013339:2-15

Congenital Ichthyosis: ABCA12 Related (ABCA12): Mutation(s) (8): o* Genotyping | c.3535G>A (p.G1179R), c.4139A>G (p.N1380S), c.4142G>A (p.G1381E), c.4541G>A (p.R1514H), c.4615G>A (p.E1539K), c.4951G>A (p.G1651S), c.6610C>T (p.R2204X), c.7323delC (p.V2442Sfs) | Sequencing | NM_173076:1-53

Congenital Insensitivity to Pain with Anhidrosis (NTRK1): Mutation(s) (12): & Genotyping | c.1076A>G (p.Y359C), c.1550G>A (p.G517E), c.1660delC (p.R554fs), c.1729G>C (p.G577R), c.1759A>G (p.M587V), c.2046+3A>C, c.207_208delTG (p.E70Afs), c.2084C>T (p.P695L), c.2339G>C (p.R780P), c.25C>T (p.Q9X), c.429-1G>C, c.717+4A>T | Sequencing | NM_002529:2-17

Congenital Lipoid Adrenal Hyperplasia (STAR): Mutation(s) (12): 67 Genotyping | c.178+1_178+2insT (IVS2+3insT), c.201_202delCT, c.466-11T>A (IVS4-11T>A), c.545G>A (p.R182H), c.545G>T (p.R182L), c.559G>A (p.V187M), c.562C>T (p.R188C), c.64+1G>A, c.64+1G>T (IVS1+1G>T), c.650G>C (p.R217T), c.749G>A (p.W250X), c.772C>T (p.Q258X) | Sequencing | NM_000349:1-7

Congenital Myasthenic Syndrome: CHRNE Related (CHRNE): Mutation(s) (13): O'Genotyping | c.1327delG (p.E443fs), c.1353_1354insG (p.N452Efs), c.250C>G (p.R84G), c.344+1G>A, c.37G>A (p.G13R), c.422C>T (p.P141L), c.488C>T (p.S163L), c.500G>T (p.R167L), c.613_619delTGGGCCA (p.W205fs), c.850A>C (p.T284P), c.865C>T (p.L289F), c.911delT (p.L304fs), c.991C>T (p.R331W) | Sequencing | NM_000080:1-12

Congenital Myasthenic Syndrome: DOK7 Related (DOK7): Mutation(s) (6): 6' Genotyping | c.101-1G>T, c.1263_1264insC (p.S422fs), c.331+1G>T, c.539G>C (p.G180A), c.548_551delTCCT (p.F183fs), c.601C>T (p.R201X) | Sequencing | NM_173660:3-7

Congenital Myasthenic Syndrome: RAPSN Related (RAPSN): Mutation(s) (11): 0* Genotyping | c.-210A>G, c.133G>A (p.V45M), c.193-15C>A (IVS1-15C>A), c.264C>A (p.N88K), c.41T>C (p.L14P), c.46_47insC (p.L16fs), c.484G>A (p.E162K), c.490C>T (p.R164C), c.548_549insGTTCT (p.L183fs), c.807C>A (p.Y269X), c.848T>C (p.L283P) | Sequencing | NM_005055:1-8

Congenital Neutropenia: Recessive (HAX1): Mutation(s) (6): σ Genotyping | c.121_125insG, c.130_131insA, c.256C>T (p.R86X), c.423_424insG, c.568C>T (p.Q190X), c.91delG | Sequencing | NM_006118:1-7

Corneal Dystrophy and Perceptive Deafness (SLC4A11): Mutation(s) (8): 0^a Genotyping | c.1459_1462delTACGinsA (p.487_488delYAinsT), c.1463G>A (p.R488K), c.2313_2314insTATGACAC, c.2321+1G>A, c.2528T>C (p.L843P), c.2566A>G (p.M856V), c.554_561delGCTTCGCC (p.R185fs), c.637T>C (p.S213P) | Sequencing | NM_001174090:1-20

Corticosterone Methyloxidase Deficiency (CYP11B2): Matation(s) (3): σ^a Genotyping | c.1382T>C (p.1461P), c.1492A>G (p.T498A), c.541C>T (p.R181W) | Sequencing | $NM_000498:1-9$

Crigler-Najjar Syndrome (UGT1A1): Mutation(s) (11): of Genotyping | c.1021C>T (p.R341X), c.1070A>G (p.Q357R), c.1124C>T (p.S375F), c.1198A>G (p.N400D), c.44T>G (p.L15R), c.508_513delTTC (p.170delF), c.524T>A (p.L175Q), c.840C>A (p.C280X), c.923G>A (p.G308E), c.991C>T (p.Q331X), c.992A>G (p.Q331R) | Sequencing | NM_000463:1-5 Cystic Fibrosis (CFTR): Mutation(s) (150): of Genotyping | c.1000C>T (p.R334W), c.1013C>T (p.T338I), c.1029delC, c.1040G>A (p.R347H), c.1040G>C (p.R347P), c.1055G>A (p.R352Q), c.1075C>A (p.Q359K), c.1079C>A (p.T360K), c.1090T>C (p.S364P), c.1116+1G>A, c.1153_1154insAT, c.1175T>G (p.V392G), c.11C>A (p.S4X), c.1364C>A (p.A455E), $c.1408_1417 delGTGATTATGG \ (p.V470 fs), \ c.1438 G>T \ (p.G480 C), \ c.1477 C>T \ (p.Q493 X),$ c.1477delCA, c.14C>T (p.P5L), c.1519_1521delATC (p.507del1), c.1521_1523delCTT (p.508delF), c.1526delG (p.G509fs), c.1545_1546delTA (p.Y515Xfs), c.1558G>T (p.V520F), c.1572C>A (p.C524X), c.1585-1G>A, c.1585-8G>A, c.1610_1611delAC (p.D537fs), c.1624G>T (p.G542X), c.164+12T>C, c.1645A>C (p.S549R), c.1646G>A (p.S549N), c.1646G>T (p.S549I), c.1647T>G (p.S549R), c.1652G>A (p.G551D), c.1654C>T (p.Q552X), c.1657C>T (p.R553X), c.1675G>A (p.A559T), c.1679G>C (p.R560T), c.1680-1G>A, c.1680-886A>G, c.171 G>A (p.W57X), c.1721 C>A (p.P574H), c.1766+1 G>A, c.1766+1 G>T, c.1766+5 G>T, c.178G>T (p.E60X), c.1818del84, c.1865G>A (p.G622D), c.1911delG,

c.1923delCTCAAAACTinsA, c.1973delGAAATTCAATCCTinsAGAAA, c.1976delA (p.N659fs), c.1986_1989delAACT (p.T663R), c.19G>T (p.E7X), c.200C>T (p.P67L), c.2051_2052delAAinsG (p.K684SfsX38), c.2052delA (p.K684fs), c.2052insA (p.Q685fs), c.2089_2090insA (p.R697Kfs), c.2125C>T (p.R709X), c.2128A>T (p.K710X), c.2174insA, c.2215delG (p.V739Y), c.223C>T (p.R75X), c.2290C>T (p.R764X), c.2538G>A (p.W846X), c.254G>A (p.G85E), c.261 delTT, c.263T>G (p.L196X), c.2657+5G>A, c.2668C>T (p.Q890X), c.271G>A (p.G91R), $c.273+1G>A,\ c.273+3A>C,\ c.2737_2738insG\ (p.Y913X),\ c.274-1G>A,\ c.274G>T\ (p.E92X),$ c.2908+1085_3367+260del7201, c.2909G>A (p.G970D), c.293A>G (p.Q98R), c.2988+1G>A, c.3022delG (p.V1008S), c.3039delC, c.3067_3072delATAGTG (p.11023_V1024delT), c.3139_3139+1delGG, c.313delA (p.1105fs), c.3140-26A>G, c.3196C>T (p.R1066C), c.3209G>A (p.R1070Q), c.3254A>G (p.H1085R), c.325delTATinsG, c.3266G>A (p.W1089X), c.3276C>G (p.Y1092X), c.328G>C (p.D110H), c.3302T>A (p.M1101K), c.3368-2A>G, c.3454G>C (p.D1152H), c.3472C>T (p.R1158X), c.3484C>T (p.R1162X), c.349C>T (p.R117C), c.350G>A (p.R117H), c.3527delC, c.3535delACCA, c.3536_3539delCCAA (p.T1179fs), c.3587C>G (p.S1196X), c.3611G>A (p.W1204X), c.3659delC (p.T1220fs), c.366T>A (p.Y122X), c.3691delT, c.3700A>G (p.I1234V), c.3712C>T (p.Q1238X), c.3717+12191C>T, c.3717+4A>G (IVS22+4A>G), c.3731G>A (p.G1244E), c.3744delA, c.3752G>A (p.S1251 N), c.3764C>A (p.S1255X), c.3767_3768insC (p.A1256fs), c.3773_3774insT (p.L1258fs), c.3846G>A (p.W1282X), c.3848G>T (p.R1283M), c.3878_3881 delTATT (p.V1293fs), c.3908dupA (p.N1303Kfs), c.3909C>G (p.N1303K), c.4003C>T (p.L1335F), c.416A>T (p.H139L), c.4364C>G (p.S1455X), c.4426C>T (p.Q1476X), c.442delA, c.455T>G (p.M152R), c.489+1G>T, c.496A>G (p.K166E), c.531delT, c.532G>A (p.G178R), c.535C>A (p.Q179K), c.54-5940_273+10250del21080bp (p.S18fs), c.579+1G>T, c.579+5G>A (IVS4+5G>A), c.580-1G>T, c.613C>T (p.P205S), c.617T>G (p.L206W), c.653T>A (p.L218X), c.658C>T (p.Q220X), c.803delA (p.N268fs), c.805_806delAT (p.1269fs), c.868C>T (p.Q290X), c.933_935delCTT (p.311 delF), c.946delT, c.988G>T (p.G330X) | Sequencing | NM 000492:1-27

Cystinosis (CTNS): Mutation(s) (14): 0³ Genotyping | c.-39155_848del57119, c.1015G>A (p.G339R), c.18_21delGACT, c.198_218delTATTACTATCCTTGAGCTCCC , c.199_219delATTACTATCCTTGAGCTCCC (p.I67_P73del), c.283G>T (p.G95X), c.329G>T (p.G110V), c.414G>A (p.W138X), c.416C>T (p.S139F), c.473T>C (p.L158P), c.506G>A (p.G169D), c.589G>A (p.G197R), c.613G>A (p.D205N), c.969C>G (p.N323K) | Sequencing | NM_001031681:1,3-13

Cystinuria: Non-Type I (SLC7A9): Mutation(s) (15): O* Genotyping | c.1317>C (p.144T), c.1445C>T (p.P482L), c.313G>A (p.G105R), c.368C>T (p.T123M), c.368_369delCG (p.T123fs), c.508G>A (p.V170M), c.544G>A (p.A182T), c.583G>A (p.G195R), c.604+2T>C, c.605-3C>A (IVS5-3C>A), c.614_615insA (p.K205fs), c.695A>G (p.Y232C), c.775G>A (p.G259R), c.782C>T (p.P261L), c.997C>T (p.R333W) | Sequencing | NM_001243036:2-13

Cystinuria: Type I (SLC3A1): Mutation(s) (10): of Genotyping | c.1085G>A (p.R362H), c.1400T>C (p.M467T), c.1597T>A (p.Y533N), c.1843C>A (p.P615T), c.1955C>G (p.T652R), c.2033T>C (p.L678P), c.452A>G (p.Y151C), c.542G>A (p.R181Q), c.647C>T (p.T216M), c.808C>T (p.R270X) | Sequencing | NM_000341:1-10

D-Bifunctional Protein Deficiency (HSD17B4): Mutation(s) (6): of Genotyping | c.1369A>G (p.N457D), c.1369A>T (p.N457Y), c.422_423delAG, c.46G>A (p.G16S), c.63G>T (p.L21F), c.652G>T (p.V218L) | Sequencing | NM_000414:1-24

Diabetes: Recessive Permanent Neonatal (ABCC8): Mutation(s) (2): o' Genotyping | c.1144G>A (p.E382K), c.215A>G (p.N72S) | Sequencing | NM_000352:1-39

Du Pan Syndrome (GDF5): Mutation(s) (4): o' Genotyping | c.1133G>A (p.R378Q), c.1306C>A (p.P436T), c.1309delTTG, c.1322T>C (p.L441P) | Sequencing | NM_000557:1-2

Dyskeratosis Congenita: RTEL1 Related (RTEL1): Mutation(s) (5): o' Genotyping | c.1548G>T (p.M5161), c.2216G>T (p.G763V), c.2869C>T (p.R981W), c.2920C>T (p.R974X), c.3791G>A (p.R1264H) | Sequencing | NM_001283009:2-35

Dystrophic Epidermolysis Bullosa: Recessive (COL7A1): Mutation(s) (11): 0^a Genotyping | C.8441-14_8435delGCTCTTGGCTCCAGGACCCCT, c.2470_2471insG, c.4039G>C (p.G1347R), c.425A>G (p.K142R), c.4783-1G>A, c.497_498insA (p.V168GfsX179), c.4991G>C (p.G1664A), c.5820G>A (p.P1940P), c.7344G>A (p.V2448X), c.8393T>A (p.M2798K), c.933C>A (p.Y311X) | Sequencing | NM_000094:1-118

Ehlers-Danlos Syndrome: Type VIIC (ADAMTS2): Mutation(s) (2): o' Genotyping | c.2384G>A (p.W795X), c.673C>T (p.Q225X) | Sequencing | NM_014244:2-22 Ellis-van Creveld Syndrome: EVC Related (EVC): Mutation(s) (10): o' Genotyping | c. 1858_1879delTTGGGCCGACTGGGCGGCCTC (p.L620_L626del), c.1018C>T (p.R340X), c.1098+1G>A, c.1694delC (p.A565VfsX23), c.1868T>C (p.L623Q), c.1886+5G>T, c.2635C>T (p.Q879X), c.734delT (p.L245fs), c.910-911insA (p.R304fs), c.919T>C (p.S307P) | Sequencing | NM_153717:2-21

Ellis-van Creveld Syndrome: EVC2 Related (EVC2,EVC): Mutation(s) (3): of Genotyping | c. 1858_1879delTTGGGCCGACTGGGCGGCCTC (p.L620_L626del), c.1868T>C (p.L623Q), c.3025C>T (p.Q1009X) | Sequencing | NM_147127:1-22

Enhanced S-Cone (NR2E3): Mutation(s) (5): σ Genotyping | c.119-2A>C, c.226C>T (p.R76W), c.227G>A (p.R76Q), c.747+1G>C (IVS5+1G>C), c.932G>A (p.R311Q) | Sequencing | NM_016346:1-8

Ethylmalonic Aciduria (ETHE1): Mutation(s) (4): & Genotyping | c.3G>T (p.M1I), c.487C>T (p.R163W), c.488G>A (p.R163Q), c.505+1G>T | Sequencing | NM_014297:1-7

Familial Chloride Diarrhea (SLC26A3): Mutation(s) (6): o* Genotyping | c.1386G>A (p.W462X), c.2023_2025dupATC (p.1675L), c.344delT (p.1115I), c.371A>T (p.H124L), c.559G>T (p.G187X), c.951delGGT (p.V318del) | Sequencing | NM_000111:2-21

Familial Dysautonomia (IKBKAP): Mutation(s) (4): o* Genotyping | c.2087G>C (p.R696P), c.2128C>T (p.Q710X), c.2204+6T>C, c.2741C>T (p.P914L) | Sequencing | NM_003640:2-37

Familial Hyperinsulinism: Type 1: ABCC8 Related (ABCC8): Mutation(s) (11): of Genotyping | c.1333-1013A>G (IVS8-1013A>G), c.2147G>T (p.G716V), c.2506C>T (p.Q836X), c.3989-9G>A, c.4055G>C (p.R1352P), c.4159_4161delTTC (p.1387delF), c.4258C>T (p.R1420C), c.4477C>T (p.R1493W), c.4516G>A (p.E1506K), c.560T>A (p.V187D), c.579+2T>A | Sequencing | NM_000352:1-39

Familial Hyperinsulinism: Type 2: KCNJ11 Related (KCNJ11): Mutation(s) (6): ♂ Genotyping | C.C761T (p.P254L), c.36C>A (p.Y12X), c.440T>C (p.L147P), c.776A>G (p.H259R), c.844G>A (p.E282K), c.G-134T | Sequencing | NM_000525:1

Familial Mediterranean Fever (MEFV): Mutation(s) (12): of Genotyping | c.1437C>G (p.F479L), c.1958G>A (p.R653H), c.2040G>A (p.M680I), c.2040G>C (p.M680I), c.2076_2078delAAT (p.692delI), c.2080A>G (p.M694V), c.2082G>A (p.M694I), c.2084A>G (p.K695R), c.2177T>C (p.V726A), c.2230G>T (p.A744S), c.2282G>A (p.R761H), c.800C>T (p.T267I) | Sequencing | NM_000243:1-10

Fanconi Anemia: Type A (FANCA): Mutation(s) (10): of Genotyping | c.1115_1118delTTGG, c.1606delT (p.S536fs), c.1615delG (p.D539fs), c.2172_2173insG (p.T724fs), c.295C>T (p.Q99X), c.3558_3559insG (p.R1187Efs), c.3720_3724delAAACA (p.E1240Dfs), c.4275delT (p.R1425fs), c.513G>A (p.W171X), c.890_893delGCTG (p.C297fs) | Sequencing | NM_000135:1-43

Fanconi Anemia: Type C (FANCC): Mutation(s) (8): σ Genotyping | c.1642C>T (p.R548X), c.1661T>C (p.L554P), c.37C>T (p.Q13X), c.456+4A>T, c.553C>T (p.R185X), c.65G>A (p.W22X), c.66G>A (p.W22X), c.67delG | Sequencing | NM_000136:2-15

Fanconi Anemia: Type G (FANCG): Mutation(s) (5): d' Genotyping | c.1480+1G>C, c.1794_1803delCTGGATCCGT (p.W599Pfs), c.307+1G>C, c.637_643delTACCGCC (p.Y213K+4X), c.925-2A>G | Sequencing | NM_004629:1-14

Fanconi Anemia: Type J (BRIP1): Mutation(s) (1): of Genotyping | c.2392C>T (p.R798X) | Sequencing | NM_032043:2-20

Fumarase Deficiency (FH): Mutation(s) (1): of Genotyping | c.1433_1434insAAA | Sequencing | NM_000143:1-10

GM1-Gangliosidoses (GLB1): Mutation(s) (17): o* Genotyping | c.1051C>T (p.R351X), c.1369C>T (p.R457X), c.1370G>A (p.R457Q), c.145C>T (p.R49C), c.1480-2A>G, c.152T>C (p.I51T), c.1577_1578insG, c.176G>A (p.R59H), c.1771T>A (p.Y591N), c.1772A>G (p.Y591C), c.202C>T (p.R68W), c.245C>T (p.T82M), c.367G>A (p.G123R), c.601C>T (p.R201C), c.622C>T (p.R208C), c.75+2_75+3insT, c.947A>G (p.Y316C) | Sequencing | NM_000404:1-

GRACILE Syndrome (BCS1L): Mutation(s) (12): & Genotyping | c.103G>C (p.G35R), c.1057G>A (p.V353M), c.133C>T (p.R45C), c.148A>G (p.T50A), c.166C>T (p.R56X), c.232A>G (p.S78G), c.296C>T (p.P99L), c.464G>C (p.R155P), c.547C>T (p.R183C), c.548G>A (p.R183H), c.550C>T (p.R184C), c.830G>A (p.S277N) | Sequencing | NM_004328:1-9 Galactokinase Deficiency (GALK1): Mutation(s) (7): & Genotyping | c.1031C>T (p.T344M), c.1045G>A (p.G349S), c.1144C>T (p.Q382X), c.238G>T (p.E80X), c.593C>T (p.A198V), c.82C>A (p.P28T), c.94G>A (p.V32M) | Sequencing | NM_000154:1-8

Gaucher Disease (GBA): Mutation(s) (6): O* Genotyping | c.1226A>G (p.N409S), c.1297G>T (p.V433L), c.1343A>T (p.D448V), c.1504C>T (p.R502C), c.1604G>A (p.R535H), c.84 85insG

Gitelman Syndrome (SLC12A3): Mutation(s) (11): 0^a Genotyping | c.1046C>T (p.P348L), c.1180+1G>T (IVS9+1G>T), c.1670-191C>T, c.1763C>T (p.A588V), c.1868T>C (p.L623P), c.1889G>T (p.G629V), c.1926-1G>T, c.1961G>A (p.R654H), c.2548+253C>T, c.2883+1G>T, c.622C>T (p.R208W) | Sequencing | NM_000339:1-26

Globoid Cell Leukodystrophy (GALC): Mutation(s) (10): of Genotyping | c.1153G>T (p.E385X), c.1161+6555_*9573del31670bp, c.1472delA (p.K491fs), c.1586C>T (p.T529M), c.1700A>C (p.Y567S), c.2002A>C (p.T668P), c.246A>G (p.182M), c.683_694delATCTCTGGGAGTinsCTC (p.N228_S232del5insTP), c.857G>A (p.G286D),

Glutaric Acidemia: Type I (GCDH): Mutation(s) (8): of Genotyping | c.1083-2A>C (IVS10-2A>C), c.1093G>A (p.E365K), c.1198G>A (p.V400M), c.1204C>T (p.R402W), c.1262C>T (p.A421V), c.680G>C (p.R227P), c.743C>T (p.P248L), c.877G>A (p.A293T) | Sequencing | NM_000159:2-12

Glutaric Acidemia: Type IIA (ETFA): Mutation(s) (5): of Genotyping | c.346G>A (p.G116R), c.470T>G (p.V157G), c.797C>T (p.T266M), c.809_811delTAG (p.V270_A271delinsA), c.963+1delG | Sequencing | NM_000126:1-12

Glutaric Acidemia: Type IIB (ETFB): Mutation(s) (2): & Genotyping | c.655G>A (p.D219N), c.764G>A (p.R255Q) | Sequencing | NM_001014763:1-5 | NM_001985:1

Glutaric Acidemia: Type IIC (ETFDH): Mutation(s) (8): 0⁷ Genotyping | c.1130T>C (p.L377P), c.1448C>T (p.P483L), c.250G>A (p.A84T), c.2T>C (p.M1T), c.36delA (p.A12fs), c.380T>A (p.L127H), c.524G>A (p.R175H), c.524G>T (p.R175L) | Sequencing | NM_004453:1-13

Glycine Encephalopathy: AMT Related (AMT): Mutation(s) (6): \$\sigma\$ Genotyping | c.125A>G (p.H42R), c.139G>A (p.G47R), c.574C>T (p.Q192X), c.826G>C (p.D276H), c.878-1G>A, c.959G>A (p.R320H) | Sequencing | NM_000481:1-9

Glycine Encephalopathy: GLDC Related (GLDC): Mutation(s) (5): σ^a Genotyping | c.1545G>C (p.R515S), c.1691G>T (p.S564I), c.2266_2268delTTC (p.756delF), c.2284G>A (p.G762R), c.2T>C | Sequencing | $NM_000170:1-25$

Glycogen Storage Disease: Type IA (G6PC): Mutation(s) (13): of Genotyping | c.1039C>T (p.Q347X), c.113A>T (p.D38V), c.247C>T (p.R83C), c.248G>A (p.R83H), c.376_377insTA, c.562G>C (p.G188R), c.648G>T, c.724C>T (p.Q242X), c.724delC, c.79delC, c.809G>T (p.G270V), c.975delG (p.L326fs), c.979_981delTTC (p.327delF) | Sequencing | NM_000151:1-5

Glycogen Storage Disease: Type IB (SLC37A4): Mutation(s) (5): O* Genotyping | c.1016G>A (p.G339D), c.1042_1043delCT, c.1099G>A (p.A367T), c.133T>C (p.W45R), c.796G>T (p.G266C) | Sequencing | NM_001164277:3-11

Glycogen Storage Disease: Type II (GAA): Mutation(s) (13): 0° Genotyping | c.-32-13T>G (IVS1-13T>G), c.1561G>A (p.E521K), c.1585_1586delTCinsGT (p.S529V), c.1634C>T (p.P545L), c.1927G>A (p.G643R), c.1935C>A (p.D645E), c.2173C>T (p.R725W), c.2560C>T (p.R854X), c.2707_2709delK (p.903delK), c.525delT (p.E176Rfs), c.710C>T (p.A237V), c.896T>G (p.L299R), c.953T>C (p.M318T) | Sequencing | NM_001079804:2-20

Glycogen Storage Disease: Type III (AGL): Mutation(s) (14): of Genotyping | c.1222C>T (p.R408X), c.1384delG (p.V462X), c.16C>T (p.Q6X), c.17_18delAG, c.2039G>A (p.W680X), c.2590C>T (p.R864X), c.2681+1G>A, c.3439A>G (p.R1147G), c.3682C>T (p.R1228X), c.3965delT (p.V1322AfsX27), c.3980G>A (p.W1327X), c.4260-12A>G (IVS32-12A>G), c.4342G>C (p.G1448R), c.4455delT (p.S1486fs) | Sequencing | NM_000642:2-34 Glycogen Storage Disease: Type IV (GBE1): Mutation(s) (3): of Genotyping | c.691+2T>C

[IVS5+2T>C], c.986A>C (p.Y329S), c.986A>G (p.Y329C) | Sequencing | NM_000158:1-16 Glycogen Storage Disease: Type V (PYGM): Mutation(s) (10): of Genotyping | c.148C>T (p.R50X), c.1627A>T (p.K543X), c.1628A>C (p.K543T), c.1827G>A (p.K609K), c.2128_2130delTTC (p.710delF), c.2392T>C (p.W798R), c.255C>A (p.Y85X), c.613G>A (p.G205S), c.632delG (p.S211fs), c.808C>T (p.R270X) | Sequencing | NM_005609:1-20

Glycogen Storage Disease: Type VII (PFKM): Mutation(s) (4): \$\displays\$ Genotyping | c.2214delC (p.P739Qfs), c.283C>T (p.R95X), c.329G>T (p.R110L), c.450+1G>A | Sequencing | NM_001166686:2-25

Guanidinoacetate Methyltransferase Deficiency (GAMT): Mutation(s) (4): & Genotyping | c.148A>C (p.M50L), c.309_310insCCGGGACTGGGCC (p.L99_A103fs), c.327G>A, c.506G>A (p.C169Y) | Sequencing | NM_000156:1-6

HMG-CoA Lyase Deficiency (HMGCL): Mutation(s) (7): of Genotyping | c.109G>T (p.E37X), c.122G>A (p.R41Q), c.208G>C (p.V70L), c.561+1G>A, c.561+1G>T, c.835G>A (p.E279K), c.914_915delTT | Sequencing | NM_000191:1-9

 $\label{lem:hemochromatosis: Type 2A: HFE2 Related (HFE2): Mutation(s) (1): \mathcal{S} Genotyping | c.959G>T (p.G320V) | Sequencing | NM_213653:2-4$

Hemochromatosis: Type 3: TFR2 Related (TFR2): Mutation(s) (4): Of Genotyping | c.2069A>C (p.Q690P), c.515T>A (p.M172K), c.750C>G (p.Y250X), c.88_89insC (p.E60X) | Sequencing | NM_003227:1-18

Hemoglobinopathy: Hb C (HBB): Mutation(s) (1): σ Genotyping | c.19G>A (p.E7K) | Sequencing | NM_000518:1-3

Hemoglobinopathy: Hb D (HBB): Mutation(s) (1): O* Genotyping | c.364G>C (p.E122Q) | Sequencing | NM_000518:1-3

Hemoglobinopathy: Hb E (HBB): Mutation(s) (1): σ Genotyping | c.79G>A (p.E27K) | Sequencing | NM_000518:1-3

 $\label{eq:hemoglobinopathy: Hb O (HBB): Mutation(s) (1): σ Genotyping | c.364G>A (p.E122K) | Sequencing | NM_000518:1-3$

Hereditary Fructose Intolerance (ALDOB): Mutation(s) (10): O* Genotyping | c.1005C>G (p.N335K), c.10C>T (p.R4X), c.178C>T (p.R60X), c.357_360delAAAC, c.442T>C (p.W148R), c.448G>C (p.A150P), c.524C>A (p.A175D), c.612T>G (p.Y204X), c.720C>A (p.C240X), c.865_867delCTT (p.289dell) | Sequencing | NM_000035:2-9

c.913A>G (p.I305V) | Sequencing | NM_000153:2-17

Hereditary Spastic Paraplegia: TECPR2 Related (TECPR2): Mutation(s) (1): σ

Genotyping | c.3416delT (p.L1139fs) | Sequencing | NM_014844:2-20

Herlitz Junctional Epidermolysis Bullosa: LAMA3 Related (LAMA3): Mutation(s) (1): 3° Genotyping | c.1981C>T (p.R661X) | Sequencing | NM_000227:1-38

Herlitz Junctional Epidermolysis Bullosa: LAMB3 Related (LAMB3): Mutation(s) (6): σ Genotyping | c.124C>T (p.R42X), c.1903C>T (p.R635X), c.3024delT, c.3247C>T (p.Q1083X),

c.430C>T (p.R144X), c.727C>T (p.Q243X) | Sequencing | NM_000228:2-23

Herlitz Junctional Epidermolysis Bullosa: LAMC2 Related (LAMC2): Mutation(s) (1): 07

Genotyping | c.283C>T (p.R95X) | Sequencing | NM_005562:1-23

 $\label{eq:hermansky-Pudlak Syndrome: Type 1 (HPS1): Mutation(s) (1): σ^* Genotyping | $c.1472_1487$ dup16 (p.H497Qfs) | Sequencing | NM_000195:3-20$

Hermansky-Pudlak Syndrome: Type 3 (HPS3): Mutation(s) (4): 0* Genotyping | c.1163+1G>A, c.1189C>T (p.R397W), c.1691+2T>G, c.2589+1G>C | Sequencing | NM 032383:1-17

Hermansky-Pudlak Syndrome: Type 4 (HPS4): Mutation(s) (7): o* Genotyping | c.1876C>T (p.Q626X), c.2039delC (p.P680fs), c.397G>T (p.E133X), c.526C>T (p.Q176X), c.634C>T (p.R212X), c.649G>T (p.E217X), c.957_958insGCTTGTCCAGATGGCAGGAAGGAG (p.E319_N320ins8) | Sequencing | NM_152841:1-12

Holocarboxylase Synthetase Deficiency (HLCS): Mutation(s) (7): & Genotyping | c.1513G>C (p.G505R), c.1522C>T (p.R508W), c.1648G>A (p.V550M), c.1795+5G>A (IVS10+5G>A), c.710T>C (p.L237P), c.772_781delACAAGCAAGG (p.T258fs), c.780delG | Sequencing | NM_001242785:4-12

Homocystinuria Caused by CBS Deficiency (CBS): Mutation(s) (8): 67 Genotyping | c.1006C>T (p.R336C), c.341C>T (p.A114V), c.572C>T (p.T191M), c.797G>A (p.R266K), c.833T>C (p.1278T), c.919G>A (p.G307S), c.959T>C (p.V320A), c.969G>A (p.W324X) | Sequencing | NM_001178008:3-17

Hurler Syndrome (IDUA): Mutation(s) (8): 3° Genotyping | c.1037T>G (p.1346R), c.1205G>A (p.W402X), c.152G>A (p.G51D), c.1598C>G (p.P533R), c.1960T>G (p.X654G), c.208C>T (p.Q70X), c.266G>A (p.R89Q), c.979G>C (p.A327P) | Sequencing | NM_000203:2-8, 11-14

Hypophosphatasia (ALPL): Mutation(s) (5): of Genotyping | c.1001G>A (p.G334D), c.1133A>T (p.D378V), c.1559delT, c.571G>A (p.E191K), c.979T>C (p.F327L) | Sequencing | NM 000478:2-12

Inclusion Body Myopathy: Type 2 (GNE): Mutation(s) (3): o" Genotyping | c.131G>C (p.C44S), c.1807G>C (p.V603L), c.2228T>C (p.M743T) | Sequencing | NM_001128227:1-12 Infantile Cerebral and Cerebellar Atrophy (MED17): Mutation(s) (1): o" Genotyping | c.1112T>C (p.L371P) | Sequencing | NM_004268:1-12

Isolated Microphthalmia: VSX2 Related (VSX2): Mutation(s) (4): o* Genotyping | c.371-1G>A, c.599G>A (p.R200Q), c.599G>C (p.R200P), c.679C>T (p.R227W) | Sequencing | NM 182894:1-5

Isovaleric Acidemia (IVD): Matation(s) (1): σ^a Genotyping | c.941C>T (p.A314V) | Sequencing | $NM_002225:1-12$

 $\label{lower} \begin{tabular}{ll} \begin{tab$

Laryngoonychocutaneous Syndrome (LAMA3): Mutation(s) (1): o* Genotyping | c.151_152insG (p.V51GfsX3) | Sequencing | NM_000227:1-38

Leber Congenital Amaurosis: CEP290 Related (CEP290): Mutation(s) (1): o* Genotyping | c.2991+1655A>G (p.C998X) | Sequencing | NM_025114:2-54

Leber Congenital Amaurosis: GUCY2D Related (GUCY2D): Mutation(s) (3): σ ⁸ Genotyping | c.1694T>C (p.F565S), c.2943delG (p.G982V), c.387delC (p.P130Lfx) | Sequencing | NM_000180:2-19

Leber Congenital Amaurosis: RDH12 Related (RDH12): Mutation(s) (6): of Genotyping | c.146C>T (p.T49M), c.184C>T (p.R62X), c.295C>A (p.199I), c.464C>T (p.T155I), c.565C>T (p.Q189X), c.677A>G (p.Y226C) | Sequencing | NM_152443:3-9

Leigh Syndrome: French-Canadian (LRPPRC): Mutation(s) (1): of Genotyping | c.1061C>T (p.A354V) | Sequencing | NM_133259:1-38

Leukoencephalopathy with Vanishing White Matter: EIF2B5 Related (EIF2B5): Mutation(s) (9): d' Genotyping | c.1157G>T (p.G386V), c.166T>G (p.F56V), c.167T>G (p.F56C), c.1882T>C (p.W628R), c.271A>G (p.T91A), c.338G>A (p.R113H), c.584G>A (p.R195H), c.925G>C (p.V309L), c.944G>A (p.R315H) | Sequencing | NM_003907:1-16

Leydig Cell Hypoplasia (Luteinizing Hormone Resistance) (LHCGR): Mutation(s) (13): of Genotyping | c.1027T>A (p.C343S), c.1060G>A (p.E354K), c.1505T>C (p.L502P), c.1627T>C (p.C543R), c.1635C>A (p.C545X), c.1660C>T (p.R554X), c.1777G>C (p.A593P), c.1822_1827delCTGGTT (p.608_609delLV), c.1847C>A (p.S614Y), c.391T>C (p.C131R), c.430G>T (p.V144F), c.455T>C (p.1152T), c.537-3C>A | Sequencing | NM_000233:1-11 Limb-Girdle Muscular Dystrophy: Type 2A (CAPN3): Mutation(s) (6): of Genotyping | c.1469G>A (p.R490Q), c.1525G>T (p.V509F), c.1715G>A (p.R572Q), c.2306G>A (p.R769Q), c.2362_2363delAGinsTCATCT (p.R788Sfs), c.550delA (p.T184fs) | Sequencing | NM_000070:1-24

Limb-Girdle Muscular Dystrophy: Type 2B (DYSF): Mutation(s) (5): & Genotyping | c.2271C>A (p.Y758X), c.2833delG (p.A945fs), c.4989_4993delGCCCGinsCCCC (p.E1663fs), c.5174+5G>A, c.5830C>T (p.R1944X) | Sequencing | NM_001130987:1-56

Limb-Girdle Muscular Dystrophy: Type 2C (SGCG): Mutation(s) (4): of Genotyping | c.525delT (p.F175fsX), c.787G>A (p.E263K), c.848G>A (p.C283Y), c.87_88insT (p.G30fs) | Sequencing | NM_000231:2-8

Limb-Girdle Muscular Dystrophy: Type 2D (SGCA): Mutation(s) (1): σ^a Genotyping | c.229C>T (p.R77C) | Sequencing | NM_000023:1-9

Limb-Girdle Muscular Dystrophy: Type 2E (SGCB): Mutation(s) (6): & Genotyping | c.272G>C (p.R91P), c.272G>T (p.R91L), c.299T>A (p.M100K), c.323T>G (p.L108R), c.341C>T (p.S114F), c.452C>G (p.T151R) | Sequencing | NM_000232:2-6

Limb-Girdle Muscular Dystrophy: Type 2F (SGCD): Mutation(s) (5): o* Genotyping | c.391G>C (p.A131P), c.493C>T (p.R165X), c.653delC (p.A218fs), c.784G>A (p.E262K), c.89G>A (p.W30X) | Sequencing | NM_001128209:2-8

Limb-Girdle Muscular Dystrophy: Type 2I (FKRP): Mutation(s) (1): σ Genotyping | c.826C>A (p.1276I) | Sequencing | $NM_001039885:1-4$

Lipoprotein Lipase Deficiency (LPL): Mutation(s) (1): of Genotyping | c.644G>A (p.G215E) | Sequencing | NM_000237:1-10

Long-Chain 3-Hydroxyacyl-CoA Dehydrogenase Deficiency (HADHA): Mutation(s) (2): O' Genotyping | c.1132C>T (p.Q378X), c.1528G>C (p.E510Q) | Sequencing | NM_000182:1-20

Lysinuric Protein Intolerance (SLC7A7): Mutation(s) (4): o* Genotyping | c.1228C>T (p.R410X), c.1384_1385insATCA (p.R462fs), c.726G>A (p.W242X), c.895-2A>T | Sequencing | NM 001126105:3-11

MTHFR Deficiency: Severe (MTHFR): Mutation(s) (6): σ Genotyping | c.1166G>A (p.W389X), c.1408G>T (p.E470X), c.1721T>G (p.V574G), c.474A>T (p.G158G), c.523G>A (p.A175T), c.652G>T (p.V218L) | Sequencing | NM_005957:2-12

Malonyl-CoA Decarboxylase Deficiency (MLYCD): Mutation(s) (5): of Genotyping | c.1064_1065delTT (p.F355fs), c.560C>G (p.S187X), c.638_641 delGTGA (p.S213fs), c.8G>A (p.G3D), c.949-14A>G | Sequencing | NM_012213:1-5

Maple Syrup Urine Disease: Type 1A (BCKDHA): Mutation(s) (4): σ Genotyping | c.1312T>A (p.Y438N), c.288+1G>A, c.860_867delGAGGCCCC, c.868G>A (p.G290R) | Sequencing | NM_000709:1-9

Maple Syrup Urine Disease: Type 1B (BCKDHB): Mutation(s) (6): o* Genotyping | c.1114G>T (p.E372X), c.487G>T (p.E163X), c.548G>C (p.R183P), c.832G>A (p.G278S), c.853C>T (p.R285X), c.970C>T (p.R324X) | Sequencing | NM_183050:1-10

Maple Syrup Urine Disease: Type 2 (DBT): Mutation(s) (15): of Genotyping | c.1169A>G (p.D390G), c.1193T>C (p.L398P), c.1202T>C (p.1401T), c.1209+5G>C (IVS9+5G>C), c.1232C>A (p.P411Q), c.1355A>G (p.H452R), c.1448G>T (p.X483L), c.294C>G (p.198M), c.363_364delCT (p.Y122Ifs), c.581C>G (p.S194X), c.670G>T (p.E224X), c.75_76delAT (p.C26Wfs), c.788T>G (p.M263R), c.901C>T (p.R301C), c.939G>C (p.K313N) | Sequencing | NM 001918:1-11

Maple Syrup Urine Disease: Type 3 (DLD): Mutation(s) (8): 0* Genotyping | c.104_105insA (p.Y35fs), c.1081A>G (p.M361V), c.1123G>A (p.E375K), c.1178T>C (p.I393T), c.1463C>T (p.P488L), c.1483A>G (p.R495G), c.214A>G (p.K72E), c.685G>T (p.G229C) | Sequencing | NM_000108:1-14

Maroteaux-Lamy Syndrome (ARSB): Mutation(s) (6): 07 Genotyping | c.1143-1G>C, c.1143-8T>G, c.1178A>C (p.H393P), c.284G>A (p.R95Q), c.629A>G (p.Y210C), c.944G>A (p.R315Q) | Sequencing | NM_000046:1-8

Meckel Syndrome: Type 1 (MKS1): Mutation(s) (5): & Genotyping | c.1024+1G>A (IVS11+1G>A), c.1408-35_1408-7del29 (p.G470fs), c.417G>A (p.E139X), c.50insCCGGG (p.D19AfsX), c.80+2T>C (IVS1+2T>C) | Sequencing | NM_017777:1-18

 $\label{eq:medium-chain Acyl-CoA Dehydrogenase Deficiency (ACADM): Mutation(s) (8): \mathcal{O}° Genotyping | c.199T>C (p.Y67H), c.262C>T (p.L88F), c.362C>T (p.T121I), c.595G>A (p.G199R), c.616C>T (p.R206C), c.617G>A (p.C206H), c.811C>T (p.G267R), c.985A>G (p.K329E) | Sequencing | NM_001127328:1-12$

Megalencephalic Leukoencephalopathy (MLC1): Mutation(s) (6): & Genotyping | c.135_136insC (p.C46fsX), c.176G>A (p.G59E), c.178-10T>A, c.278C>T (p.S93L), c.880C>T (p.P294S), c.908_918delTGCTGCTGCTGinsGCA (p.V303GfsX96) | Sequencing | NM 139202:2-12

Metachromatic Leukodystrophy (ARSA): Mutation(s) (18): of Genotyping | c.1114C>T (p.R372W), c.1136C>T (p.P379L), c.1210+1G>A, c.1232C>T (p.T4111), c.1283C>T (p.P428L), c.257G>A (p.R86Q), c.263G>A (p.G88D), c.292_293delTCinsCT (p.S98L), c.293C>T (p.S98F), c.302G>A (p.G101D), c.302G>T (p.G101V), c.465+1G>A (IVS2+1G>A), c.542T>G (p.1181S), c.641C>T (p.A214V), c.739G>A (p.G247R), c.769G>C (p.D257H), c.827C>T (p.T276M), c.862A>C (p.T288P) | Sequencing | NM_001085425:2-9

Methylmalonic Acidemia: MMAA Related (MMAA): Mutation(s) (14): of Genotyping | c.1076G>A (p.R359Q), c.161G>A (p.W54X), c.266T>C (p.L89P), c.283C>T (p.Q95X), c.358C>T (p.Q120X), c.397C>T (p.Q133X), c.433C>T (p.R145X), c.503delC (p.T168MfsX9), c.562G>C (p.G188R), c.64C>T (p.R22X), c.650T>A (p.L217X), c.653G>A (p.G218E), c.733+1G>A, c.988C>T (p.R330X) | Sequencing | NM_172250:2-7

Methylmalonic Acidemia: MMAB Related (MMAB): Mutation(s) (11): of Genotyping | c.197-1G>T, c.287T>C (p.196T), c.291-1G>A, c.403G>A (p.A135T), c.556C>T (p.R186W), c.568C>T (p.R190C), c.569G>A (p.R190H), c.571C>T (p.R191W), c.572G>A (p.R191Q), c.656A>G (p.Y219C), c.700C>T (p.Q234X) | Sequencing | NM_052845:1-9

Methylmalonic Acidemia: MUT Related (MUT): Mutation(s) (23): d' Genotyping | c.1097A>G (p.N366S), c.1105C>T (p.R369C), c.1106G>A (p.R369H), c.1280G>A (p.G427D), c.1867G>A (p.G623R), c.2054T>G (p.L685R), c.2080C>T (p.R694W), c.2099T>A (p.M700K), c.2150G>T (p.G717V), c.278G>A (p.R93H), c.281G>T (p.G94V), c.284C>G (p.P95R), c.299A>G (p.Y100C), c.313T>C (p.W105R), c.322C>T (p.R108C), c.521T>C (p.F174S), c.572C>A (p.A191E), c.607G>A (p.G203R), c.643G>A (p.G215S), c.643G>T (p.G215C), c.655A>T (p.N219Y), c.691T>A (p.Y231N), c.935G>T (p.G312V) | Sequencing | NM_000255:2-13

Methylmalonic Aciduria and Homocystinuria: Type cblC (MMACHC): Mutation(s) (5): 07 Genotyping | c.271_272insA (p.R91KfsX14), c.331C>T (p.R111X), c.394C>T (p.R132X), c.482G>A (p.R161Q), c.609G>A (p.W203X) | Sequencing | NM_015506:1-4

Mitochondrial Complex I Deficiency: NDUFS6 Related (NDUFS6): Mutation(s) (1): 3 Genotyping | c.344G>A (p.C115Y) | Sequencing | NM_004553:1-4

Mitochondrial DNA Depletion Syndrome: MNGIE Type (TYMP): Mutation(s) (6): σ Genotyping | c.1425_1426insC (p.S476Lfs), c.433G>A (p.G145R), c.457G>A (p.G153S), c.516+2T>C (IVS4+2T>C), c.665A>G (p.K222R), c.866A>C (p.E289A) | Sequencing | NM 001257989:2-8,10

Mitochondrial Myopathy and Sideroblastic Anemia (PUS1): Mutation(s) (2): σ Genotyping | c.430C>T (p.R144W), c.658G>T (p.E220X) | Sequencing | NM_025215:1-6 Mitochondrial Trifunctional Protein Deficiency: HADHB Related (HADHB): Mutation(s) (7): σ Genotyping | c.1175C>T (p.A392V), c.1331G>A (p.R444K), c.1364T>G (p.V455G), c.182G>A (p.R61H), c.740G>A (p.R247H), c.776_777insT (p.G259fs), c.788A>G (p.D263G) | Sequencing | NM_000183:2-16

Morquio Syndrome: Type A (GALNS): Mutation(s) (6): σ Genotyping | c.1156C>T (p.R386C), c.178G>A (p.D60N), c.205T>G (p.F69V), c.337A>T (p.1113F), c.485C>T (p.S162F), c.901G>T (p.G301C) | Sequencing | NM_000512:2-14

Morquio Syndrome: Type B (GLB1): Mutation(s) (8): of Genotyping | c.1223A>C (p.Q408P), c.1313G>A (p.G438E), c.1444C>T (p.R482C), c.1445G>A (p.R482H), c.1498A>G (p.T500A), c.1527G>T (p.W509C), c.247T>C (p.Y83H), c.817_818delTGinsCT (p.W273L) | Sequencing | NM_000404:1-16

Mucolipidosis: Type II/III (GNPTAB): Mutation(s) (3): of Genotyping | c.1120T>C (p.F374L), c.3503_3504delTC (p.L1168QfsX5), c.3565C>T (p.R1189X) | Sequencing | NM_024312:1-21 Mucolipidosis: Type IV (MCOLN1): Mutation(s) (5): of Genotyping | c.-1015_788del6433, c.1084G>T (p.D362Y), c.244delC (p.L82fsX), c.304C>T (p.R102X), c.406-2A>G | Sequencing | NM_020533:1-14

Multiple Pterygium Syndrome (CHRNG): Mutation(s) (6): σ^a Genotyping | c.136C>T (p.R46X), c.13C>T (p.Q5X), c.1408C>T (p.R470X), c.320T>G (p.V107G), c.401_402delCT (p.P134fs), c.715C>T (p.R239C) | Sequencing | NM_005199:1-12

Multiple Sulfatase Deficiency (SUMF1): Mutation(s) (1): σ Genotyping | c.463T>C (p.S155P) | Sequencing | NM_182760:1-9

Muscle-Eye-Brain Disease (POMGNT1): Mutation(s) (3): of Genotyping | c.1324C>T (p.R442C), c.1478C>G (p.P493R), c.1539+1G>A | Sequencing | NM_001243766:2-23 Navajo Neurohepatopathy (MPV17): Mutation(s) (1): of Genotyping | c.149G>A (p.R50Q) | Sequencing | NM_002437:2-8

Nemaline Myopathy: NEB Related (NEB): Mutation(s) (2): 3° Genotyping | c.7434_7536del2502bp, c.8890-2A>G (IVS63-2A>G) | Sequencing | NM_001164508:63-66,86,95-96,103,105,143,168-172 | NM_004543:3-149

Nephrotic Syndrome: Type 1 (NPHS1): Mutation(s) (5): 0° Genotyping | c.121_122delCT (p.L41Dfs), c.1481delC, c.2335-1G>A, c.3325C>T (p.R1109X), c.3478C>T (p.R1160X) |
Sequencing | NM_004646:1-29

Nephrotic Syndrome: Type 2 (NPHS2): Mutation(s) (27): O* Genotyping | c.104_105insG (p.G35fsX69), c.274G>T (p.G92C), c.353C>T (p.P118L), c.412C>T (p.R138X), c.413G>A (p.R138Q), c.419delG (p.G140fsX180), c.467_468insT (p.L156fsX166), c.467delT (p.L156fsX180), c.479A>G (p.D160G), c.502C>A (p.R168S), c.502C>T (p.R168C), c.503G>A (p.R168H), c.538G>A (p.V180M), c.555delT (p.F185fsX186), c.622G>A (p.A208T), c.706_714del CTAGAGAGG (p.L236_R238del), c.714G>T (p.R238S), c.779T>A (p.V260E), c.851C>T (p.A284V), c.855_856delAA (p.Q285fsX302), c.85G>A (p.A297), c.862G>A (p.A288T), c.868G>A (p.V290M), c.871C>T (p.R291W), c.948delT (p.A317L), c.964C>T (p.R322X), c.976_977insA (p.T326fsX345) | Sequencing | NM_014625:1-8

Neuronal Ceroid-Lipofuscinosis: CLN5 Related (CLN5): Mutation(s) (7): o* Genotyping | c.1054G>T (p.E352X), c.1121A>G (p.Y374C), c.1175_1176delAT (p.Y392X), c.225G>A (p.W75X), c.335G>A (p.R112H), c.377G>A (p.C126Y), c.835G>A (p.D279N) | Sequencing | NM_006493:1-4

Neuronal Ceroid-Lipofuscinosis: CLN6 Related (CLN6): Mutation(s) (8): of Genotyping | c.139C>T (p.L47F), c.17G>C (p.R6T), c.200T>C (p.167P), c.214G>T (p.E72X), c.308G>A (p.R103Q), c.368G>A (p.G123D), c.460_462delATC (p.1154del), c.663C>G (p.Y221X) | Sequencing | NM_017882:2-7

 $\label{lem:new_condition} \begin{tabular}{ll} Neuronal Ceroid-Lipofuscinosis: CLN8 Related {CLN8}: $Mutation(s)$ (4): σ' Genotyping | c.610C>T (p.R204C), c.70C>G (p.R24G), c.789G>C (p.W263C), c.88G>C (p.A30P) | Sequencing | NM_018941:2-3 \\ \end{tabular}$

Neuronal Ceroid-Lipofuscinosis: MFSD8 Related (MFSD8): Mutation(s) (2): C^7 Genotyping | c.754+2T>A, c.881C>A (p.T294K) | Sequencing | NM_152778:2-13

Neuronal Ceroid-Lipofuscinosis: PPT1 Related (PPT1): Mutation(s) (8): 07 Genotyping | c.134G>A (p.C45Y), c.223A>C (p.T75P), c.236A>G (p.D79G), c.29T>A (p.L10X), c.322G>C (p.G108R), c.364A>T (p.R122W), c.451C>T (p.R151X), c.656T>A (p.L219Q) | Sequencing | NM_000310:1-9

Neuronal Ceroid-Lipofuscinosis: TPP1 Related (TPP1): Mutation(s) (9): & Genotyping | c.1093T>C (p.C365R), c.1094G>A (p.C365Y), c.1340G>A (p.R477H), c.509-1G>A, c.509-1G>C, c.616C>T (p.R206C), c.622C>T (p.R208X), c.851G>T (p.G284V), c.857A>G (p.N286S) | Sequencing | NM_000391:1-13

Niemann-Pick Disease: Type A (SMPD1): Mutation(s) (6): O[®] Genotyping | c.1267C>T (p.H423Y), c.1493G>A (p.R498H), c.1493G>T (p.R498L), c.1734G>C (p.K578N), c.911T>C (p.L304P), c.996delC | Sequencing | NM_000543:1-6

Niemann-Pick Disease: Type B (SMPD1): Mutation(s) (3): σ Genotyping | c.1280A>G (p.H427R), c.1829_1831 delGCC (p.610delR), c.880C>A (p.Q294K) | Sequencing | NM_000543:1-6

Niemann-Pick Disease: Type C1 (NPC1): Mutation(s) (14): & Genotyping | c.1133T>C (p.V378A), c.2324A>C (p.Q775P), c.2665G>A (p.V889M), c.2783A>C (p.Q928P), c.2848G>A (p.V950M), c.2932C>T (p.R978C), c.2974G>C (p.G992R), c.2974G>T (p.G992W), c.3107C>T (p.T1036M), c.3182T>C (p.11061T), c.3263A>G (p.Y1088C), c.337T>C (p.C113R), c.3467A>G (p.N1156S), c.530G>A (p.C177Y) | Sequencing | NM_000271:1-25

Niemann-Pick Disease: Type C2 (NPC2): Mutation(s) (11): of Genotyping | c.115G>A (p.V39M), c.133C>T (p.Q45X), c.141C>A (p.C47X), c.190+5G>A, c.199T>C (p.S67P), c.295T>C (p.C99R), c.332delA (p.N1111fs), c.352G>T (p.E118X), c.358C>T (p.P120S), c.436C>T (p.Q146X), c.58G>T (p.E20X) | Sequencing | NM_006432:1-5

Nijmegen Breakage Syndrome (NBN): Mutation(s) (1): of Genotyping | c.657_661delACAAA (p.K219fs) | Sequencing | NM_002485:1-16

Nonsyndromic Hearing Loss and Deafness: GJB2 Related (GJB2): Mutation(s) (29): & Genotyping | c.-23+1G>A, c.-259C>T, c.109G>A (p.V37I), c.134G>A (p.G45E), c.139G>T (p.E47X), c.167deIT, c.229T>C (p.W77R), c.231G>A (p.W77X), c.235deIC, c.250G>C (p.V84L), c.269T>C (p.L90P), c.283G>A (p.V95M), c.290_291insA (p.Y97fs), c.299_300deIAT (p.H100Rfs), c.313_326deIAAGTTCATCAAGGG, c.334_335deIAA (p.K112fs), c.358deIGAG (p.120deIE), c.3565T (p.G12V), c.35deIG (p.G12fs), c.370C>T (p.Q124X), c.427C>T (p.R143W), c.439G>A (p.E147K), c.44A>C (p.K15T), c.487A>G (p.M163V), c.516G>A (p.W172X), c.550C>T (p.R184W), c.551G>C (p.R184P), c.617A>G (p.N206S), c.71G>A (p.W24X) | Sequencing | NM_004004:1-2

Nonsyndromic Hearing Loss and Deafness: LOXHD1 Related (LOXHD1): Mutation(s) (2): σ^z Genotyping | c.2008C>T (p.R670X), c.4714C>T (p.R1572X) | Sequencing | NM_144612:1-40

Nonsyndromic Hearing Loss and Deafness: MYO15A Related (MYO15A): Mutation(s) (10): o' Genotyping | c.3313G>T (p.E1105X), c.3334delG (p.G1112fs), c.3685C>T (p.Q1229X), c.3866+1G>A, c.3866+1G>T, c.453_455delCGAinsTGGACGCCTGGTCGGGCAGTGG (p.E152GfsX81), c.6331A>T (p.N2111Y), c.6337A>T (p.12113F), c.7801A>T (p.K2601X), c.8148G>T (p.Q2716H) | Sequencing | NM_016239:2-65

Oculocutaneous Albinism: Type 1 (TYR): Mutation(s) (27): 6 Genotyping | c.1064C>T (p.A355V), c.1090A>C (p.N364H), c.1118C>A (p.T373K),

c.1138_1158delTCTGCCAACGATCCTATCTTC (p.S380_F386del), c.1150C>G (p.P384A), c.1184+1G>A, c.1309G>A (p.D437N), c.133_134insC (p.P45fs), c.140G>A (p.G47D), c.1467_1468insT (p.A490Cfs), c.1469C>A (p.A490D), c.149C>T (p.S50L), c.1A>G (p.M1V), c.229C>T (p.R77W), c.242C>T (p.P81L), c.265T>C (p.C89R), c.272G>A (p.C91Y), c.325G>A (p.G19R), c.32G>A (p.W11X), c.568delG (p.G191Dfs), c.707G>A (p.W236X), c.710delA (p.D237fs), c.820-2A>G, c.823G>T (p.V275F), c.832C>T (p.R278X), c.892C>T (p.R298W), c.978delA (p.Q326fs) | Sequencing | NM_000372:1-5

Oculocutaneous Albinism: Type 3 (TYRP1): Mutation(s) (6): & Genotyping | c.1057_1060delAACA (p.N353fs), c.1067G>A (p.R356Q), c.107delT, c.1103delA (p.K368fs), c.1120C>T (p.R374X), c.497C>G (p.S166X) | Sequencing | NM_000550:2-8

Oculocutaneous Albinism: Type 4 (SLC45A2): Mutation(s) (2): o* Genotyping | c.469G>A (p.D157N), c.563G>T (p.G188V) | Sequencing | NM_016180:1-7

Omenn Syndrome: DCLRE1C Related (DCLRE1C): Mutation(s) (1): of Genotyping | c.597C>A (p.Y199X) | Sequencing | NM_001033855:1-14

Omenn Syndrome: RAG2 Related (RAG2): Mutation(s) (1): σ^a Genotyping | c.685C>T (p.R229W) | Sequencing | NM_000536:1-2

Ornithine Translocase Deficiency (SLC25A15): Mutation(s) (3): of Genotyping | c.535C>T (p.R179X), c.562_564delTTC (p.188delF), c.95C>G (p.T32R) | Sequencing | NM_014252:2-7 Osteopetrosis: TCIRG1 Related (TCIRG1): Mutation(s) (6): of Genotyping | c.117+4A>T, c.1213G>A (p.G405R), c.1331G>T (p.R444L), c.1392C>A (p.C464X), c.1674-1G>A, c.922delC (p.Q308fs) | Sequencing | NM_006019:1-20

POLG Related Disorders: Autosomal Recessive (POLG): Mutation(s) (16): 0^a Genotyping | c.1399G>A (p.A467T), c.1491G>C (p.Q497H), c.1760C>T (p.P587L), c.2243G>C (p.W748S), c.2542G>A (p.G848S), c.2591A>G (p.N864S), c.2617G>T (p.E873X), c.2794C>T (p.H932Y), c.3151G>C (p.G1051R), c.3218C>T (p.P1073L), c.3488T>G (p.M1163R), c.679C>T (p.R227W), c.695G>A (p.R232H), c.752C>T (p.T251I), c.8G>C (p.R3P), c.911T>G (p.L304R) | Sequencing | NM_001126131:2-23

Papillon-Lefevre Syndrome (CTSC): Mutation(s) (11): 0³ Genotyping | c.1047delA (p.G350Vfs), c.1056delT (p.Y352fs), c.1287G>C (p.W429C), c.380A>C (p.H127P), c.628C>T (p.R210X), c.755A>T (p.Q252L), c.815G>A (p.R272H), c.856C>T (p.Q286X), c.857A>G (p.Q286R), c.890-1G>A, c.96T>G (p.Y32X) | Sequencing | NM_001814:1-7

Pendred Syndrome (SLC26A4): Mutation(s) (7): of Genotyping | c.1001+1G>A, c.1151A>G (p.E384G), c.1246A>C (p.T416P), c.2168A>G (p.H723R), c.707T>C (p.L236P), c.716T>A (p.V239D), c.919-2A>G | Sequencing | NM_000441:1-21

Persistent Mullerian Duct Syndrome: Type I (AMH): Mutation(s) (6): σ Genotyping | c.1144G>T (p.E382X), c.1518C>G (p.H506Q), c.1574G>A (p.C525Y), c.17_18delTC, c.283C>T (p.R95X), c.571C>T (p.R191X) | Sequencing | NM_000479:1-4

Persistent Mullerian Duct Syndrome: Type II (AMHR2): Mutation(s) (14): of Genotyping | c.118G>T (p.G40X), c.1217G>A (p.R406Q), c.1277A>G (p.D426G), c.1330_1356delCTGGGCAATACCCCTACCTCGATGAG, c.1373T>C (p.V458A), c.1471G>C (p.D491H), c.1510C>T (p.R504C), c.160C>T (p.R54C), c.232+1G>A, c.289C>T (p.R97X), c.425G>T (p.G142V), c.596delA, c.742G>A (p.E248K), c.846T>G (p.H282Q) | Sequencing | NMA_020547-1_11

Phenylalanine Hydroxylase Deficiency (PAH): Mutation(s) (62): 67 Genotyping c.1042C>G (p.L348V), c.1045T>C (p.S349P), c.1066-11G>A (IVS10-11G>A), c.1068C>G (p.Y356X), c.1139C>T (p.T380M), c.1157A>G (p.Y386C), c.1169A>G (p.E390G), c.117C>G (p.F39L), c.1222C>T (p.R408W), c.1223G>A (p.R408Q), c.1238G>C (p.R413P), c.1241A>G (p.Y414C), c.1301C>A (p.A434D), c.1315+1G>A (IVS12+1G>A), c.136G>A (p.G46S), c.143T>C (p.L48S), c.194T>C (p.I65T), c.199T>C (p.S67P), c.1A>G (p.M1V), c.241_256delACCCATTTGGATAAAC (p.T81fs), c.331C>T (p.R111X), c.3G>A (p.M1I), c.442-1G>A (IVS4-1G>A), c.456_706+138del11653, c.463_464insTGTGTACC (p.R155fs), c.473G>A (p.R158Q), c.533A>G (p.E178G), c.569T>G (p.V190G), c.581T>C (p.L194P), c.611A>G (p.Y204C), c.682G>T (p.E228X), c.721C>T (p.R241C), c.722G>A (p.R241H), c.722G>T (p.R241L), c.727C>T (p.R243X), c.728G>A (p.R243Q), c.734T>C (p.V245A), c.745C>T (p.L249F), c.754C>T (p.R252W), c.755G>A (p.R252Q), c.764T>C (p.L255S), c.770G>T (p.G257V), c.781C>T (p.R261X), c.782G>A (p.R261Q), c.800A>G (p.Q267R), c.814G>T (p.G272X), c.818C>T (p.S273F), c.829T>G (p.Y277D), c.838G>A (p.E280K), c.842+2T>A (IVS7+2T>A), c.842+5G>A (IVS7+5G>A), c.842C>T (p.P281L), c.856G>A (p.E286K), c.896T>G (p.F299C), c.898G>T (p.A300S), c.899C>T (p.A300V), c.904delT (p.F302fs), c.913-7A>G (IVS8-7A>G), c.926C>A (p.A309D), c.926C>T (p.A309V), c.935G>T (p.G312V), c.997C>T (p.L333F) | Sequencing | NM_000277:1-13

Polyglandular Autoimmune Syndrome: Type I (AIRE): Mutation(s) (5): of Genotyping | c.1163_1164insA (p.M388lfsX36), c.254A>G (p.Y85C), c.415C>T (p.R139X), c.769C>T (p.R257X), c.967_979delCTGTCCCCTCCGC (p.L323SfsX51) | Sequencing | NM_000383:1-14

Pontocerebellar Hypoplasia: EXOSC3 Related (EXOSC3): Mutation(s) (4): or Genotyping | c.238G>T (p.V80F), c.294_303delTGTTTACTGG (p.V99Wfs), c.395A>C (p.D132A), c.92G>C (p.G31A) | Sequencing | NM_016042:1-4

Pontocerebellar Hypoplasia: RARS2 Related (RARS2): Mutation(s) (3): of Genotyping | c.1024A>G (p.M342V), c.110+5A>G, c.35A>G (p.Q12R) | Sequencing | NM_020320:1-20

Pontocerebellar Hypoplasia: SEPSECS Related (SEPSECS): Mutation(s) (1): of Genotyping | c.1001A>G (p.Y334C) | Sequencing | NM_016955:1-11

Pontocerebellar Hypoplasia: TSEN54 Related (TSEN54): Mutation(s) (3): o* Genotyping | c.1027C>T (p.Q343X), c.736C>T (p.Q246X), c.919G>T (p.A307S) | Sequencing | NM 207346:3-11

Pontocerebellar Hypoplasia: VPS53 Related (VPS53): Mutation(s) (2): o* Genotyping | c.1556+5G>A, c.2084A>G (p.Q695R) | Sequencing | NM_001128159:1-22

Pontocerebellar Hypoplasia: VRK1 Related (VRK1): Mutation(s) (2): of Genotyping | c.1072C>T (p.R358X), c.397C>T (p.R133C) | Sequencing | NM_003384:2-13

Primary Carnitine Deficiency (SLC22A5): Mutation(s) (12): & Genotyping | c.1195C>T (p.R399W), c.1196G>A (p.R399Q), c.1202_1203insA (p.Y401fsX), c.1324_1325delGCinsAT (p.A442I), c.1433C>T (p.P478L), c.396G>A (p.W132X), c.43G>T (p.G15W), c.505C>T (p.R169W), c.506G>A (p.R169Q), c.632A>G (p.Y211C), c.844C>T (p.R282X), c.95A>G (p.N32S) | Sequencing | NM_003060:1-10

Primary Ciliary Dyskinesia: DNA11 Related (DNA11): Mutation(s) (5): 0* Genotyping | c.1490G>A (p.G497D), c.1543G>A (p.G515S), c.1658_1669delCCAAGGTCTTCA (p.Thr553_Phe556del), c.282_283insAATA (p.G95Nfs), c.48+2_48+3insT | Sequencing | NM_012144:1-20

Primary Ciliary Dyskinesia: DNAI2 Related (DNAI2): Mutation(s) (4): of Genotyping | c.1304G>A (p.W435X), c.1494+1G>A, c.346-3T>G, c.787C>T (p.R263X) | Sequencing | NM_023036:2-13

Primary Congenital Glaucoma (CYP1B1): Mutation(s) (9): 0* Genotyping | c.1064_1076delGAGTGCAGGCAGA (p.R355Hfs), c.1093G>T (p.G365W), c.1199_1200insTCATGCCACC, c.1405C>T (p.R469W), c.1410_1422delCATTGGCGAAGAA (p.C470fs), c.155C>T (p.P52L), c.182G>A (p.G61E), c.535delG (p.A179fs), c.862_863insC | Sequencing | NM_000104:2-3

Primary Hyperoxaluria: Type 1 (AGXT): Mutation(s) (11): O' Genotyping | c.121G>A (p.G41R), c.198C>G (p.Y66X), c.245G>A (p.G82E), c.454T>A (p.F152I), c.466G>A (p.G156R), c.508G>A (p.G170R), c.613T>C (p.S205P), c.697C>T (p.R233C), c.698G>A (p.R233H), c.731T>C (p.1244T), c.738G>A (p.W246X) | Sequencing | NM_000030:1-11

Primary Hyperoxaluria: Type 2 (GRHPR): Mutation(s) (3): σ Genotyping | c.103delG, c.295C>T (p.R99X), c.404+3delAAGT | Sequencing | NM_012203:1-9

Primary Hyperoxaluria: Type 3 (HOGA1): Mutation(s) (2): of Genotyping | c.860G>T (p.G287V), c.944_946delAGG (p.315delE) | Sequencing | NM_138413:1-7

Progressive Familial Intrahepatic Cholestasis: Type 2 (ABCB11): Mutation(s) (5): 0° Genotyping | c.1295G>C (p.R432T), c.1723C>T (p.R575X), c.3169C>T (p.R1057X), c.3767_3768insC, c.890A>G (p.E297G) | Sequencing | NM_003742:2-28

Propionic Acidemia: PCCA Related (PCCA): Mutation(s) (13): of Genotyping | 916_917insT, c.1192T>C (p.C398R), c.1196G>A (p.R399Q), c.1268C>T (p.P423L), c.1643+1G>A (IVS18+1G>A), c.1644-6C>G (IVS18-6C>G), c.1685C>G (p.S562X), c.1746G>A (p.S582S), c.229C>T (p.R77W), c.590G>A (p.G197E), c.862A>G (p.R288G), c.890A>G (p.Q297R), c.937C>T (p.R313X) | Sequencing | NM_000282:1-24

Propionic Acidemia: PCCB Related (PCCB): Mutation(s) (13): O* Genotyping | c.1218_1231 delGGGCATCATCCGGCinsTAGAGCACAGGA (p.G407fs), c.1228C>T (p.R410W), c.1283C>T (p.T428I), c.1304A>G (p.Y435C), c.1495C>T (p.R499X), c.1534C>T (p.R512C), c.1539_1540insCCC (p.R514PfsX38), c.1556T>C (p.L519P), c.1606A>G (p.N536D), c.280G>T (p.G94X), c.335G>A (p.G112D), c.457G>C (p.A153P), c.502G>A (p.E168K) | Sequencing | NM_000532:1-15

Pseudocholinesterase Deficiency (BCHE): Mutation(s) (1): 8 Genotyping | c.293A>G (p.D98G) | Sequencing | NM_000055:2-4

Pycnodysostosis (CTSK): Mutation(s) (2): σ Genotyping | c.926T>C (p.L309P), c.990A>G (p.X330W) | Sequencing | NM_000396:2-8

Pyruvate Carboxylase Deficiency (PC): Mutation(s) (15): O' Genotyping | c.1351C>T (p.R451C), c.1748G>T (p.R583L), c.1828G>A (p.A610T), c.1828G>T (p.A610S), c.184C>T (p.R62C), c.1892G>A (p.R631Q), c.2229G>T (p.M743I), c.2473+2_2473+5delTAGG, c.2491_2492delGT (p.V831fs), c.2493_2494delGT (p.F832Xfs), c.2540C>T (p.A847V), c.2876_2877insT (p.F959fs), c.3409_3410delCT (p.L1137fs), c.434T>C (p.V145A), c.467G>A (p.R156Q) | Sequencing | NM_022172:2-21

Pyruvate Dehydrogenase Deficiency (PDHB): Mutation(s) (2): σ Genotyping | c.1030C>T (p.P344S), c.395A>G (p.Y132C) | Sequencing | NM_000925:1-10

Reprogenetics** Recombine[™] Genesis Genetics[™]

Renal Tubular Acidosis and Deafness (ATP6V1B1): Mutation(s) (7): of Genotyping c.1037C>G (p.P346R), c.1155_1156insC (p.1386fs), c.1248+1G>C, c.232G>A (p.G78R), c.242T>C (p.L81P), c.497delC (p.T166fs), c.585+1G>A | Sequencing | NM_001692:1-14 Retinal Dystrophies: RLBP1 Related (RLBP1): Mutation(s) (3): O' Genotyping | c.141+2T>C, c.141G>A (p.K47=), c.700C>T (p.R234W) | Sequencing | NM_000326:3-9

Retinal Dystrophies: RPE65 Related (RPE65): Mutation(s) (12): ♂ Genotyping | c.1022T>C (p.L341S), c.1067delA (p.N356fs), c.1087C>A (p.P363T), c.11+5G>A, c.1102T>C (p.Y368H), c.1292A>G (p.Y431C), c.1355T>G (p.V452G), c.1543C>T (p.R515W), c.271C>T (p.R91W), c.700C>T (p.R234X), c.907A>T (p.K303X), c.95-2A>T (IVS2-2A>T) | Sequencing |

Retinitis Pigmentosa: CERKL Related (CERKL): Mutation(s) (5): of Genotyping | c.238+1G>A (IVS1+1G>A), c.420delT (p.1141Lfs), c.598A>T (p.K200X), c.769C>T (p.R257X), c.780delT (p.P261Lfs) | Sequencing | NM_201548:1-13

Retinitis Pigmentosa: DHDDS Related (DHDDS): Mutation(s) (1): of Genotyping c.124A>G (p.K42E) | Sequencing | NM_024887:2-9

Retinitis Pigmentosa: FAM161A Related (FAM161A): Mutation(s) (5): of Genotyping | c.1309A>T, c.1355_1356delCA (p.T452fs), c.1567C>T (p.R523X), c.1786C>T (p.R596X), c.685C>T (p.R229X) | Sequencing | NM_001201543:1-7

Rhizomelic Chondrodysplasia Punctata: Type I (PEX7): Mutation(s) (8): & Genotyping | c.120C>G (p.Y40X), c.345T>G (p.Y115X), c.40A>C (p.T14P), c.45_52insGGGACGCC (p.H18RfsX35), c.649G>A (p.G217R), c.653C>T (p.A218V), c.875T>A (p.L292X), c.903+1G>C | Sequencing | NM_000288:1-10

Salla Disease (SLC17A5): Mutation(s) (5): O Genotyping | c.1001C>G (p.P334R), c.115C>T (p.R39C), c.406A>G (p.K136E), c.548A>G (p.H183R), c.802_816delTCATCATTAAGAAAT (p.L336fsX13) | Sequencing | NM_012434:1-11

Sandhoff Disease (HEXB): Mutation(s) (14): of Genotyping | c.1082+5G>A, c.1250C>T (p.P417L), c.1303_1304delAG (p.R435fs), c.1509-26G>A, c.1514G>A (p.R505Q), c.1597C>T (p.R533C), c.1615C>T (p.R539C), c.445+1G>A, c.508C>T (p.R170X), c.76delA, c.796T>G (p.Y266D), c.800_816delCACCAAATGATGTCCGT (p.T267fs), c.845G>A (p.G282E), c.850C>T (p.R284X) | Sequencing | NM_000521:1-14

Sanfilippo Syndrome: Type A (SGSH): Mutation(s) (11): of Genotyping | c.1080delC (p.T360fs), c.1105G>A (p.E369K), c.1298G>A (p.R433Q), c.1339G>A (p.E447K), c.197C>G (p.S66W), c.220C>T (p.R74C), c.383C>T (p.P128L), c.449G>A (p.R150Q), c.617G>C (p.R206P), c.734G>A (p.R245H), c.892T>C (p.S298P) | Sequencing | NM_000199:1-8 Sanfilippo Syndrome: Type B (NAGLU): Mutation(s) (10): O' Genotyping | c.1444C>T (p.R482W), c.1562C>T (p.P521L), c.1693C>T (p.R565W), c.1694G>C (p.R565P), c.1876C>T (p.R626X), c.1927C>T (p.R643C), c.1928G>A (p.R643H), c.2021G>A (p.R674H), c.700C>T (p.R234C), c.889C>T (p.R297X) | Sequencing | NM_000263:2-6

Sanfilippo Syndrome: Type C (HGSNAT): Mutation(s) (13): of Genotyping | c.1030C>T (p.R344C), c.1150C>T (p.R384X), c.1345insG (p.D449fsX), c.1529T>A (p.M510K), c.1553C>T (p.S518F), c.1622C>T (p.S541L), c.234+1G>A (IVS2+1G>A), c.372-2A>G (IVS3-2A>G), c.493+1G>A (IVS4+1G>A), c.525_526insT (p.A175fsX), c.848C>T (p.P283L), c.852-1G>A, c.962T>G (p.L321X) | Sequencing | NM_152419:2-18

Sanfilippo Syndrome: Type D (GNS): Mutation(s) (5): O' Genotyping | c.1063C>T (p.R355X), c.1138insGTCCT (p.D380fsX), c.1168C>T (p.Q390X), c.1169delA (p.Q390fsX), c.1226insG (p.R409fsX) | Sequencing | NM_002076:1-14

Short-Chain Acyl-CoA Dehydrogenase Deficiency (ACADS): Mutation(s) (5): 0 Genotyping | c.1058C>T (p.S353L), c.1138C>T (p.R380W), c.1147C>T (p.R383C), c.319C>T (p.R107C), c.575C>T (p.A192V) | Sequencing | NM_000017:1-10

Sickle-Cell Anemia (HBB): Mutation(s) (1): 0" Genotyping | c.20A>T (p.E7V) | Sequencing |

Sjogren-Larsson Syndrome (ALDH3A2): Mutation(s) (2): of Genotyping | c.1297_1298delGA (p.E433fs), c.943C>T (p.P315S) | Sequencing | NM_001031806:1-10 Sly Syndrome (GUSB): Mutation(s) (5): of Genotyping | c. 1222C>T (p.P408S), c. 1244C>T (p.P415L), c.1429C>T (p.R477W), c.1856C>T (p.A629V), c.526C>T (p.L176F) | Sequencing | NM 000181:1-12

Smith-Lemli-Opitz Syndrome (DHCR7): Mutation(s) (50): of Genotyping | c.1039G>A (p.G347S), c.1054C>T (p.R352W), c.1055G>A (p.R352Q), c.1079T>C (p.L360P), c.111G>A (p.W37X), c.1139G>A (p.C380Y), c.1190C>T (p.S397L), c.1210C>T (p.R404C), c.1228G>A (p.G410S), c.1295A>G (p.Y432C), c.1327C>T (p.R443C), c.1337G>A (p.R446Q), c.1342G>A (p.E448K), c.1351T>C (p.C451R), c.1384T>C (p.Y462H), c.1406G>C (p.R469P), c.1424T>C (p.F475S), c.151C>T (p.P51S), c.1A>G, c.203T>C (p.L68P), c.278C>T (p.T93M), c.292C>T (p.Q98X), c.296T>C (p.L99P), c.326T>C (p.L109P), c.356A>T (p.H119L), c.443T>G (p.L148R), c.452G>A (p.W151X), c.453G>A (p.W151X), c.470T>C (p.L157P), c.502T>A (p.F168I), c.506C>T (p.\$169L), c.523G>C (p.D175H), c.532A>T (p.I178F), c.536C>T (p.P179L), c.545G>T (p.W182L), c.575C>T (p.S192F), c.670G>A (p.E224K), c.682C>T (p.R228W), c.724C>T (p.R242C), c.725G>A (p.R242H), c.728C>G (p.P243R), c.744G>T (p.W248C), c.818T>G

(p.V273G), c.852C>A (p.F284L), c.853 855delTTC (p.285delF), c.861C>A (p.N287K), c.906C>G (p.F302L), c.964-1G>C, c.970T>C (p.Y324H), c.976G>T (p.V326L) | Sequencing | NM 001360:3-9

Spinal Muscular Atrophy: SMN1 Linked (SMN1): Mutation(s) (19): of Genotyping c.22_23insA, c.305G>A (p.W102X), c.400G>A (p.E134K), c.439_443delGAAGT, c.43C>T (p.Q15X), c.558delA, c.585_586insT, c.683T>A (p.L228X), c.734C>T (p.P245L), c.768_778dupTGCTGATGCTT, c.815A>G (p.Y272C), c.821C>T (p.T274I), c.823G>A (p.G275S), c.834+2T>G, c.835-18_835-12delCCTTTAT, c.835G>T, c.836G>T, c.91_92insT Mutation(s) (19): ♀♂ Genotyping | DEL EXON 7

Stargardt Disease (ABCA4): Mutation(s) (17): σ^a Genotyping | c.1018T>G (p.Y340D), c.1622T>C (p.L541P), c.1715G>A (p.R572Q), c.1938-1G>A, c.2461T>A (p.W821R), c.2565G>A (p.W855X), c.2588G>C (p.G863A), c.3083C>T (p.A1028V), c.3106G>A (p.E1036K), c.3113C>T (p.A1038V), c.3210_3211insGT (p.S1071Vfs), c.3364G>A (p.E1122K), c.52C>T (p.R18W), c.5338C>G (p.P1780A), c.571-2A>G, c.6079C>T (p.L2027F), c.634C>T (p.R212C) | Sequencing | NM_000350:1-50

Stuve-Wiedemann Syndrome (LIFR): Mutation(s) (9): 07 Genotyping | c.1601-2A>G, c.1620_1621 insA, c.170delC, c.1789C>T (pR597X), c.2274_2275 insT, c.2434C>T (p.R812X), c.2472_2476delTATGT, c.653_654insT, c.756_757insT (p.K253X) | Sequencing | NM 002310:2-20

Sulfate Transporter-Related Osteochondrodysplasia (SLC26A2): Mutation(s) (7): σ Genotyping | c.-26+2T>C, c.1018_1020delGTT (p.340delV), c.1957T>A (p.C653S), c.398C>T (p.A133V), c.532C>T (p.R178X), c.764G>A (p.G255E), c.835C>T (p.R279W) | Sequencing |

Tay-Sachs Disease (HEXA): Mutation(s) (78): O' Genotyping | c.1003A>T (p.1335F), c.1008G>T (p.Q336H), c.1043_1046delTCAA (p.F348fs), c.1061_1063delTCT (p.F354_Y355delinsX), c.1073+1G>A, c.1121A>G (p.Q374R), c.1123delG (p.E375fs), c.1141 delG (p.V381fs), c.1146+1G>A, c.116T>G (p.L39R), c.1177C>T (p.R393X), c.1178G>C (p.R393P), c.1211_1212delTG (p.L404fs), c.1277_1278insTATC, c.1292G>A (p.W431X), c.1302C>G (p.F434L), c.1307_1308delTA (p.1436fs), c.1351C>G (p.L451V), c.1385A>T (p.E462V), c.1421+1G>C, c.1422-2A>G, c.1426A>T (p.R476X), c.1432G>A (p.G478R), c.1451T>C (p.L484P), c.1495C>T (p.R499C), c.1496G>A (p.R499H), c.1510C>T (p.R504C), c.1510delC (p.R504fs), c.1511G>A (p.R504H), c.1511G>T (p.R504L), c.1537C>T (p.Q513X), c.155C>A (p.S52X), c.1A>G (p.M1V), c.2T>C (p.M1T), c.340G>A (p.E114K), c.346+1G>C, c.380T>G (p.L127R), c.409C>T (p.R137X), c.413-2A>G, c.426delT (p.F142fs), c.459+5G>A (IVS4+5G>A), c.508C>T (p.R170W), c.509G>A (p.R170Q), c.532C>T (p.R178C), c.533G>A (p.R178H), c.533G>T (p.R178L), c.535C>T (p.H179Y), c.536A>G (p.H179R), c.538T>C (p.Y180H), c.540C>G (p.Y180X), c.570+3A>G, c.571-1G>T, c.571-2A>G (IVS5-2A>G), c.571-8A>G, c.590A>C (p.K197T), c.598G>A (p.V200M), c.607T>G (p.W203G), c.611A>G (p.H204R), c.613delC, c.615delG (p.L205fs), c.621T>G (p.D207E), c.623A>T (p.D208V), c.624_627delTCCT (p.D208fs), c.629C>T (p.S210F), c.632T>C (p.F211S), c.736G>A (p.A246T), c.749G>A (p.G250D), c.778C>T (p.P260S), c.78G>A (p.W26X), c.796T>G (p.W266G), c.805+1G>A, c.805+1G>C, c.805+2T>C, c.805G>A (p.G269S), c.910_912delTTC (p.305delF), c.947_948insA (p.Y316fs), c.964G>A (p.D322N), c.964G>T (p.D322Y) | Sequencing | NM_000520:1-14

Trichohepatoenteric Syndrome: Type 1 (TTC37): Mutation(s) (9): O' Genotyping | c.2578-7delTTTTT, c.1632+1delG, c.2251C>T (p.Q751X), c.2515+1G>C, c.2808G>A (p.W936X), c.3847G>A (p.D1283N), c.439C>T (p.Q147X), c.4620+1G>C, c.751G>A (p.G251R) | Sequencing | NM_014639:4-43

Tyrosine Hydroxylase Deficiency (TH): Mutation(s) (1): of Genotyping | c.698G>A (p.R233H) | Sequencing | NM_199292:1-14

Tyrosinemia: Type I (FAH): Mutation(s) (10): of Genotyping | c.1009G>A (p.G337S), c.1062+5G>A, c.1069G>T (p.E357X), c.192G>T (p.Q64H), c.554-1G>T, c.607-6T>G, c.698A>T (p.D233V), c.707-1G>C, c.782C>T (p.P261L), c.786G>A (p.W262X) | Sequencing | NM_000137:1-14

Tyrosinemia: Type II (TAT): Mutation(s) (5): 67 Genotyping | c.1085G>T (p.G362V), c.1249C>T (p.R417X), c.169C>T (p.R57X), c.236-5A>G, c.668C>G (p.S223X) | Sequencing | $\,$ NM_000353:2-12

Usher Syndrome: Type 1B (MYO7A): Mutation(s) (13): of Genotyping | c.1190C>A (p.A397D), c.1797G>A (p.M599I), c.1996C>T (p.R666X), c.2476G>A (p.A826T), c.3719G>A (p.R1240Q), c.448C>T (p.R150X), c.5581C>T (p.R1861X), c.6025delG (p.A2009fs), c.634C>T (p.R212C), c.635G>A (p.R212H), c.640G>A (p.G214R), c.700C>T (p.Q234X), c.93C>A (p.C31X) | Sequencing | NM_000260:2-49

Usher Syndrome: Type 1C (USH1C): Mutation(s) (5): O' Genotyping | c.216G>A (p.V72fs), c.238_239insC, c.36+1G>T, c.496+1G>A, c.91C>T (p.R31X) | Sequencing | NM_153676:1-27 Usher Syndrome: Type 1D (CDH23): Mutation(s) (15): O Genotyping | c.172C>T (p.Q58X), c.3367C>T (p.Q1123X), c.3617C>G (p.P1206R), c.3713_3714delCT (p.S1238fs), c.3880C>T (p.Q1294X), c.4069C>T (p.Q1357X), c.4488G>C (p.Q1496H), c.4504C>T (p.R1502X), c.5237G>A (p.R1746Q), c.5985C>A (p.Y1995X), c.6307G>T (p.E2103X),

Reprogenetics** Recombine** Genesis Genetics**

c.7549A>G (p.S2517G), c.8230G>A (p.G2744S), c.8497C>G (p.R2833G), c.9524G>A (p.R3175H) | Sequencing | NM_022124:2-68

Usher Syndrome: Type 1F (PCDH15): Mutation(s) (7): of Genotyping | c.1101 delT (p.A367fsX), c.1942C>T (p.R648X), c.2067C>A (p.Y684X), c.2800C>T (p.R934X), c.4272delA (p.L1425fs), c.733C>T (p.R245X), c.7C>T (p.R3X) | Sequencing | NM_001142763:2-35
Usher Syndrome: Type 2A (USH2A): Mutation(s) (22): of Genotyping | c.1000C>T (p.R334W), c.11328T>A (p.Y3776X), c.11328T>G (p.Y3776X), c.12067-2A>G, c.1256G>T (p.C419F), c.12708T>A (p.C4236X), c.13576C>T (p.R4526X), c.14020A>G (p.R4674G), c.14403C>G (p.Y4801X), c.1840+1G>A, c.1876C>T (p.R626X), c.2209C>T (p.R737X), c.2299delG (p.E7675fsX21), c.3788G>A (p.W1263X), c.4338_4339delCT (p.C1447fs), c.5329C>T (p.R1777W), c.6235A>T (p.K2079X), c.7123delG (p.G2375fs), c.9165_9168delCTAT (p.I3055MfsX2), c.923_924insGCCA (p.H308fs), c.9469C>T (p.Q3157X), c.9492_9498delTGATGAG (p.D3165fs) | Sequencing | NM_206933:2-72
Usher Syndrome: Type 3 (CLRN1): Mutation(s) (5): of Genotyping | c.131T>A (p.M120K), c.144T>G (p.N48K), c.221T>C (p.L74P), c.567T>G (p.Y189X), c.634C>T (p.Q212X) | Sequencing | NM_001195794:1-4

Very Long-Chain Acyl-CoA Dehydrogenase Deficiency (ACADVL): Mutation(s) (29): of Genotyping | c.1144A>C (p.K382Q), c.1226C>T (p.T409M), c.1246G>A (p.A416T), c.1322G>A (p.G441D), c.1349G>A (p.R450H), c.1358G>A (p.R453Q), c.1372T>C (p.F458L), c.1405C>T (p.R469W), c.1512G>T (p.E504D), c.1531C>T (p.R511W), c.1606_1609delGCAG (p.A536fs), c.1837C>T (p.R613W), c.265C>T (p.P89S), c.272C>A (p.P91Q), c.364A>G (p.N122D), c.37C>T (p.Q13X), c.388_391delGAGA (p.E130fs), c.520G>A (p.V174M), c.553G>A (p.G185S), c.577G>C (p.G193R), c.664G>A (p.G222R), c.685C>T (p.R229X), c.739A>C (p.K247Q), c.753-2A>C (IVS8-2A>C), c.779C>T (p.T260M), c.790A>G (p.K264E), c.848T>C (p.V283A), c.856A>G (p.R286G), c.881G>A (p.G294E) | Sequencing | NM_000018:1-20

Walker-Warburg Syndrome (FKTN): Mutation(s) (5): 0° Genotyping | c.1167insA (p.F390fs), c.139C>T (p.R47X), c.515A>G (p.H172R), c.648-1243G>T (IVS5-1243G>T), c.748T>G (p.C250G) | Sequencing | NM_006731:2-10

Werner Syndrome (WRN): Mutation(s) (8): of Genotyping | c.1336C>T (p.R368X), c.1730A>T (p.K577M), c.2089-3024A>G, c.3139-1G>C (IVS25-1G>C), c.3493C>T (p.Q1165X), c.3686A>T (p.Q1229L), c.3913C>T (p.R1305X), c.3915_3916insA (p.R1306fs) | Sequencing | NM_000553:2-35

Wilson Disease (ATP7B): Mutation(s) (17): d* Genotyping | c.-370_-394delTGGCCGAGACCGCGG, c.1340_1343delAAAC, c.1934T>G (p.M645R), c.2123T>C (p.L708P), c.2293G>A (p.D765N), c.2304delC (p.M769Cfs), c.2332C>G (p.R778G), c.2333G>T (p.R778L), c.2336G>A (p.W779X), c.2337G>A (p.W779X), c.2906G>A (p.R969Q), c.3191A>C (p.E1064A), c.3207C>A (p.H1069Q), c.3683G>C (p.R1228T), c.3809A>G (p.N1270S), c.3817C>T (p.P1273S), c.845delT (p.L282Pfs) | Sequencing | NM_000053:1-21

Wolcott-Rallison Syndrome (EIF2AK3): Mutation(s) (5): 0 Genotyping | c.1047_1060delAGTCATTCCCATCA (p.V350Sfs), c.1262delA (p.N421fs), c.1409C>G (p.S470X), c.1570delGAAA (p.E524fsX), c.478delG (p.A160fs) | Sequencing | NM_004836:1-17

Wolman Disease (LIPA): Mutation(s) (3): O* Genotyping | c.260G>T (p.G87V), c.419G>A (p.W140X), c.964C>T (p.Q322X) | Sequencing | NM_001127605:2-10

Xeroderma Pigmentosum: Group A (XPA): Mutation(s) (7): of Genotyping | c.172+2T>G, c.323G>T (p.C108F), c.348T>A (p.Y116X), c.374delC (p.T125fs), c.390-1G>C, c.619C>T (p.R207X), c.682C>T (p.R228X) | Sequencing | NM_000380:1-6

Xeroderma Pigmentosum: Group C (XPC): Mutation(s) (5): & Genotyping | c.1643_1644delTG (p.V548fs), c.1735C>T (p.R579X), c.413-24A>G, c.413-9T>A, c.566_567delAT (p.Y189fs) | Sequencing | NM_004628:1-16

Zellweger Spectrum Disorders: PEX1 Related (PEX1): Mutation(s) (3): 0" Genotyping | c.2097insT (p.1700fs), c.2528G>A (p.G843D), c.2916delA (p.G973fs) | Sequencing | NM 000466:1-24

Zellweger Spectrum Disorders: PEX10 Related (PEX10): Mutation(s) (2): σ Genotyping | c.764_765insA, c.874_875delCT | Sequencing | NM_153818:2-6

Zellweger Spectrum Disorders: PEX2 Related (PEX2): Mutation(s) (1): σ Genotyping | c.355C>T (p.R119X) | Sequencing | NM_001172087:1-3

Zellweger Spectrum Disorders: PEX6 Related (PEX6): Mutation(s) (8): 0* Genotyping | c.1130+1G>A (IVS3+1G>A), c.1301delC (p.S434Ffs), c.1601T>C (p.L534P), c.1688+1G>A (IVS7+1G>A), c.1715C>T (p.T572I), c.1962-1G>A (p.L655fsX3), c.511insT (p.G171Wfs), c.802_815delGACGGACTGGCGCT (p.D268Cfs) | Sequencing | NM_000287:1-17

Residual Risk Information

Detection rates are calculated from the primary literature and may not be available for all ethnic populations. The values listed below are for genotyping. Sequencing provides higher detection rates and lower residual risks for each disease. More precise values for sequencing may become available in the future.

Disease	Carrier Rate	Detection	Residual Risk
		Rate	
11-Beta-Hydroxylase- Deficient Congenital Adrenal Hyperplasia	od Moroccan Jewish: 1∕39	91.67%	1/468
17-Alpha- Hydroxylase Deficiency	ਹੈ Brazilian: Unknown ਹੈ Japanese: Unknown	54.55% 45.45%	Unknown Unknown
17-Beta- Hydroxysteroid Dehydrogenase Deficiency	♂ Arab: 1/8 ♂ Dutch: 1/192	>99% 13.89%	<1/800 1/223
21-Hydroxylase- Deficient Classical Congenital Adrenal Hyperplasia	or European: 1/62 or General: 1/62	27.65% 29.34%	1/86 1/88
21-Hydroxylase- Deficient Nonclassical Congenital Adrenal Hyperplasia	♂ Argentinian: 1/4 ♂ European: 1/16	<10% <10%	1/4 1/16
3-Beta- Hydroxysteroid Dehydrogenase Deficiency	or General: Unknown	16.13%	Unknown
3-Methylcrotonyl-CoA Carboxylase Deficiency: MCCA Related	ਨਾੰ European: 1/146 ਨਾੰ General: 1/112	26.32% 37.50%	1/198 1/179
3-Methylcrotonyl-CoA Carboxylase Deficiency: MCCB Related	o" General: 1/112 o" Japanese: 1/112 o" Korean: 1/141 o" Turkish: 1/112	35.29% 33.33% 66.67% 24.07%	1/173 1/168 1/423 1/148
3-Methylglutaconic Aciduria: Type 3	♂ Iraqi Jewish: 1/10	>99%	<1/1000
3-Phosphoglycerate Dehydrogenase Deficiency	♂ Ashkenazi Jewish: 1/400	>99%	<1/40000
5-Alpha Reductase Deficiency	og Dominican: Unknown og Mexican: Unknown	>99% 68.75%	Unknown Unknown
6-Pyruvoyl- Tetrahydropterin Synthase Deficiency	o ^a Chinese: 1/183 o ^a East Asian: 1/180	78.95% 64.20%	1/869 1/503
ARSACS	of French Canadian: 1/22	95.45%	1/484

Disease	Carrier Rate	Detection Rate	Residual Risk
Abetalipoproteinemia	♂ Ashkenazi Jewish: 1/131	>99%	<1/13100
Acrodermatitis Enteropathica	or Arab: Unknown or Egyptian: Unknown or French: Unknown or Tunisian: Unknown	40.00% 33.33% 27.78% 77.78%	Unknown Unknown Unknown Unknown
Acute Infantile Liver Failure: TRMU Related	♂ Yemenite Jewish: 1/40	71.43%	1/140
Acyl-CoA Oxidase I Deficiency	o [®] General: Unknown o [®] Japanese: Unknown	35.00% 42.86%	Unknown Unknown
Adenosine Deaminase Deficiency	o ^a General: 1/388	36.96%	1/615
Alkaptonuria	o ^a Dominican: Unknown o ^a Finnish: 1/251 o ^a Slovak: 1/69	>99% 60.00% 59.38%	Unknown 1/628 1/170
Alpha Thalassemia	o³ General: 1/48	50.67%	1/97
Alpha-1-Antitrypsin Deficiency	o³ European: 1/35 o³ General: Unknown	95.00% 95.00%	1/700 Unknown
Alpha-Mannosidosis	o³ European: 1/354 o³ General: 1/354	30.23% 35.19%	1/507 1/546
Alport Syndrome: COL4A3 Related	♂ Dutch: 1/409	22.73%	1/529
Alport Syndrome: COL4A4 Related	♂ General: 1/409	26.67%	1/558
Amegakaryocytic Thrombocytopenia	♂ Ashkenazi Jewish: 1/76 ♂ General: Unknown	>99% 64.81%	<1/7600 Unknown
Andermann Syndrome	♂ French Canadian: 1/24	99.38%	1/3888
Antley-Bixler Syndrome	♂ General: Unknown ♂ Japanese: Unknown	45.65% 60.47%	Unknown Unknown
Argininemia	ਰੈ Chinese: Unknown ਰੈ French Canadian: Unknown ਰੈ Japanese: Unknown	40.00% 75.00% >99%	Unknown Unknown Unknown
Argininosuccinate Lyase Deficiency	♂ European: 1/133 ♂ Saudi Arabian: 1/80	57.41% 51.72%	1/312 1/166
0 .	and the second second		

Aromatase Deficiency of General: Unknown

25.00%

Unknown

Disease	Carrier Rate	Detection Rate	Residual Risk	Disease	Carrier Rate	Detection Rate	Residual Risk
Arthrogryposis,	♂ Ashkenazi Jewish: 1/205	>99%	<1/20500	Bloom Syndrome	♂ Ashkenazi Jewish: 1/134	96.67%	1/4020
Mental Retardation, &				,	♂ European: Unknown	66.22%	Unknown
Seizures					♂ Japanese: Unknown	50.00%	Unknown
Asparagine	♂ Iranian Jewish: 1/80	>99%	<1/8000	Canavan Disease	♂ Ashkenazi Jewish: 1/55	98.86%	1/4840
Synthetase Deficiency					o³ European: Unknown	53.23%	Unknown
Aspartylglycosaminuri	of Finnish: 1/60	96.12%	1/1780	Carnitine	♂ General: Unknown	38.89%	Unknown
a	0 Tillingii. 17 07	70.1270	17 17 00	Palmitoyltransferase IA	of Hutterite: 1/16	>99%	<1/1600
				Deficiency	of Japanese: 1/101	66.67%	1/303
Ataxia with Vitamin E	♂ European: 1/274	80.00%	1/1370	Carnitine	♂ Ashkenazi Jewish: Unknown	>99%	Unknown
Deficiency	♂ Italian: 1/224	97.73%	1/9856	Palmitoyltransferase II	♂ General: Unknown	71.43%	Unknown
	o' North African: 1/159	>99%	<1/15900	Deficiency			
Ataxia-Telangiectasia	o" Costa Rican: 1/100	68.52%	1/318	Carnitine-	o" Asian: Unknown	95.45%	Unknown
	♂ North African Jewish: 1/81	96.97%	1/2673	Acylcarnitine	♂ General: Unknown	18. <i>7</i> 5%	Unknown
	♂ Norwegian: 1/197	50.00%	1/394	Translocase Deficiency			
	o [™] Sardinians: Unknown	85.71%	Unknown	C S S d	o" Brazilian: Unknown	40.00%	Unknown
	of US Amish: Unknown	>99%	Unknown	Carpenter Syndrome	o Brazilian: Unknown of Northern European: Unknown	85.00%	Unknown
Autosomal Recessive	♂ Finnish: 1/45	84.21%	1/285				
Polycystic Kidney	♂ French: 1/71	62.50%	1/189				
Disease	♂ General: 1/71	37.11%	1/113	Cartilage-Hair	of Finnish: 1/76	93.33%	1/1140
Bardet-Biedl	♂ General: 1/376	70.27%	1/1265	Hypoplasia	♂ US Amish: 1/19	>99%	<1/1900
Syndrome: BBS1	o' Northern European: 1/376	85.90%	1/2666				
Related	♂ Puerto Rican: Unknown	90.00%	Unknown	Cerebrotendinous	o⊓ Dutch: Unknown	78.57%	Unknown
				Xanthomatosis	o Italian: Unknown	45.95%	Unknown
Bardet-Biedl	♂ General: 1/404	47.79%	1/774		og Japanese: Unknown	92.86%	Unknown
Syndrome: BBS10 Related					♂ Moroccan Jewish: 1/6	87.50%	1/48
Kelalea				Chediak-Higashi	o" General: Unknown	19.64%	Unknown
Bardet-Biedl	♂ Bedouin: 1/59	>99%	<1/5900	Syndrome			
Syndrome: BBS11							
Related				Cholesteryl Ester	o' General: 1/101	68.97%	1/325
Bardet-Biedl	♂ General: Unknown	50.00%	Unknown	Storage Disease	, ,		,
Syndrome: BBS12							
Related					-21 x 11 · · · · · · · · · · · · · · · · ·	// /70/	
Bardet-Biedl	o" Ashkenazi Jewish: Unknown	>99%	Unknown	Choreoacanthocytosis	♂ Ashkenazi Jewish: Unknown	66.67%	Unknown
Syndrome: BBS2	of General: 1/638	38.46%	1/1037				
Related	♂ Middle Eastern: Unknown	>99%	Unknown				
				Chronic	♂ Iranian: Unknown	71.43%	Unknown
Bare Lymphocyte	♂ General: Unknown	66.67%	Unknown	Granulomatous	♂ Japanese: 1/274	>99%	<1/27400
Syndrome: Type II				Disease: CYBA	of Korean: 1/105	>99%	<1/10500
				Related	♂ Moroccan Jewish: 1/234	>99%	<1/23400
Bartter Syndrome:	♂ General: 1/457	81.82%	1/2514	Citrin Deficiency	o' Japanese: 1/70	>99%	<1/7000
Type 4A							
D . T .	7.46		1 /	Citrullinemia: Type I	o European: 1/120	18.18%	1/147
Beta Thalassemia	of African American: 1/75	84.21%	1/475	Circumenta. Type I	o' General: 1/120	52.27%	1/251
	o" Indian: 1/24 o" Sardinians: 1/23	74.12%	1/93 1/804		o Japanese: Unknown	64.71%	Unknown
	o' Spaniard: 1/51	97.14% 93.10%	1/740		o' Mediterranean: 1/120	50.00%	1/240
B - 11	,		,	Classical	o' African American: 1/78	73.13%	1/290
Beta-Hexosaminidase	o [™] Ashkenazi Jewish: Unknown	>99%	Unknown	Galactosemia	of Ashkenazi Jewish: 1/127	>99%	<1/12700
Pseudodeficiency	o' General: Unknown	>99%	Unknown		of Dutch: 1/91	75.47%	1/371
					♂ European: 1/112	88.33%	1/960
Beta-Ketothiolase	♂ Japanese: Unknown	58.33%	Unknown		♂ General: 1/125	80.00%	1/625
Deficiency	o" Spaniard: Unknown	90.00%	Unknown		of Irish: 1/76	91.30%	1/874
					o [™] Irish Travellers: 1/14	>99%	<1/1400
Biotinidase Deficiency	o' General: 1/123	78.32%	1/567	Cockayne Syndrome:	♂ Christian Arab: Unknown	50.00%	Unknown
,	•		•	Type A			

Disease	Carrier Rate	Detection Rate	Residual Risk
Cockayne Syndrome: Type B	♂ General: 1/378	19.30%	1/468
Cohen Syndrome	of European: Unknown of Finnish: 1/140 of US Amish: 1/12	19.05% 67.24% >99%	Unknown 1/427 <1/1200
Combined Pituitary Hormone Deficiency: PROP1 Related	or European: 1/45 or General: 1/45	93.29% 82.35%	1/671 1/255
Congenital Disorder of Glycosylation: Type 1A: PMM2 Related	o ^a Danish: 1/71 o ^a Dutch: 1/68 o ^a European: 1/71	90.00% 39.29% 55.33%	1/710 1/112 1/159
Congenital Disorder of Glycosylation: Type 1B: MPI Related	of French: Unknown	54.17%	Unknown
Congenital Disorder of Glycosylation: Type 1C: ALG6 Related	ਹਾ French: Unknown ਹਾ General: Unknown	59.09% 86.21%	Unknown Unknown
Congenital Ichthyosis: ABCA12 Related	og North African: Unknown og South Asian: Unknown	>99% 66.67%	Unknown Unknown
Congenital Insensitivity to Pain with Anhidrosis	♂ Japanese: Unknown ♂ Moroccan Jewish: Unknown	56.52% >99%	Unknown Unknown
Congenital Lipoid Adrenal Hyperplasia	o Japanese: 1/201 o Korean: 1/251	51.11% 63.64%	1/411 1/690
Congenital Myasthenic Syndrome: CHRNE Related	o [®] European Gypsy: 1/26 o [®] North African: Unknown	>99% 60.87%	<1/2600 Unknown
Congenital Myasthenic Syndrome: DOK7 Related	on European: 1/472 on General: 1/472	19.05% 18.75%	1/583 1/581
Congenital Myasthenic Syndrome: RAPSN Related	on General: 1/437 on Non-Ashkenazi Jewish: Unknown	88.57% >99%	1/3824 Unknown
Congenital Neutropenia: Recessive	og English: Unknown og Japanese: Unknown og Turkish: Unknown	11.76% 22.22% 89.47%	Unknown Unknown Unknown
Corneal Dystrophy and Perceptive Deafness	od General: Unknown	71.43%	Unknown
Corticosterone Methyloxidase Deficiency	♂ Iranian Jewish: 1/32	>99%	<1/3200
Crigler-Najjar Syndrome	♂ Sardinians: Unknown ♂ Tunisian: Unknown	80.00% >99%	Unknown Unknown

Disease	Carrier Rate	Detection Rate	Residual Risk
Cystic Fibrosis	of African American: 1/62 of Ashkenazi Jewish: 1/23 of Asian: 1/94 of European: 1/25 of Hispanic American: 1/48	69.99% 96.81% 65.81% 94.96% 77.32%	1/207 1/721 1/275 1/496 1/212
Cystinosis	o" Native American: 1/53 o" Dutch: 1/194 o" French Canadian: 1/40 o" General: 1/194	84.34% 73.08% 75.00% 54.51%	1/338 1/721 1/160 1/426
Cystinuria: Non-Type I	o ^a European: 1/42 o ^a General: 1/42 o ^a Libyan Jewish: 1/26 o ^a United States: 1/42	61.11% 37.50% 93.48% 56.25%	1/108 1/67 1/399 1/96
Cystinuria: Type I	o [®] European: 1/42 o [®] Swedish: 1/159	46.67% 55.88%	1/79 1/360
D-Bifunctional Protein Deficiency	o⁴ General: 1/159	38.64%	1/259
Diabetes: Recessive Permanent Neonatal	ರೆ General: Unknown	25.00%	Unknown
Du Pan Syndrome	O" Pakistani: Unknown	>99%	Unknown
Dyskeratosis Congenita: RTEL1 Related	o ^a Ashkenazi Jewish: 1/203 o ^a General: 1/501	>99% 50.00%	<1/20300 1/1002
Dystrophic Epidermolysis Bullosa: Recessive	oʻ Italian: Unknown oʻ Mexican American: 1/345	45.00% 56.25%	Unknown 1/789
Ehlers-Danlos Syndrome: Type VIIC	♂ Ashkenazi Jewish: Unknown	>99%	Unknown
Ellis-van Creveld Syndrome: EVC Related	♂ General: 1/123	32.14%	1/181
Ellis-van Creveld Syndrome: EVC2 Related	o³ General: Unknown	<10%	Unknown
Enhanced S-Cone	♂ Ashkenazi Jewish: Unknown ♂ General: Unknown	90.48% 52.50%	Unknown Unknown
Ethylmalonic Aciduria	o Arab/Mediterranean: Unknown o General: Unknown	29.17% 38.24%	Unknown Unknown
Familial Chloride Diarrhea	o" Finnish: 1/51 o" Kuwaiti: 1/38 o" Polish: 1/224 o" Saudi Arabian: 1/38	>99% 90.00% 45.24% >99%	<1/5100 1/380 1/409 <1/3800
Familial Dysautonomia	♂ Ashkenazi Jewish: 1/31	>99%	<1/3100

Disease	Carrier Rate	Detection Rate	Residual Risk	Disease	Carrier Rate	Detection Rate	Residual Risk
Familial Hyperinsulinism: Type 1: ABCC8 Related	o [®] Ashkenazi Jewish: 1/52 o [®] Finnish: 1/101	98.75% 45.16%	1/4160 1/184	Glutaric Acidemia: Type IIA	o³ General: Unknown	71.43%	Unknown
Familial Hyperinsulinism: Type 2: KCNJ11 Related	o [™] Arab: Unknown	40.00%	Unknown	Glutaric Acidemia: Type IIB	o³ General: Unknown	33.33%	Unknown
Familial Mediterranean Fever	o" Arab: 1/4 o" Armenian: 1/5 o" Ashkenazi Jewish: 1/81 o" Iraqi Jewish: 1/4	51.27% 94.51% 40.95% 76.92%	1/8 1/91 1/137 1/17	Glutaric Acidemia: Type IIC	o° Taiwanese: Unknown o° Turkish: Unknown	>99% 80.00%	Unknown Unknown
	o" Israeli Jewish: 1/5 o" Lebanese: 1/6 o" North African Jewish: 1/5 o" Syrian: 1/6	62.67% 91.67% 95.69% 85.14%	1/13 1/72 1/116 1/40	Glycine Encephalopathy: AMT Related	් General: Unknown	40.91%	Unknown
Fanconi Anemia: Type A	o" Turkish: 1/5 o" Moroccan Jewish: 1/100 o" Spanish Gypsy: 1/67	74.43% >99% >99%	1/20 <1/10000 <1/6700	Glycine Encephalopathy: GLDC Related	o Finnish: 1/118 o General: 1/280	78.00% 12.50%	1/536 1/320
Fanconi Anemia: Type C	♂ Ashkenazi Jewish: 1/101 ♂ General: Unknown	>99% 30.00%	<1/10100 Unknown	Glycogen Storage Disease: Type IA	o" Ashkenazi Jewish: 1/71 o" Chinese: 1/159 o" European: 1/177 o" Hispanic American: 1/177 o" Japanese: 1/177	>99% 80.00% 76.88% 27.78% 89.22%	<1/7100 1/795 1/765 1/245 1/1641
Fanconi Anemia: Type G	or Black South African: 1/101 or French Canadian: Unknown or Japanese: Unknown or Korean: Unknown	81.82% 87.50% 75.00% 66.67%	1/556 Unknown Unknown Unknown	Glycogen Storage Disease: Type IB	o" Australian: 1/354 o" European: 1/354 o" Japanese: 1/354	50.00% 45.74% 39.13%	1/708 1/652 1/582
Fanconi Anemia: Type J	♂ General: Unknown	86.36%	Unknown	Glycogen Storage Disease: Type II	o" African American: 1/60 o" Chinese: 1/112 o" European: 1/97 o" North African: Unknown	45.83% 72.00% 51.76% 60.00%	1/111 1/400 1/201 Unknown
Fumarase Deficiency	o⁴ General: Unknown	30.00%	Unknown	Glycogen Storage Disease: Type III	o" Faroese: 1/30 o" General: 1/159 o" North African Jewish: 1/35	>99% 39.81% >99%	<1/3000 1/264 <1/3500
GM1-Gangliosidoses	of Eurodescent Brazilian: 1/66 of European: 1/194 of General: 1/194 of Hispanic American: 1/194 of Japanese: Unknown	62.15% 50.00% 20.00% 58.33% 62.82%	1/174 1/388 1/243 1/466 Unknown	Glycogen Storage Disease: Type IV Glycogen Storage	o Ashkenazi Jewish: 1/35 o General: 1/461 o Caucasus Jewish: Unknown	>99% 18.60% >99%	<1/3500 1/566 Unknown
GRACILE Syndrome	of Finnish: 1/109	97.22%	1/3924	Disease: Type V	o" European: 1/159 o" General: Unknown o" Spaniard: 1/159 o" Yemenite Jewish: Unknown	60.71% 74.10% 67.11% 75.00%	1/405 Unknown 1/483 Unknown
Galactokinase Deficiency	o [™] Japanese: 1/501 o [™] Roma: 1/51	50.00% >99%	1/1002 <1/5100	Glycogen Storage Disease: Type VII	o⁴ Ashkenazi Jewish: 1/250	>99%	<1/25000
Gaucher Disease	o" Ashkenazi Jewish: 1/15 o" General: 1/112 o" Spaniard: Unknown o" Turkish: 1/236	87.16% 31.60% 44.29% 59.38%	1/117 1/164 Unknown 1/581	Guanidinoacetate Methyltransferase Deficiency	♂ General: Unknown	29.41%	Unknown
Gitelman Syndrome	o" European: 1/100 o" European Gypsy: Unknown o" General: 1/101 o" Taiwanese: Unknown	35.00% >99% 30.00% 64.29%	1/154 Unknown 1/144 Unknown	HMG-CoA Lyase Deficiency	o" General: 1/159 o" Japanese: Unknown o" Portuguese: Unknown o" Saudi Arabian: Unknown	40.00% 30.00% 86.36% 93.33%	1/265 Unknown Unknown Unknown
Globoid Cell Leukodystrophy	o" Dutch: 1/137 o" European: 1/150 o" Japanese: 1/150	60.98% 26.47% 36.00%	1/351 1/204 1/234	Hemochromatosis: Type 2A: HFE2 Related	o [®] European: Unknown o [®] Mediterranean: Unknown	69.23% 72.73%	Unknown Unknown
Glutaric Acidemia: Type I	o" European: 1/164 o" General: 1/164 o" US Amish: 1/12	57.78% 25.51% >99%	1/388 1/220 <1/1200	Hemochromatosis: Type 3: TFR2 Related	ੈ Italian: Unknown	73.21%	Unknown

Disease	Carrier Rate	Detection Rate	Residual Risk	Disease	Carrier Rate	Detection Rate	Residual Risk
Hemoglobinopathy: Hb C	♂ African American: 1/51	>99%	<1/5100	Hypophosphatasia	o" Canadian Amish: 1/26 o" European: 1/159 o" Japanese: Unknown	>99% 19.23% 54.55%	<1/2600 1/197 Unknown
Hemoglobinopathy: Hb D	o' Canadian: 1/64 o' Indian: 1/16 o' Iranian: 1/11	>99% >99% >99%	<1/6400 <1/1600 <1/1100	Inclusion Body Myopathy: Type 2	o" General: Unknown o" Iranian Jewish: 1/16 o" Japanese: Unknown o" Korean: Unknown	85.83% >99% 71.88% 72.50%	Unknown <1/1600 Unknown Unknown
Hemoglobinopathy: Hb E	o" Cambodia: 1/4 o" Chinese: 1/13 o" Indian: 1/10 o" Thai: 1/9	>99% >99% >99% >99%	<1/400 <1/1300 <1/1000 <1/900	Infantile Cerebral and Cerebellar Atrophy	oਾ Caucasus Jewish: 1/20	>99%	<1/2000
Hemoglobinopathy: Hb O	o [®] African American: 1/87 o [®] Middle Eastern: Unknown	>99% >99%	<1/8700 Unknown	Isolated Microphthalmia: VSX2 Related	♂ Middle Eastern: Unknown	71.43%	Unknown
Hereditary Fructose Intolerance	o" European: 1/81 o" Italian: 1/81 o" Slavic: 1/81	72.73% 90.91% >99%	1/297 1/891 <1/8100	Isovaleric Acidemia	♂ General: 1/251	47.37%	1/477
Hereditary Spastic Paraplegia: TECPR2 Related	o³ Bukharan Jewish: 1/75	>99%	<1/7500	Joubert Syndrome	♂ Ashkenazi Jewish: 1/92	>99%	<1/9200
Herlitz Junctional Epidermolysis Bullosa: LAMA3 Related	o™ Pakistani: Unknown	>99%	Unknown	Lamellar Ichthyosis: Type 1	o [®] Norwegian: 1/151	81.40%	1/812
Herlitz Junctional Epidermolysis Bullosa: LAMB3 Related	o³ European: Unknown o³ General: 1/781	70.00% 52.27%	Unknown 1/1636	Laryngoonychocutane ous Syndrome	o [®] Pakistani: Unknown	>99%	Unknown
Herlitz Junctional Epidermolysis Bullosa: LAMC2 Related	o [®] Italian: Unknown	28.57%	Unknown	Leber Congenital Amaurosis: CEP290 Related	o⁴ European: 1/251	47.32%	1/476
Hermansky-Pudlak Syndrome: Type 1	o⁴ Puerto Rican: 1/22	94.95%	1/436	Leber Congenital Amaurosis: GUCY2D Related	o⁴ Finnish: Unknown	>99%	Unknown
Hermansky-Pudlak Syndrome: Type 3	o [®] Ashkenazi Jewish: 1/235 o [®] European: 1/434	>99% 12.50%	<1/23500 1/496	Leber Congenital Amaurosis: LCA5 Related	o [™] Pakistani: Unknown	83.33%	Unknown
Hermansky-Pudlak Syndrome: Type 4	o³ European: Unknown	54.17%	Unknown	Leber Congenital Amaurosis: RDH12 Related	o [®] General: 1/560	38.37%	1/909
Holocarboxylase Synthetase Deficiency	o³ European: 1/148 o³ Japanese: 1/159	83.33% 76.92%	1/888 1/689	Leigh Syndrome: French-Canadian	o⁴ French Canadian: 1/23	95.45%	1/506
Homocystinuria Caused by CBS Deficiency	of European: 1/224 of Irish: 1/128 of Italian: 1/224 of Norwegian: 1/41	64.29% 70.59% 35.71% 84.38%	1/627 1/435 1/348 1/262	Leukoencephalopathy with Vanishing White Matter: EIF2B5 Related	o™ Cree: Unknown o™ European: Unknown	>99% 65.22%	Unknown Unknown
Hurler Syndrome	o" Qatari: 1/22 o" Saudi Arabian: Unknown o" Czech: 1/190 o" European: 1/194 o" General: 1/194	>99% 92.31% 52.50% 81.71% 62.50%	<1/2200 Unknown 1/400 1/1061 1/517	Leydig Cell Hypoplasia (Luteinizing Hormone Resistance)	ਰਾ Brazilian: Unknown	>99%	Unknown
	o' Genera: 1/194 o' Italian: 1/194 o' Japanese: 1/194 o' Moroccan Jewish: 1/194 o' Scandinavian: 1/194 o' Spaniard: 1/194	62.50% 61.11% 23.68% 92.31% 79.41% 52.50%	1/31/ 1/499 1/254 1/2522 1/942 1/408	Limb-Girdle Muscular Dystrophy: Type 2A	o" Basque: 1/61 o" Croatian: 1/133 o" European: 1/103 o" General: 1/103 o" Italian: 1/162 o" Russian: 1/103 o" US Amish: Unknown	61.46% 76.00% 17.23% 26.47% 35.71% 53.33% >99%	1/158 1/554 1/124 1/140 1/252 1/221 Unknown

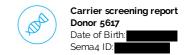
			5 41 15:1				5 41 157
Disease	Carrier Rate	Detection Rate	Residual Risk	Disease	Carrier Rate	Detection Rate	Residual Risk
Limb-Girdle Muscular	♂ Caucasus Jewish: 1/25	>99%	<1/2500	Medium-Chain Acyl-	♂ European: 1/50	90.91%	1/550
Dystrophy: Type 2B	♂ Libyan Jewish: 1/19	>99%	<1/1900	CoA Dehydrogenase	♂ Saudi Arabian: 1/68	95.00%	1/1360
				Deficiency	♂ United Kingdom: 1/51	90.00%	1/510
Limb-Girdle Muscular	♂ European Gypsy: 1/50	>99%	<1/5000	Megalencephalic	♂ Japanese: Unknown	50.00%	Unknown
Dystrophy: Type 2C	♂ General: Unknown	60.00%	Unknown	Leukoencephalopathy	♂ Libyan Jewish: 1/40	>99%	<1/4000
	♂ Tunisian: Unknown	>99%	Unknown		o⁴ Turkish: Unknown	20.00%	Unknown
Limb-Girdle Muscular	♂ Brazilian: Unknown	64.29%	Unknown	Metachromatic	♂ European: 1/150	43.88%	1/267
Dystrophy: Type 2D	♂ European: 1/288	22.22%	1/370	Leukodystrophy	♂ Habbanite Jewish: 1/5	50.00%	1/10
	♂ Finnish: 1/150	95.45%	1/3300				
	♂ General: Unknown	26.09%	Unknown	Methylmalonic	o' General: 1/274	63.51%	1/751
Limb-Girdle Muscular	♂ Brazilian: Unknown	57.14%	Unknown	Acidemia: MMAA	O General. 1/ 2/4	03.5176	1//31
Dystrophy: Type 2E	♂ European: 1/539	25.00%	1/719	Related			
	♂ General: Unknown	12.50%	Unknown				
	♂ US Amish: Unknown	>99%	Unknown	Methylmalonic	♂ General: 1/396	71.25%	1/1377
Limb-Girdle Muscular	♂ Brazilian: Unknown	>99%	Unknown	Acidemia: MMAB			
Dystrophy: Type 2F	♂ General: Unknown	83.33%	Unknown	Related			
				Methylmalonic	♂ General: 1/177	43.62%	1/314
Limb-Girdle Muscular	♂ Brazilian: Unknown	34.62%	Unknown	Acidemia: MUT			
Dystrophy: Type 21	of Danish: 1/100	85.53%	1/691	Related			
	of General: Unknown	43.18%	Unknown	Methylmalonic	♂ Chinese: Unknown	61.39%	Unknown
	♂ German: 1/300	82.50%	1/1714	Aciduria and	of General: 1/159	65.74%	1/464
Lipoprotein Lipase	♂ French Canadian: 1/44	28.95%	1/62	Homocystinuria: Type	of Italian: Unknown	75.00%	Unknown
Deficiency	o General: Unknown	20.00%	Unknown	cblC	♂ Portuguese: Unknown	91.18%	Unknown
•				Mitochondrial	♂ Caucasus Jewish: 1/24	>99%	<1/2400
	-7.5 1 /10/	00.00%	1 /11 4 4	Complex I Deficiency:	- Cascassos		11/2100
Long-Chain 3- Hydroxyacyl-CoA	o" European: 1/126 o" General: 1/126	88.98% 56.25%	1/1144 1/288	NDUFS6 Related			
Dehydrogenase	O General. 17 120	30.2370	1/ 200				
Deficiency				Mitochondrial DNA	o" Ashkenazi Jewish: Unknown o" General: Unknown	>99%	Unknown Unknown
	-7 F I 1 /100	> 000/	-1 /10000	Depletion Syndrome: MNGIE Type	o' Iranian Jewish: Unknown	47.37% >99%	Unknown
Lysinuric Protein Intolerance	o" Finnish: 1/123 o" Italian: 1/120	>99% 45.45%	<1/12300 1/220	WIINGIL Type	O Indilidit Jewish. Ohkhowii	~ 7 7 /0	Olixilowii
inioleidice	♂ Japanese: 1/115	37.93%	1/185	Mitochondrial	♂ Iranian Jewish: Unknown	>99%	Unknown
	o'' North African: Unknown	>99%	Unknown	Myopathy and			
MTHFR Deficiency:	o' Bukharan Jewish: 1/39	>99%	<1/3900	Sideroblastic Anemia			
Severe	O Bokilaran Jewish. 17 37	- / / / / 0	17 3700	Mitochondrial	♂ Japanese: Unknown	60.00%	Unknown
				Trifunctional Protein			
				Deficiency: HADHB			
Malonyl-CoA Decarboxylase	♂ General: Unknown	33.33%	Unknown	Related			
Deficiency				Morquio Syndrome:	♂ Colombian: 1/257	85.00%	1/1713
2 011010110)				Туре А	♂ European: 1/257	20.97%	1/325
Maple Syrup Urine	♂ US Amish: 1/10	97.73%	1/440		of Finnish: 1/257	50.00%	1/514
Disease: Type 1A					♂ Latin American: 1/257	36.11%	1/402
				Morquio Syndrome:	o⊓ European: Unknown	83.33%	Unknown
Maple Syrup Urine	♂ Ashkenazi Jewish: 1/97	>99%	<1/9700	Туре В			
Disease: Type 1B	, , , , , , , , , , , , , , , , , , , ,		,				
				Mucolipidosis: Type	♂ General: 1/158	24.60%	1/210
M 1 C III:	~1.C 1.7.401	40.019/	1 /024	11/111	of Japanese: 1/252	51.25%	1/517
Maple Syrup Urine Disease: Type 2	o [™] General: 1/481 o [™] Norwegian: 1/481	42.31% 50.00%	1/834 1/962	,	♂ Korean: Unknown	30.00%	Unknown
Disease. Type 2	o' Turkish: 1/112	58.33%	1/269		o⁴ Portuguese: 1/176	50.00%	1/352
	.,		., ==:	Mucolipidosis: Type IV	♂ Ashkenazi Jewish: 1/97	96.15%	1/2522
Maple Syrup Urine	♂ Ashkenazi Jewish: 1/94	>99%	<1/9400	F = 1.00 1/F = 1/			,
Disease: Type 3	o" General: Unknown	68.75%	Unknown				
				Multiple Pterygium	♂ European: Unknown	41.67%	Unknown
Maroteaux-Lamy	♂ Argentinian: 1/274	75.00%	1/1096	Syndrome	of Middle Eastern: Unknown	60.00%	Unknown
Syndrome	of General: 1/388	61.54%	1/1009	,	o [™] Pakistani: Unknown	50.00%	Unknown
	♂ Spaniard: 1/274	29.17%	1/387	14 la 1 c "	3 . 11	05.550	1///
Meckel Syndrome:	♂ European: 1/212	72.22%	1/763	Multiple Sulfatase	♂ Ashkenazi Jewish: 1/320	95.00%	1/6400
Type 1	o' Finnish: 1/48	>99%	<1/4800	Deficiency	♂ General: 1/501	18.18%	1/612
				1			

Disease	Carrier Rate	Detection	Residual Risk
		Rate	
Muscle-Eye-Brain	o' European: Unknown	54.17% 97.37%	Unknown
Disease	o [™] Finnish: 1/112 o [™] General: Unknown	23.53%	1/4256 Unknown
	of United States: Unknown	25.00%	Unknown
Neveis		>99%	<1/3900
Navajo Neurohepatopathy	o⁴ Navajo: 1/39	299 /o	<1/3900
Nemaline Myopathy: NEB Related	♂ Ashkenazi Jewish: 1/108	>99%	<1/10800
Nephrotic Syndrome:	o Finnish: 1/45	76.84%	1/194
Type 1	od US Amish: 1/12	50.00%	1/24
Nephrotic Syndrome:	♂ Israeli-Arab: Unknown	55.56%	Unknown
Type 2	o" Pakistani: Unknown	20.00%	Unknown
	o' Polish: Unknown	16.18%	Unknown
	o⁴ Saudi Arabian: Unknown	72.73%	Unknown
Neuronal Ceroid- Lipofuscinosis: CLN5 Related	o ^a Finnish: 1∕101	>99%	<1/10100
Neuronal Ceroid-	o" European: 1/159	36.36%	1/250
Lipofuscinosis: CLN6	o' General: 1/159	59.52%	1/393
Related	o⁴ Portuguese: 1/128	81.00%	1/674
Neuronal Ceroid-	o⁴ Finnish: 1/135	>99%	<1/13500
Lipofuscinosis: CLN8	o" Italian: 1/212	33.33%	1/318
Related	o⊓ Turkish: Unknown	77.78%	Unknown
Neuronal Ceroid- Lipofuscinosis: MFSD8 Related	♂ General: 1/159	56.25%	1/363
Neuronal Ceroid-	♂ Finnish: 1/58	97.62%	1/2436
Lipofuscinosis: PPT1 Related	of General: 1/159	72.50%	1/578
Neuronal Ceroid-	o⁴ Canadian: 1/159	67.50%	1/489
Lipofuscinosis: TPP1	o' European: 1/159	75.00%	1/636
Related	♂ General: 1/159	50.00%	1/318
	o⊓ Newfoundlander: 1/43	85.29%	1/292
Niemann-Pick Disease: Type A	♂ Ashkenazi Jewish: 1/101	95.00%	1/2020
Niemann-Pick	♂ Czech: 1/276	83.33%	1/1656
Disease: Type B	o' General: Unknown	19.82%	Unknown
aud, po b	of North African: Unknown	86.67%	Unknown
	of Spaniard: Unknown	38.10%	Unknown
Niemann-Pick	o⁴ Acadian: Unknown	>99%	Unknown
Disease: Type C1	o' General: 1/194	15.60%	1/230
	o³ Japanese: Unknown	18.18%	Unknown
	o⁴ Portuguese: 1/194	25.00%	1/259
Niemann-Pick Disease: Type C2	♂ General: 1/194	75.00%	1/776
Nijmegen Breakage Syndrome	♂ Eastern European: 1/155	>99%	<1/15500

Disease	Carrier Rate	Detection	Residual Risk
		Rate	
Nonsyndromic Hearing Loss and Deafness: GJB2 Related	d' Ashkenazi Jewish: 1/20 d' Chinese: 1/100 d' European: 1/53 d' Ghanaian: Unknown d' Indian: Unknown d' Israeli: 1/16 d' Japanese: 1/75 d' Roma: Unknown d' United States: 1/34	95.83% 82.26% 82.47% 90.91% 66.98% 93.10% 75.00% >99% 45.22%	1/480 1/564 1/302 Unknown Unknown 1/232 1/300 Unknown 1/62
Nonsyndromic Hearing Loss and Deafness: LOXHD1 Related	♂ Ashkenazi Jewish: 1/180	>99%	<1/18000
Nonsyndromic Hearing Loss and Deafness: MYO 15A Related	o [®] Balinese: 1/6 o [®] Pakistani: 1/77	>99% 24.00%	<1/600 1/101
Oculocutaneous Albinism: Type 1	o ^a European: 1/101 o ^a Hutterite: 1/7 o ^a Moroccan Jewish: 1/30 o ^a Puerto Rican: Unknown	26.32% >99% 71.88% 91.67%	1/137 <1/700 1/107 Unknown
Oculocutaneous Albinism: Type 3	of Black South African: 1/47	94.74%	1/893
Oculocutaneous Albinism: Type 4	♂ Japanese: 1/146	58.33%	1/350
Omenn Syndrome: DCLRE1C Related	o ^a Apache: 1/29 o ^a Navajo: 1/29	>99% 97.22%	<1/2900 1/1044
Omenn Syndrome: RAG2 Related	♂ Arab: Unknown ♂ Non-Ashkenazi Jewish: Unknown	40.00% 70.00%	Unknown Unknown
Ornithine Translocase Deficiency	o ^a French Canadian: 1/20 o ^a Italian: Unknown o ^a Japanese: Unknown	95.00% 18.75% 60.00%	1/400 Unknown Unknown
Osteopetrosis: TCIRG1 Related	o [®] Ashkenazi Jewish: 1/350 o [®] Costa Rican: Unknown o [®] General: 1/251	>99% >99% 25.00%	<1/35000 Unknown 1/335
POLG Related Disorders: Autosomal Recessive	og Belgian: Unknown og Finnish: 1/140 og General: Unknown og Norwegian: Unknown	85.00% >99% 93.10% >99%	Unknown <1/14000 Unknown Unknown
Papillon-Lefevre Syndrome	♂ General: Unknown ♂ Indian Jewish: Unknown ♂ Turkish: Unknown	35.29% >99% 50.00%	Unknown Unknown Unknown
Pendred Syndrome	♂ European: 1/58 ♂ Japanese: Unknown ♂ Pakistani: Unknown	42.11% 45.83% 29.82%	1/100 Unknown Unknown
Persistent Mullerian Duct Syndrome: Type I	♂ General: Unknown	28.12%	Unknown
Persistent Mullerian Duct Syndrome: Type II	oੰ General: Unknown	78.12%	Unknown

Disease	Carrier Rate	Detection Rate	Residual Risk	Disease Carrier Rate		Detection Rate	Residual Risk
Phenylalanine Hydroxylase Deficiency	o" Arab: Unknown o" Ashkenazi Jewish: 1/224 o" Brazilian: 1/71	46.08% 44.44% 56.41%	Unknown 1/403 1/163	Primary Hyperoxaluria: Type 3	o [®] Ashkenazi Jewish: Unknown o [®] European: Unknown	>99% 25.00%	Unknown Unknown
	o" Chinese: 1/51 o" Cuban: 1/71 o" European: 1/51 o" French Canadian: 1/80	76.57% 69.64% 73.00% 76.27%	1/218 1/234 1/189 1/337	Progressive Familial Intrahepatic Cholestasis: Type 2	♂ European: Unknown	33.33%	Unknown
	o" Iranian: 1/31 o" Korean: 1/51 o" Non-Ashkenazi Jewish: Unknown	66.94% 57.58% 63.64% >99%	1/94 1/120 Unknown <1/3900	Propionic Acidemia: PCCA Related	o ^a Japanese: 1/102	86.67%	1/765
	o" Slovakian Gypsy: 1/39 o" Spanish Gypsy: 1/4 o" Taiwanese: Unknown o" US Amish: 1/16	93.75% 83.10% 86.84%	1/64 Unknown 1/122	Propionic Acidemia: PCCB Related	o' General: 1/182 o' Greenlandic Inuit: 1/16 o' Japanese: 1/102	42.86% 58.33% 78.00%	1/319 1/38 1/464
Polyglandular Autoimmune Syndrome: Type I	o" Finnish: 1/80 o" Iranian Jewish: 1/48 o" Italian: Unknown	90.48% >99% 27.78%	1/840 <1/4800 Unknown		o" Korean: Unknown o" Latin American: 1/182 o" Spaniard: 1/182	56.25% 75.00% 52.38%	Unknown 1/728 1/382
	o" Norwegian: 1/142 o" Sardinians: 1/61 o" United Kingdom: Unknown o" United States: Unknown	47.92% 81.82% 70.00% 65.62%	1/273 1/336 Unknown Unknown	Pseudocholinesterase Deficiency	o" General: 1/33 o" Iranian Jewish: 1/9	65.00% >99%	1/94 <1/900
Pontocerebellar Hypoplasia: EXOSC3 Related	ග් General: Unknown	83.33%	Unknown	Pycnodysostosis	o [®] Danish: Unknown	87.50%	Unknown
Pontocerebellar Hypoplasia: RARS2 Related	o™ Sephardic Jewish: Unknown	>99%	Unknown	Pyruvate Carboxylase Deficiency	o [®] General: 1/251 o [®] Native American: 1/10	62.50% >99%	1/669 <1/1000
Pontocerebellar Hypoplasia: SEPSECS Related	o™ Iraqi Jewish: 1/42	>99%	<1/4200	Pyruvate Dehydrogenase Deficiency	් General: Unknown	50.00%	Unknown
Pontocerebellar Hypoplasia: TSEN54 Related	o⁴ European: 1/250	95.65%	1/5750	Renal Tubular Acidosis and Deafness	o⁴ Colombian (Antioquia): Unknown	92.86%	Unknown
Pontocerebellar Hypoplasia: VPS53 Related	o⁴ Moroccan Jewish: 1/37	>99%	<1/3700	Retinal Dystrophies: RLBP1 Related	o³ Newfoundlander: 1/106 o³ Swedish: 1/84	>99% >99%	<1/10600 <1/8400
Pontocerebellar Hypoplasia: VRK 1 Related	o ^a Ashkenazi Jewish: 1∕225	>99%	<1/22500	Retinal Dystrophies: RPE65 Related	o [®] Dutch: 1/32 o [®] North African Jewish: Unknown	>99% >99%	<1/3200 Unknown
Primary Carnitine Deficiency	o" European: 1/101 o" Faroese: 1/9 o" General: Unknown	58.33% 53.95% 20.22%	1/242 1/20 Unknown	Retinitis Pigmentosa: CERKL Related	o [®] Yemenite Jewish: Unknown	>99%	Unknown
Primary Ciliary Dyskinesia: DNAI1 Related	of European: 1/211	52.38%	1/443	Retinitis Pigmentosa: DHDDS Related	O [®] Ashkenazi Jewish: 1∕91	>99%	<1/9100
Primary Ciliary Dyskinesia: DNAI2 Related	o" Ashkenazi Jewish: 1∕200	>99%	<1/20000	Retinitis Pigmentosa: FAM 161 A Related	oʻ' Ashkenazi Jewish: Unknown oʻ' Non-Ashkenazi Jewish: 1/32	>99% >99%	Unknown <1/3200
Primary Congenital Glaucoma	o" Moroccan: Unknown o" Saudi Arabian: 1/23 o" Turkish: 1/51	>99% 91.67%	Unknown 1/276	Rhizomelic Chondrodysplasia Punctata: Type I	o' General: 1/159	72.68%	1/582
Primary Hyperoxaluria: Type 1	o [®] Dutch: 1/174	70.59% 62.12% 52.68%	1/173 1/459 1/399	Salla Disease	o³ European: Unknown o³ Scandinavian: 1/200	33.33% 94.27%	Unknown 1/3491
Primary Hyperoxaluria: Type 2	o° General: Unknown	70.31%	Unknown	Sandhoff Disease of Argentinian: Unknown of Cypriot: 1/7 of Italian: Unknown of Spaniard: Unknown		95.45% 80.00% 29.17% 64.29%	Unknown 1/35 Unknown Unknown

Reprogenetics** Recombine[™] Genesis Genetics[™]


Disease	Carrier Rate	Detection Rate	Residual Risk	Disease	Carrier Rate	Detection Rate	Residual Risk
Sanfilippo Syndrome: Type A	o" Australasian: 1/119 o" Dutch: 1/78 o" European: 1/159 o" United States: 1/159	44.12% 63.10% 35.16% 32.14%	1/213 1/211 1/245 1/234	Tyrosine Hydroxylase Deficiency	o ^a General: Unknown	36.11%	Unknown
Sanfilippo Syndrome: Type B	o [®] Australasian: 1/230 o [®] Dutch: Unknown o [®] European: Unknown o [®] Japanese: 1/200	28.00% 42.31% 52.38% 81.82%	1/319 Unknown Unknown 1/1100	Tyrosinemia: Type I	of Ashkenazi Jewish: 1/158 of European: 1/166 of Finnish: 1/123 of French Canadian: 1/64 of Pakistani: Unknown	>99% 57.14% 97.22% 96.30% 92.86%	<1/15800 1/387 1/4428 1/1728 Unknown
Sanfilippo Syndrome: Type C	o" Dutch: 1/346 o" Greek: 1/415 o" Moroccan: Unknown o" Spaniard: Unknown	75.00% 25.00% 80.00% 64.29%	1/1384 1/553 Unknown Unknown	Tyrosinemia: Type II	♂ General: 1/251	40.00%	1/418
Sanfilippo Syndrome: Type D	o' General: 1/501	83.33%	1/3006	Usher Syndrome: Type 1B	d' European: 1/166 d' General: 1/143 d' North African: Unknown d' Spaniard: 1/152	39.29% 12.89% 66.67% 12.16%	1/273 1/164 Unknown 1/173
Short-Chain Acyl-CoA Dehydrogenase Deficiency	o [®] Ashkenazi Jewish: 1/15	65.00%	1/43	Usher Syndrome: Type 1C	o™ Acadian: 1/82 o™ French Canadian: 1/227	98.86% 83.33%	1/7216 1/1362
Sickle-Cell Anemia	♂ African American: 1/10 ♂ Hispanic American: 1/95	>99% >99%	<1/1000 <1/9500	Usher Syndrome: Type 1D	o⁴ General: 1/296	24.39%	1/391
Sjogren-Larsson Syndrome	o [®] Dutch: Unknown o [®] Swedish: 1/205	25.86% >99%	Unknown <1/20500	Usher Syndrome: Type 1F	o* Ashkenazi Jewish: 1∕126	93.75%	1/2016
Sly Syndrome	o⁴ General: 1/251	35.71%	1/390	Usher Syndrome: Type 2A	o³ European: 1/136 o³ French Canadian: Unknown	83.33% 40.00% 66.67%	Unknown 1/227 Unknown
Smith-Lemli-Opitz Syndrome	o [®] Brazilian: 1/94 o [®] European: 1/71 o [®] Japanese: Unknown o [®] United States: 1/70	79.17% 84.72% 71.43% 95.00%	1/451 1/465 Unknown 1/1400		of General: 1/136 of Japanese: Unknown of Non-Ashkenazi Jewish: Unknown of Scandinavian: 1/125	46.92% 55.56% 61.11% 39.22% 39.02%	1/256 Unknown Unknown 1/206 1/218
Stargardt Disease	♂ General: 1/51	18.05%	1/62	Usher Syndrome: Type	o [™] Spaniard: 1/133 o [™] Ashkenazi Jewish: 1/120 o [™] Finnish: 1/134	>99% >99%	<1/12000 <1/13400
Stuve-Wiedemann	o⁴ Emirati: 1/70	>99%	<1/7000		,		,
Syndrome Sulfate Transporter-	o³ General: Unknown	75.00% 95.83%	Unknown 1/1224	Very Long-Chain Acyl-CoA Dehydrogenase	o" General: 1/87	65.28%	1/251
Related Osteochondrodysplasi	o" Finnish: 1/51 o" General: 1/100	70.00%	1/333	Deficiency Walker-Warburg Syndrome	O [®] Ashkenazi Jewish: 1/150	>99%	<1/15000
Tay-Sachs Disease	♂ Argentinian: 1/280	82.35%	1/1587				
,	o" Ashkenazi Jewish: 1/29 o" Cajun: 1/30 o" European: 1/280 o" General: 1/280	99.53% >99% 25.35% 32.09%	1/6177 <1/3000 1/375 1/412	Werner Syndrome	o" General: 1/224 o" Japanese: 1/87	31.25% 65.62%	1/326 1/253
	o" Indian: Unknown o" Iraqi Jewish: 1/140 o" Japanese: 1/127 o" Moroccan Jewish: 1/110 o" Portuguese: 1/280 o" Spaniard: 1/280 o" United Kingdom: 1/161	85.71% 56.25% 82.81% 22.22% 92.31% 67.65% 71.43%	Unknown 1/320 1/739 1/141 1/3640 1/865 1/564	Wilson Disease	d' Ashkenazi Jewish: 1/100 d' Canarian: 1/26 d' Chinese: 1/51 d' Cuban: Unknown d' European: 1/93 d' Greek: 1/90 d' Korean: 1/88	>99% 68.75% 55.97% 22.22% 41.64% 44.94% 51.53%	<1/10000 1/83 1/116 Unknown 1/159 1/163 1/182
Trichohepatoenteric Syndrome: Type 1	o³ European: 1/434 o³ South Asian: 1/434	42.86% 66.67%	1/760 1/1302	Wolcott-Rallison Syndrome	o" Spaniard: 1/93 o" Saudi Arabian: Unknown	38.18% 66.67%	1/150 Unknown

Disease	Carrier Rate	Detection Rate	Residual Risk
Wolman Disease	♂ Iranian Jewish: 1/33	>99%	<1/3300
Xeroderma	of Japanese: 1/75	97.62%	1/3150
Pigmentosum: Group	o' North African: Unknown	87.50%	Unknown
A	♂ Tunisian: 1/112	90.91%	1/1232
Xeroderma	o⊓ Moroccan: 1/71	76.19%	1/298
Pigmentosum: Group C	o⁴ Tunisian: 1/51	>99%	<1/5100
Zellweger Spectrum	o European: 1/139	70.27%	1/468
Disorders: PEX1 Related	of General: 1/139	67.84%	1/432
Zellweger Spectrum Disorders: PEX10 Related	O [®] Japanese: Unknown	40.74%	Unknown
Zellweger Spectrum Disorders: PEX2 Related	♂ Ashkenazi Jewish: 1/123	>99%	<1/12300
Zellweger Spectrum Disorders: PEX6 Related	♂ General: 1/288	30.00%	1/411

Patient Information

Name: Donor 5617

Date of Birth
Sema4 ID:
Client ID:

Indication: Carrier Screening

Specimen Information

Specimen Type: Purified DNA Date Collected: 04/12/2022 Date Received: 04/19/2022 Final Report: 04/29/2022

Custom Carrier Screen (1 gene)

with Personalized Residual Risk

SUMMARY OF RESULTS AND RECOMMENDATIONS

Negative

Negative for all genes tested: SURF1
To view a full list of genes and diseases tested
please see Table 1 in this report

AR=Autosomal recessive: XL=X-linked

Recommendations

• Consideration of residual risk by ethnicity after a negative carrier screen is recommended for the other diseases on the panel, especially in the case of a positive family history for a specific disorder.

Test description

Fat C Nall

This patient was tested for the genes listed above using one or more of the following methodologies: target capture and short-read sequencing, long-range PCR followed by short-read sequencing, targeted genotyping, and/or copy number analysis. Please note that negative results reduce but do not eliminate the possibility that this individual is a carrier for one or more of the disorders tested. Please see Table 1 for a list of genes and diseases tested with the patient's personalized residual risk. If personalized residual risk is not provided, please see the complete residual risk table at **go.sema4.com/residualrisk**. Only known pathogenic or likely pathogenic variants are reported. This carrier screening test does not report likely benign variants and variants of uncertain significance (VUS). If reporting of likely benign variants and VUS are desired in this patient, please contact the laboratory at 800-298-6470, option 2 to request an amended report.

Fatimah Nahhas-Alwan, Ph.D., DABMGG, Laboratory Director

Laboratory Medical Consultant: George A. Diaz, M.D., Ph.D

Genes and diseases tested

The personalized residual risks listed below are specific to this individual. The complete residual risk table is available at **go.sema4.com/residualrisk**

Table 1: List of genes and diseases tested with detailed results

	Disease	Gene	Inheritance Pattern	Status	Detailed Summary
Θ	Negative				
	Leigh Syndrome (SURF1-Related)	SURF1	AR	Reduced Risk	Personalized Residual Risk: 1 in 4,400

AR=Autosomal recessive; XL=X-linked

Test methods and comments

Genomic DNA isolated from this patient was analyzed by one or more of the following methodologies, as applicable:

Fragile X CGG Repeat Analysis (Analytical Detection Rate >99%)

PCR amplification using Asuragen, Inc. AmplideX[®] FMR1 PCR reagents followed by capillary electrophoresis for allele sizing was performed. Samples positive for FMR1 CGG repeats in the premutation and full mutation size range were further analyzed by Southern blot analysis to assess the size and methylation status of the FMR1 CGG repeat.

Genotyping (Analytical Detection Rate >99%)

Multiplex PCR amplification and allele specific primer extension analyses using the MassARRAY[®] System were used to identify certain recurrent variants that are complex in nature or are present in low copy repeats. Rare sequence variants may interfere with assay performance.

Multiplex Ligation-Dependent Probe Amplification (MLPA) (Analytical Detection Rate >99%)

MLPA® probe sets and reagents from MRC-Holland were used for copy number analysis of specific targets versus known control samples. False positive or negative results may occur due to rare sequence variants in target regions detected by MLPA probes. Analytical sensitivity and specificity of the MLPA method are both 99%.

For alpha thalassemia, the copy numbers of the *HBA1* and *HBA2* genes were analyzed. Alpha-globin gene deletions, triplications, and the Constant Spring (CS) mutation are assessed. This test is expected to detect approximately 90% of all alpha-thalassemia mutations, varying by ethnicity. carriers of alpha-thalassemia with three or more *HBA* copies on one chromosome, and one or no copies on the other chromosome, may not be detected. With the exception of triplications, other benign alpha-globin gene polymorphisms will not be reported. Analyses of *HBA1* and *HBA2* are performed in association with long-range PCR of the coding regions followed by short-read sequencing.

For Duchenne muscular dystrophy, the copy numbers of all *DMD* exons were analyzed. Potentially pathogenic single exon deletions and duplications are confirmed by a second method. Analysis of *DMD* is performed in association with sequencing of the coding regions.

For congenital adrenal hyperplasia, the copy number of the *CYP21A2* gene was analyzed. This analysis can detect large deletions typically due to unequal meiotic crossing-over between *CYP21A2* and the pseudogene *CYP21A1P*. Classic 30-kb deletions make up approximately 20% of *CYP21A2* pathogenic alleles. This test may also identify certain point mutations in *CYP21A2* caused by gene conversion events between *CYP21A2* and *CYP21A1P*. Some carriers may not be identified by dosage sensitive methods as this testing cannot detect individuals with two copies (duplication) of the *CYP21A2* gene on one chromosome and loss of *CYP21A2* (deletion) on the other chromosome. Analysis of *CYP21A2* is performed in association with long-range PCR of the coding regions followed by short-read sequencing.

For spinal muscular atrophy (SMA), the copy numbers of the *SMN1* and *SMN2* genes were analyzed. The individual dosage of exons 7 and 8 as well as the combined dosage of exons 1, 4, 6 and 8 of *SMN1* and *SMN2* were assessed. Copy number gains and losses can be detected with this assay. Depending on ethnicity, 6 - 29 % of carriers will not be identified by dosage sensitive methods as this testing cannot detect individuals with two copies (duplication) of the *SMN1* gene on one chromosome and loss of *SMN1* (deletion) on the other chromosome (silent 2+0 carrier) or individuals that carry an intragenic mutation in *SMN1*. Please also note that 2% of individuals diagnosed with SMA have a causative *SMN1* variant that occurred *de novo*, and therefore cannot be picked up by carrier screening in the parents. Analysis of *SMN1* is performed in association with short-read sequencing of exons 2a-7, followed by confirmation using long-range PCR (described below).

The presence of the c.*3+80T>G (chr5:70,247,901T>G) variant allele in an individual with Ashkenazi Jewish or Asian ancestry is typically indicative of a duplication of *SMN1*. When present in an Ashkenazi Jewish or Asian individual with two copies of *SMN1*, c.*3+80T>G is likely indicative of a silent (2+0) carrier. In individuals with two copies of *SMN1* with African American, Hispanic or Caucasian ancestry, the presence or absence of c.*3+80T>G significantly increases or decreases, respectively, the likelihood of being a silent 2+0 silent carrier.

MLPA for Gaucher disease (*GBA*), cystic fibrosis (*CFTR*), and non-syndromic hearing loss (*GJB2/GJB6*) will only be performed if indicated for confirmation of detected CNVs. If *GBA* analysis was performed, the copy numbers of exons 1, 3, 4, and 6 - 10 of the *GBA* gene (of 11 exons total) were analyzed. If *CFTR* analysis was performed, the copy numbers of all 27 *CFTR* exons were analyzed. If *GJB2/GJB6* analysis was performed, the copy number of the two *GJB2* exons were analyzed, as well as the presence or absence of the two upstream deletions of the *GJB2* regulatory region, del(*GJB6*-D13S1830) and del(*GJB6*-D13S1854).

Next Generation Sequencing (NGS) (Analytical Detection Rate >95%)

NGS was performed on a panel of genes for the purpose of identifying pathogenic or likely pathogenic variants.

Agilent SureSelectTMXT Low Input technology was used with a custom capture library to target the exonic regions and intron/exon splice junctions of the relevant genes, as well as a number of UTR, intronic or promoter regions that contain previously reported mutations. Libraries were pooled and sequenced on the Illumina NovaSeq 9000 platform, using paired-end 100 bp reads. The sequencing data was analyzed using a custom bioinformatics algorithm designed and validated in house.

The coding exons and splice junctions of the known protein-coding RefSeq genes were assessed for the average depth of coverage (minimum of 20X) and data quality threshold values. Most exons not meeting a minimum of >20X read depth across the exon are further analyzed by Sanger sequencing. Please note that several genomic regions present difficulties in mapping or obtaining read depth >20X. These regions, which are described below, will not be reflexed to Sanger sequencing if the mapping quality or coverage is poor. Any variants identified during testing in these regions are confirmed by a second method and reported if determined to be pathogenic or likely pathogenic. However, as there is a possibility of false negative results within these regions, detection rates and residual risks for these genes have been calculated with the presumption that variants in these exons will not be detected, unless included in the MassARRAY[®] genotyping platform.

Exceptions: ABCD1 (NM_000033.3) exons 8 and 9; ACADSB (NM_001609.3) chr10:124,810,695-124,810,707 (partial exon 9); ADA (NM_000022.2) exon 1; ADAMTS2 (NM_014244.4) exon 1; AGPS (NM_003659.3) chrz:178,257,512-178,257,649 (partial exon 1); ALDH7A1 (NM_001182.4) chr5:125,911,150-125,911,163 (partial exon 7) and chr5:125,896,807-125,896,821 (partial exon 10); ALMS1 (NM_015120.4) chr2:73,612,990-73,613,041 (partial exon 1); APOPT1 (NM_ 032374.4) chr14:104,040,437-104,040,455 (partial exon 3); CDAN1 (NM_138477.2) exon 2; CEP152 (NM_014985.3) chr15;49,061,146-49,061,165 (partial exon 14) and exon 22; CEP290 (NM_025114.3) exon 5, exon 7, chr12:88,519,017-88,519,039 (partial exon 13), chr12:88,514,049-88,514,058 (partial exon 15), chr12:88,502,837-88,502,841 (partial exon 23), chr12:88,481,551-88,481,589 (partial exon 32), chr12:88,471,605-88,471,700 (partial exon 40); CFTR (NM_000492.3) exon 10; COL4A4 (NM_000092.4) chr2:227,942,604-227,942,619 (partial exon 25); COX10 (NM_001303.3) exon 6; CYP11B1 (NM_000497.3) exons 3-7; CYP11B2 (NM_000498.3) exons 3-7; DNAI2 (NM_023036.4) chr17:72,308,136-72,308,147 (partial exon 12); DOK7 (NM_173660.4) chr4:3,465,131-3,465,161 (partial exon 1) and exon 2; DUOX2 (NM_014080.4) exons 6-8; EIF2AK3 (NM_004836.5 exon 8; EVC (NM_153717.2) exon 1; F5 (NM_000130.4) chr1:169,551,662-169,551,679 (partial exon 2); FH (NM_000143.3) exon 1; GAMT (NM_000156.5 exon 1; GLDC (NM_000170.2) exon 1; GNPTAB (NM_024312.4) chr17:4,837,000-4,837,400 (partial exon 2); GNPTG (NM_032520.4) exon 1; GHR (NM_000163.4) exon 3; GYS2 (NM_021957.3) chr12:21,699,370-21,699,409 (partial exon 12); HGSNAT (NM_152419.2) exon 1; IDS (NM_000202.6) exon 3; ITGB4 (NM_000213.4) chr17:73,749,976-73,750,060 (partial exon 33); JAK3 (NM_000215.3) chr19:17,950,462-17,950,483 (partial exon 10); LIFR (NM_002310.5 exon 19; LMBRD1 (NM_018368.3) chr6:70,459,226-70,459,257 (partial exon 5), chr6:70,447,828-70,447,836 (partial exon 7) and exon 12; LYST (NM_000081.3) chr1:235,944,158-235,944,176 (partial exon 16) and chr1:235,875,350-235,875,362 (partial exon 43); MLYCD (NM_012213.2) chr16:83,933,242-83,933,282 (partial exon 1); MTR (NM_000254.2) chr1 237,024,418-237,024,439 (partial exon 20) and chr1:237,038,019-237,038,029 (partial exon 24); NBEAL2 (NM_015175.2) chr3 47,021,385-47,021,407 (partial exon 1); NEB (NM_001271208.1 exons 82-105; NPC1 (NM_000271.4) chr18:21,123,519-21,123,538 (partial exon 14); NPHP1 (NM_000272.3) chr2:110,937,251-110,937,263 (partial exon 3); OCRL (NM_000276.3) chrX:128,674,450-128,674,460 (partial exon 1); PHKB (NM_000293.2) exon 1 and chr16:47,732,498-47,732,504 (partial exon 30); PIGN (NM_176787.4) chr18:59,815,547-59,815,576 (partial exon 8); PIP5K1C (NM_012398.2) exon 1 and chr19:3637602-3637616 (partial exon 17); POU1F1 (NM_000306.3) exon 5; PTPRC (NM_002838.4) exons 11 and 23; PUS1 (NM_025215.5 chr12:132,414,446-132,414,532 (partial exon 2); RPGRIP1L (NM_015272.2) exon 23; SGSH (NM_000199.3) chr17:78,194,022-78,194,072 (partial exon 1); SLC6A8 (NM_005629.3) exons 3 and 4; ST3GAL5 (NM_003896.3) exon 1; SURF1 (NM_003172.3) chrg:136,223,269-136,223,307 (partial exon 1); TRPM6 (NM_017662.4) chrg:77,362,800-77,362,811 (partial exon 31); TSEN54 (NM_207346.2) exon 1; TYR (NM_000372.4) exon 5; VWF (NM_000552.3) exons 24-26, chr12:6,125,675-6,125,684 (partial exon 30), chr12:6,121,244-6,121,265 (partial exon 33), and exon 34.

This test will detect variants within the exons and the intron-exon boundaries of the target regions. Variants outside these regions may not be detected, including, but not limited to, UTRs, promoters, and deep intronic areas, or regions that fall into the Exceptions mentioned above. This technology may not detect all small insertion/deletions and is not diagnostic for repeat expansions and structural genomic variation. In addition, a mutation(s) in a gene not included on the panel could be present in this patient.

Variant interpretation and classification was performed based on the American College of Medical Genetics Standards and Guidelines for the Interpretation of Sequence Variants (Richards et al., 2015). All potentially pathogenic variants may be confirmed by either a specific genotyping assay or Sanger sequencing, if indicated. Any benign variants, likely benign variants or variants of uncertain significance identified during this analysis will not be reported.

Next Generation Sequencing for SMN1

Exonic regions and intron/exon splice junctions of *SMN1* and *SMN2* were captured, sequenced, and analyzed as described above. Any variants located within exons 2a-7 and classified as pathogenic or likely pathogenic were confirmed to be in either *SMN1* or *SMN2* using gene-specific long-range PCR analysis followed by Sanger sequencing. Variants located in exon 1 cannot be accurately assigned to either *SMN1* or *SMN2* using our current methodology, and so these variants are considered to be of uncertain significance and are not reported.

Copy Number Variant Analysis (Analytical Detection Rate >95%)

Large duplications and deletions were called from the relative read depths on an exon-by-exon basis using a custom exome hidden Markov model (XHMM) algorithm. Deletions or duplications determined to be pathogenic or likely pathogenic were confirmed by either a custom arrayCGH platform, quantitative PCR, or MLPA (depending on CNV size and gene content). While this algorithm is designed to pick up deletions and duplications of 2 or more exons in length, potentially pathogenic single-exon CNVs will be confirmed and reported, if detected.

Exon Array (Confirmation method) (Accuracy >99%)

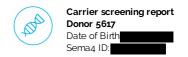
The customized oligonucleotide microarray (Oxford Gene Technology) is a highly-targeted exon-focused array capable of detecting medically relevant microdeletions and microduplications at a much higher resolution than traditional aCGH methods. Each array matrix has approximately 180,000 60-mer oligonucleotide probes that cover the entire genome. This platform is designed based on human genome NCBI Build 37 (hg19) and the CGH probes are enriched to target the exonic regions of the genes in this panel.

Quantitative PCR (Confirmation method) (Accuracy >99%)

Th relative quantification PCR is utilized on a Roche Universal Library Probe (UPL) system, which relates the PCR signal of the target region in one group to another. To test for genomic imbalances, both sample DNA and reference DNA is amplified with primer/probe sets that specific to the target region and a control region with known genomic copy number. Relative genomic copy numbers are calculated based on the standard $\Delta\Delta$ Ct formula.

Long-Range PCR (Analytical Detection Rate >99%)

Long-range PCR was performed to generate locus-specific amplicons for *CYP21A2*, *HBA1* and *HBA2* and *GBA*. The PCR products were then prepared for short-read NGS sequencing and sequenced. Sequenced reads were mapped back to the original genomic locus and run through the bioinformatics pipeline. If indicated, copy number from MLPA was correlated with the sequencing output to analyze the results. For *CYP21A2*, a certain percentage of healthy individuals carry a duplication of the *CYP21A2* gene, which has no clinical consequences. In cases where two copies of a gene are located on the same chromosome in tandem, only the second copy will be amplified and assessed for potentially pathogenic variants, due to size limitations of the PCR reaction. However, because these alleles contain at least two copies of the *CYP21A2* gene in tandem, it is expected that this patient has at least one functional gene in the tandem allele and this patient is therefore less likely to be a carrier. When an individual carries both a duplication allele and a pathogenic variant, or multiple pathogenic variants, the current analysis may not be able to determine the phase (cis/trans configuration) of the *CYP21A2* alleles identified. Family studies may be required in certain scenarios where phasing is required to determine the carrier status.


Residual Risk Calculations

Carrier frequencies and detection rates for each ethnicity were calculated through the combination of internal curations of >30,000 variants and genomic frequency data from >138,000 individuals across seven ethnic groups in the gnomAD database. Additional variants in HGMD and novel deleterious variants were also incorporated into the calculation. Residual risk values are calculated using a Bayesian analysis combining the *a priori* risk of being a pathogenic mutation carrier (carrier frequency) and the detection rate. They are provided only as a guide for assessing approximate risk given a negative result, and values will vary based on the exact ethnic background of an individual. This report does not represent medical advice but should be interpreted by a genetic counselor, medical geneticist or physician skilled in genetic result interpretation and the relevant medical literature.

Personalized Residual Risk Calculations

Agilent SureSelectTMXT Low-Input technology was utilized in order to create whole-genome libraries for each patient sample. Libraries were then pooled and sequenced on the Illumina NovaSeq platform. Each sequencing lane was multiplexed to achieve 0.4-2x genome coverage, using paired-end 100 bp reads. The sequencing data underwent ancestral analysis using a customized, licensed bioinformatics algorithm that was validated in house. Identified sub-ethnic groupings were binned into one of 7 continental-level groups (African, East Asian, South Asian, Non-Finnish European, Finnish, Native American, and Ashkenazi Jewish) or, for those ethnicities that matched poorly to the continental-level groups, an 8th "unassigned" group, which were then used to select residual risk values for each gene. For individuals belonging to multiple high-

level ethnic groupings, a weighting strategy was used to select the most appropriate residual risk. For genes that had insufficient data to calculate ethnic-specific residual risk values, or for sub-ethnic groupings that fell into the "unassigned" group, a "worldwide" residual risk was used. This "worldwide" residual risk was calculated using data from all available continental-level groups.

Sanger Sequencing (Confirmation method) (Accuracy >99%)

Sanger sequencing, as indicated, was performed using BigDye Terminator chemistry with the ABI 3730 DNA analyzer with target specific amplicons. It also may be used to supplement specific guaranteed target regions that fail NGS sequencing due to poor quality or low depth of coverage (<20 reads) or as a confirmatory method for NGS positive results. False negative results may occur if rare variants interfere with amplification or annealing.

Tay-Sachs Disease (TSD) Enzyme Analysis (Analytical Detection Rate >98%)

Hexosaminidase activity and Hex A% activity were measured by a standard heat-inactivation, fluorometric method using artificial 4-MU-β-N-acetyl glucosaminide (4-MUG) substrate. This assay is highly sensitive and accurate in detecting Tay-Sachs carriers and individuals affected with TSD. Normal ranges of Hex A% activity are 55.0-72.0 for white blood cells and 58.0-72.0 for plasma. It is estimated that less than 0.5% of Tay-Sachs carriers have non-carrier levels of percent Hex A activity, and therefore may not be identified by this assay. In addition, this assay may detect individuals that are carriers of or are affected with Sandhoff disease. False positive results may occur if benign variants, such as pseudodeficiency alleles, interfere with the enzymatic assay. False negative results may occur if both *HEXA* and *HEXB* pathogenic or pseudodeficiency variants are present in the same individual.

Please note these tests were developed and their performance characteristics were determined by Sema4 Opco, Inc. They have not been cleared or approved by the FDA. These analyses generally provide highly accurate information regarding the patient's carrier or affected status. Despite this high level of accuracy, it should be kept in mind that there are many potential sources of diagnostic error, including misidentification of samples, polymorphisms, or other rare genetic variants that interfere with analysis. Families should understand that rare diagnostic errors may occur for these reasons.

SELECTED REFERENCES

Carrier Screening

Grody W et al. ACMG position statement on prenatal/preconception expanded carrier screening. Genet Med. 2013 15:482-3.

Fragile X syndrome:

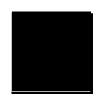
Chen L et al. An information-rich CGG repeat primed PCR that detects the full range of Fragile X expanded alleles and minimizes the need for Southern blot analysis. *J Mol Diag* 2010 12:589-600.

Spinal Muscular Atrophy:

Luo M et al. An Ashkenazi Jewish SMN1 haplotype specific to duplication alleles improves pan-ethnic carrier screening for spinal muscular atrophy. *Genet Med.* 2014 16:149-56.

Ashkenazi Jewish Disorders:

Scott SA et al. Experience with carrier screening and prenatal diagnosis for sixteen Ashkenazi Jewish Genetic Diseases. *Hum. Mutat.* 2010 31:1-11.


Duchenne Muscular Dystrophy:

Flanigan KM et al. Mutational spectrum of DMD mutations in dystrophinopathy patients: application of modern diagnostic techniques to a large cohort. *Hum Mutat.* 2009 30:1657-66.

Variant Classification:

Richards S et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. *Genet Med.* 2015 May;17(5):405-24 Additional disease-specific references available upon request.

Patient Information:
5617, Donor
DOB:
Sex: M
MR#: 5617
Patient#:

Accession:

Test#:
Order#:
Ext Test#:
Ext Order#:
Specimen Type: DNA
Collected: Feb 23,2023

Collected: Feb 23,2023
Received Date: Mar 08,2023
Authorized Date: Mar 11,2023

Physician:
Seitz, Suzanne
ATTN: Seitz, Suzanne
Fairfax Cryobank
3015 Williams Drive
Fairfax, VA 22031

Phone: Fax: Laboratory:
Fulgent Genetics
CAP#: 8042697
CLIA#: 05D2043189
Laboratory Director:
Dr. Hanlin (Harry) Gao
Report Date: Mar 30,2023

Final Report

TEST PERFORMED

LIG4 Single Gene

(1 Gene Panel: LIG4; gene sequencing with deletion and duplication analysis)

RESULTS:

No clinically significant sequence or copy-number variants were identified in the submitted specimen.

A negative result does not rule out the possibility of a genetic predisposition nor does it rule out any pathogenic mutations of the sort not queried by this test or in areas not reliably assessed by this test.

INTERPRETATION:

Notes and Recommendations:

- As requested, this report only includes variants classified as Pathogenic, Likely Pathogenic, or Risk Allele at the time of analysis. If detected, this report does not include variants classified as of uncertain significance.
- Gene specific notes and limitations may be present. See below.
- These results should be interpreted in the context of this individual's clinical findings, biochemical profile, and family history.
- Genetic counseling is recommended. Available genetic counselors and additional resources can be found at the National Society of Genetic Counselors (NSGC; https://www.nsgc.org)
- Guide to Interpreting Genomic Reports: A Genomics Toolkit (CSER Consortium; February 2017)
 (https://www.genome.gov/For-Health-Professionals/Provider-Genomics-Education-Resources#hep)

GENES TESTED:

LIG4 Single Gene

1 genes tested (100.00% at >20x).

LIG4

Gene Specific Notes and Limitations

No gene specific limitations apply to the genes on the tested panel.

Patient: 5617, Donor; Sex: M; DOB: MR#: 5617 Accession#: FD Patient#:

DocID: PAGE 1 of 3

METHODS:

Genomic DNA was isolated from the submitted specimen indicated above (if cellular material was submitted). DNA was barcoded, and enriched for the coding exons of targeted genes using hybrid capture technology. Prepared DNA libraries were then sequenced using a Next Generation Sequencing technology. Following alignment to the human genome reference sequence (assembly GRCh37), variants were detected in regions of at least 10x coverage. For this specimen, 100.00% and 100.00% of coding regions and splicing junctions of genes listed had been sequenced with coverage of at least 10x and 20x, respectively, by NGS or by Sanger sequencing. The remaining regions did not have 10x coverage, and were not evaluated. Variants were interpreted manually using locus specific databases, literature searches, and other molecular biological principles. To minimize false positive results, any variants that do not meet internal quality standards are confirmed by Sanger sequencing. Variants classified as pathogenic, likely pathogenic, or risk allele which are located in the coding regions and nearby intronic regions (+/- 20bp) of the genes listed above are reported. Variants outside these intervals may be reported but are typically not guaranteed. When a single pathogenic or likely pathogenic variant is identified in a clinically relevant gene with autosomal recessive inheritance, the laboratory will attempt to ensure 100% coverage of coding sequences either through NGS or Sanger sequencing technologies ("fill-in"). All genes listed were evaluated for large deletions and/or duplications. However, single exon deletions or duplications will not be detected in this assay, nor will copy number alterations in regions of genes with significant pseudogenes. Putative deletions or duplications identified by NGS are confirmed by an orthogonal method (qPCR or MLPA), unless exceeding an internally specified and validated quality score, beyond which deletions and duplications are considered real without further confirmation. New York patients: diagnostic findings are confirmed by Sanger, MLPA, or qPCR; exception SNV variants in genes for which confirmation of NGS results has been performed >=10 times may not be confirmed if identified with high quality by NGS. Bioinformatics: The Fulgent Germline v2019.2 pipeline was used to analyze this specimen.

LIMITATIONS:

These test results and variant interpretation are based on the proper identification of the submitted specimen, accuracy of any stated familial relationships, and use of the correct human reference sequences at the queried loci. In very rare instances, errors may result due to mix-up or co-mingling of specimens. Positive results do not imply that there are no other contributors, genetic or otherwise, to this individual's phenotype, and negative results do not rule out a genetic cause for the indication for testing. Official gene names change over time. Fulgent uses the most up to date gene names based on HUGO Gene Nomenclature Committee (https://www.genenames.org) recommendations. If the gene name on report does not match that of ordered gene, please contact the laboratory and details can be provided. Result interpretation is based on the available clinical and family history information for this individual, collected published information, and Alamut annotation available at the time of reporting. This assay is designed and validated for detection of germline variants only. It is not designed or validated for the detection of low-level mosaicism or somatic mutations. This assay will not detect certain types of genomic aberrations such as translocations, inversions, or repeat expansions (eq. trinucleotide or hexanucleotide repeat expansion). DNA alterations in regulatory regions or deep intronic regions (greater than 20bp from an exon) may not be detected by this test. Unless otherwise indicated, no additional assays have been performed to evaluate genetic changes in this specimen. There are technical limitations on the ability of DNA sequencing to detect small insertions and deletions. Our laboratory uses a sensitive detection algorithm, however these types of alterations are not detected as reliably as single nucleotide variants. Rarely, due to systematic chemical, computational, or human error, DNA variants may be missed. Although next generation sequencing technologies and our bioinformatics analysis significantly reduce the confounding contribution of pseudogene sequences or other highly-homologous sequences, sometimes these may still interfere with the technical ability of the assay to identify pathogenic alterations in both sequencing and deletion/duplication analyses. Deletion/duplication analysis can identify alterations of genomic regions which are two or more contiguous exons in size; single exon deletions or duplications may occasionally be identified, but are not routinely detected by this test. When novel DNA duplications are identified, it is not possible to discern the genomic location or orientation of the duplicated segment, hence the effect of the duplication cannot be predicted. Where deletions are detected, it is not always possible to determine whether the predicted product will remain in-frame or not. Unless otherwise indicated, deletion/duplication analysis has not been performed in regions that have been seguenced by Sanger.

SIGNATURE:

Zhenbin Chen, Ph.D., CGMBS, FACMG on 3/30/2023 10:45 PM PDT

Electronically signed

Patient: 5617, Donor; Sex: M; DOB: MR#: 5617 Accession#: FD Patient#: ; PAGE 2 of 3

DISCLAIMER:

This test was developed and its performance characteristics determined by Fulgent Genetics. It has not been cleared or approved by the FDA. The laboratory is regulated under CLIA as qualified to perform high-complexity testing. This test is used for clinical purposes. It should not be regarded as investigational or for research. Since genetic variation, as well as systematic and technical factors, can affect the accuracy of testing, the results of testing should always be interpreted in the context of clinical and familial data. For assistance with interpretation of these results, healthcare professionals may contact us directly at (626) 350-0537 or info@fulgentgenetics.com. It is recommended that patients receive appropriate genetic counseling to explain the implications of the test result, including its residual risks, uncertainties and reproductive or medical options.

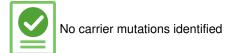
Patient: 5617, Donor; Sex: M;

DOB: MR#: 5617

Accession#: FD Patient#:
DocID: PAGE 3 of 3

Patient Information:
5617, Donor
DOB:
Sex: M
MR#: 5617
Patient#:

Partner Information:
Not Tested


Accession: N/A Physician:
Seitz, Suzanne
ATTN: Seitz, Suzanne
Fairfax Cryobank
3015 Williams Drive
Fairfax. VA 22031

Laboratory:
Fulgent Genetics
CAP#: 8042697
CLIA#: 05D2043189
Laboratory Director:
Dr. Hanlin (Harry) Gao
Report Date: Apr 23,2023

Accession:
Test#:

Specimen Type: DNA Collected: Feb 23,2023

FINAL RESULTS

TEST PERFORMED

Custom Beacon Carrier Screening Panel

(2 Gene Panel: CNGB1 and SLC22A5; gene sequencing with deletion and duplication analysis)

INTERPRETATION:

Notes and Recommendations:

- No carrier mutations were identified in the submitted specimen. A negative result does not rule out the possibility of a genetic
 predisposition nor does it rule out any pathogenic mutations in areas not assessed by this test or in regions that were covered
 at a level too low to reliably assess. Also, it does not rule out mutations that are of the sort not queried by this test; see
 Methods and Limitations for more information.
- This carrier screening test does not screen for all possible genetic conditions, nor for all possible mutations in every gene tested. Individuals with negative test results may still have up to a 3-4% risk to have a child with a birth defect due to genetic and/or environmental factors.
- Patients may wish to discuss any carrier results with blood relatives, as there is an increased chance that they are also carriers. These results should be interpreted in the context of this individual's clinical findings, biochemical profile, and family history.
- X-linked genes are not routinely analyzed for male carrier screening tests. Gene specific notes and limitations may be present. See below.
- This report does not include variants of uncertain significance.
- Genetic counseling is recommended. Available genetic counselors and additional resources can be found at the National Society of Genetic Counselors (NSGC; https://www.nsgc.org)

Accession#: FD Patient#:

DocID: PAGE 1 of 4

Patient: 5617, Donor; Sex: M; DOB: MR#: 5617

GENES TESTED:

Custom Beacon Carrier Screening Panel - 2 Genes

This analysis was run using the Custom Beacon Carrier Screening Panel gene list. 2 genes were tested with 100.00% of targets sequenced at >20x coverage. For more gene specific information and assistance with residual risk calculation, see the SUPPLEMENTAL TABLE.

CNGB1 SLC22A5

METHODS:

Genomic DNA was isolated from the submitted specimen indicated above (if cellular material was submitted). DNA was barcoded, and enriched for the coding exons of targeted genes using hybrid capture technology. Prepared DNA libraries were then sequenced using a Next Generation Sequencing technology. Following alignment to the human genome reference sequence (assembly GRCh37), variants were detected in regions of at least 10x coverage. For this specimen, 100,00% and 100,00% of coding regions and splicing junctions of genes listed had been sequenced with coverage of at least 10x and 20x, respectively, by NGS or by Sanger sequencing. The remaining regions did not have 10x coverage, and were not evaluated. Variants were interpreted manually using locus specific databases, literature searches, and other molecular biological principles. To minimize false positive results, any variants that do not meet internal quality standards are confirmed by Sanger sequencing. Variants classified as pathogenic, likely pathogenic, or risk allele which are located in the coding regions and nearby intronic regions (+/- 20bp) of the genes listed above are reported. Variants outside these intervals may be reported but are typically not guaranteed. When a single pathogenic or likely pathogenic variant is identified in a clinically relevant gene with autosomal recessive inheritance, the laboratory will attempt to ensure 100% coverage of coding sequences either through NGS or Sanger sequencing technologies ("fill-in"). All genes listed were evaluated for large deletions and/or duplications. However, single exon deletions or duplications will not be detected in this assay, nor will copy number alterations in regions of genes with significant pseudogenes. Putative deletions or duplications are analyzed using Fulgent Germline proprietary pipeline for this specimen. Bioinformatics: The Fulgent Germline v2019.2 pipeline was used to analyze this specimen.

LIMITATIONS:

General Limitations

These test results and variant interpretation are based on the proper identification of the submitted specimen, accuracy of any stated familial relationships, and use of the correct human reference sequences at the queried loci. In very rare instances, errors may result due to mix-up or co-mingling of specimens. Positive results do not imply that there are no other contributors, genetic or otherwise, to future pregnancies, and negative results do not rule out the genetic risk to a pregnancy. Official gene names change over time. Fulgent uses the most up to date gene names based on HUGO Gene Nomenclature Committee (https://www.genenames.org) recommendations. If the gene name on report does not match that of ordered gene, please contact the laboratory and details can be provided. Result interpretation is based on the available clinical and family history information for this individual, collected published information, and Alamut annotation available at the time of reporting. This assay is not designed or validated for the detection of low-level mosaicism or somatic mutations. This assay will not detect certain types of genomic aberrations such as translocations, inversions, or repeat expansions other than specified genes. DNA alterations in regulatory regions or deep intronic regions (greater than 20bp from an exon) may not be detected by this test. Unless otherwise indicated, no additional assays have been performed to evaluate genetic changes in this specimen. There are technical limitations on the ability of DNA sequencing to detect small insertions and deletions. Our laboratory uses a sensitive detection algorithm, however these types of alterations are not detected as reliably as single nucleotide variants. Rarely, due to systematic chemical, computational, or human error, DNA variants may be missed. Although next generation sequencing technologies and our bioinformatics analysis significantly reduce the confounding contribution of pseudogene sequences or other highly-homologous sequences, sometimes these may still interfere with the technical ability of the assay to identify pathogenic alterations in both sequencing and deletion/duplication analyses. Deletion/duplication analysis can identify alterations of genomic regions which include one whole gene (buccal swab specimens and whole blood specimens) and are two or more contiguous exons in size (whole blood specimens only); single exon deletions or duplications may occasionally be identified, but are not routinely detected by this test. When novel DNA duplications are identified, it is not possible to discern the genomic location or orientation of the duplicated segment, hence the effect of the duplication cannot be predicted. Where deletions are detected, it is not always possible to determine whether the predicted product will remain in-frame or not. Unless otherwise indicated, deletion/duplication analysis has not been performed in regions that have been sequenced by Sanger.

Patient: 5617, Donor; Sex: M;

DOB: MR#: 5617

Accession#: DocID: PAGE 2 of 4

Gene Specific Notes and Limitations

No gene specific limitations apply to the genes on the tested panel.

SIGNATURE:

Zhenbin Chen, Ph.D., CGMBS, FACMG on 4/23/2023 09:45 AM PDT Electronically signed

DISCLAIMER:

This test was developed and its performance characteristics determined by **Fulgent Genetics**. It has not been cleared or approved by the FDA. The laboratory is regulated under CLIA as qualified to perform high-complexity testing. This test is used for clinical purposes. It should not be regarded as investigational or for research. Since genetic variation, as well as systematic and technical factors, can affect the accuracy of testing, the results of testing should always be interpreted in the context of clinical and familial data. For assistance with interpretation of these results, healthcare professionals may contact us directly at (626) 350-0537 or info@fulgentgenetics.com. It is recommended that patients receive appropriate genetic counseling to explain the implications of the test result, including its residual risks, uncertainties and reproductive or medical options.

Patient: 5617, Donor; Sex: M;

DOB: MR#: 5617

Accession#: DocID: PAGE 3 of 4

	Supplemental Table								
Gene	Condition	Inheritance Ethnicity			Detection Rate	Post-test Carrier Probability*	Residual Risk*		
CNGB1	Retinitis Pigmentosa, CNGB1-related	AR	General Population	1 in 296	99%	1 in 29,501	<1 in 10 million		
SLC22A5	Systemic primary carnitine deficiency	AR	General Population African/African American Population East Asian Population Faroese Population Pacific Islander Population South Asian/Indian Population	1 in 129 1 in 86 1 in 77 1 in 9 1 in 37 1 in 51	99% 99% 99% 99% 99%	1 in 12,801 1 in 8,501 1 in 7,601 1 in 801 1 in 3,601 1 in 5,001	1 in 6,605,316 1 in 2,924,344 1 in 2,341,108 1 in 28,836 1 in 532,948 1 in 1,020,204		

^{*} For genes that have tested negative

Abbreviations: AR, autosomal recessive; XL, X-linked

Patient: 5617, Donor; Sex: M;Accession#:FD Patient#:;DOB:MR#: 5617DocID:PAGE 4 of 4

[†] The carrier frequency for heterozygous alpha thalassemia carriers ($\alpha\alpha/\alpha$ -) is described in rows marked with a dagger symbol. The carrier frequency for alpha thalassemia trait cis ($\alpha\alpha/$ - -) is 1 in 1000.

Patient Information:

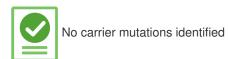
5617, Donor DOB:

Sex: M MR#: 5617 Patient#

Accession:

Test#: Specimen Type: DNA Collected: Feb 23,2023 Partner Information:
Not Tested

Seitz, Suzanne
ATTN: Seitz, Suzanne
Fairfax Cryobank
3015 Williams Drive
Fairfax, VA 22031


Physician:

Laboratory:
Fulgent Genetics
CAP#: 8042697
CLIA#: 05D2043189
Laboratory Director:
Dr. Hanlin (Harry) Gao

Report Date: Jun 07,2023

Accession: N/A

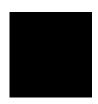
FINAL RESULTS

TEST PERFORMED

Custom Beacon Carrier Screening Panel

(2 Gene Panel: *CEP290 and CYP21A2*; gene sequencing with deletion and duplication analysis)

INTERPRETATION:


Notes and Recommendations:

- No carrier mutations were identified in the submitted specimen. A negative result does not rule out the possibility of a genetic
 predisposition nor does it rule out any pathogenic mutations in areas not assessed by this test or in regions that were covered
 at a level too low to reliably assess. Also, it does not rule out mutations that are of the sort not queried by this test; see Methods
 and Limitations for more information.
- This carrier screening test does not screen for all possible genetic conditions, nor for all possible mutations in every gene tested. Individuals with negative test results may still have up to a 3-4% risk to have a child with a birth defect due to genetic and/or environmental factors.
- Patients may wish to discuss any carrier results with blood relatives, as there is an increased chance that they are also carriers.
 These results should be interpreted in the context of this individual's clinical findings, biochemical profile, and family history.
- X-linked genes are not routinely analyzed for male carrier screening tests. Gene specific notes and limitations may be present.
 See below.
- This report does not include variants of uncertain significance.
- Genetic counseling is recommended. Available genetic counselors and additional resources can be found at the National Society of Genetic Counselors (NSGC; https://www.nsgc.org)

Accession#: FD Patient#:
DocID: ; PAGE 1 of 4

Patient: 5617, Donor; Sex: M; DOB: MR#: 5617

GENES TESTED:

Custom Beacon Carrier Screening Panel - 2 Genes

This analysis was run using the Custom Beacon Carrier Screening Panel gene list. 2 genes were tested with 100.0% of targets sequenced at >20x coverage. For more gene specific information and assistance with residual risk calculation, see the SUPPLEMENTAL TABLE.

CEP290, CYP21A2

METHODS:

Genomic DNA was isolated from the submitted specimen indicated above (if cellular material was submitted). DNA was barcoded, and enriched for the coding exons of targeted genes using hybrid capture technology. Prepared DNA libraries were then sequenced using a Next Generation Sequencing technology. Following alignment to the human genome reference sequence (assembly GRCh37), variants were detected in regions of at least 10x coverage. For this specimen, 100.00% and 100.00% of coding regions and splicing junctions of genes listed had been seguenced with coverage of at least 10x and 20x, respectively, by NGS or by Sanger sequencing. The remaining regions did not have 10x coverage, and were not evaluated. Variants were interpreted manually using locus specific databases, literature searches, and other molecular biological principles. To minimize false positive results, any variants that do not meet internal quality standards are confirmed by Sanger sequencing. Variants classified as pathogenic, likely pathogenic, or risk allele which are located in the coding regions and nearby intronic regions (+/- 20bp) of the genes listed above are reported. Variants outside these intervals may be reported but are typically not guaranteed. When a single pathogenic or likely pathogenic variant is identified in a clinically relevant gene with autosomal recessive inheritance, the laboratory will attempt to ensure 100% coverage of coding sequences either through NGS or Sanger sequencing technologies ("fill-in"). All genes listed were evaluated for large deletions and/or duplications. However, single exon deletions or duplications will not be detected in this assay, nor will copy number alterations in regions of genes with significant pseudogenes. Putative deletions or duplications are analyzed using Fulgent Germline proprietary pipeline for this specimen. Bioinformatics: The Fulgent Germline v2019.2 pipeline was used to analyze this specimen.

LIMITATIONS:

General Limitations

These test results and variant interpretation are based on the proper identification of the submitted specimen, accuracy of any stated familial relationships, and use of the correct human reference sequences at the queried loci. In very rare instances, errors may result due to mix-up or co-mingling of specimens. Positive results do not imply that there are no other contributors, genetic or otherwise, to future pregnancies, and negative results do not rule out the genetic risk to a pregnancy. Official gene names change over time. Fulgent uses the most up to date gene names based on HUGO Gene Nomenclature Committee (https://www.genenames.org) recommendations. If the gene name on report does not match that of ordered gene, please contact the laboratory and details can be provided. Result interpretation is based on the available clinical and family history information for this individual, collected published information, and Alamut annotation available at the time of reporting. This assay is not designed or validated for the detection of low-level mosaicism or somatic mutations. This assay will not detect certain types of genomic aberrations such as translocations, inversions, or repeat expansions other than specified genes. DNA alterations in regulatory regions or deep intronic regions (greater than 20bp from an exon) may not be detected by this test. Unless otherwise indicated, no additional assays have been performed to evaluate genetic changes in this specimen. There are technical limitations on the ability of DNA sequencing to detect small insertions and deletions. Our laboratory uses a sensitive detection algorithm, however these types of alterations are not detected as reliably as single nucleotide variants. Rarely, due to systematic chemical, computational, or human error, DNA variants may be missed.

Patient: 5617, Donor; Sex: M; DOB: MR#: 5617 Accession#: FD Patient#:
DocID: PAGE 2 of 4

of pseudogene sequences or other highly-homologous sequences, sometimes these may still interfere with the technical ability of the assay to identify pathogenic alterations in both sequencing and deletion/duplication analyses. Deletion/duplication analysis can identify alterations of genomic regions which include one whole gene (buccal swab specimens and whole blood specimens) and are two or more contiguous exons in size (whole blood specimens only); single exon deletions or duplications may occasionally be identified, but are not routinely detected by this test. When novel DNA duplications are identified, it is not possible to discern the genomic location or orientation of the duplicated segment, hence the effect of the duplication cannot be predicted. Where deletions are detected, it is not always possible to determine whether the predicted product will remain in-frame or not. Unless otherwise indicated, deletion/duplication analysis has not been performed in regions that have been sequenced by Sanger.

Gene Specific Notes and Limitations

<u>CYP21A2:</u> Significant pseudogene interference and/or reciprocal exchanges between the CYP21A2 gene and its pseudogene, CYP21A1P, have been known to occur and may impact results. As such, the relevance of variants reported in this gene must be interpreted clinically in the context of the clinical findings, biochemical profile, and family history of each patient. CYP21A2 variants primarily associated with non-classic congenital adrenal hyperplasia (CAH) are not included in this analysis (PubMed: 23359698). The variants associated with non-classic disease, including but not limited to c.188A>T (p.His63Leu), c.844G>T (p.Val282Leu), c.1174G>A (p.Ala392Thr), and c.1360C>T (p.Pro454Ser) will not be reported. LR-PCR is not routinely ordered for NM_000500.9:c.955C>T (p.Gln319Ter). Individuals with c.955C>T (p.Gln319Ter) will be reported as a Possible Carrier indicating that the precise nature of the variant has not been determined by LR-PCR and that the variant may occur in the CYP21A2 wild-type gene or in the CYP21A1P pseudogene. The confirmation test is recommended if the second reproductive partner is tested positive for variants associated with classic CAH.

SIGNATURE:

Yan Meng, Ph.D., CGMB, FACMG on 6/7/2023 4:38 PM PDT

Electronically signed

DISCLAIMER:

This test was developed and its performance characteristics determined by **Fulgent Genetics**. It has not been cleared or approved by the FDA. The laboratory is regulated under CLIA as qualified to perform high-complexity testing. This test is used for clinical purposes. It should not be regarded as investigational or for research. Since genetic variation, as well as systematic and technical factors, can affect the accuracy of testing, the results of testing should always be interpreted in the context of clinical and familial data. For assistance with interpretation of these results, healthcare professionals may contact us directly at **(626) 350-0537** or **info@fulgentgenetics.com**. It is recommended that patients receive appropriate genetic counseling to explain the implications of the test result, including its residual risks, uncertainties and reproductive or medical options.

Patient: 5617, Donor; Sex: M; DOB: MR#: 5617 Accession#: ; FD Patient#:
DocID: ; PAGE 3 of 4

	Supplemental Table								
Gene	Condition	Inheritance	Ethnicity	Carrier Rate	Detection Rate	Post-test Carrier Probability*	Residual Risk*		
CEP290	Meckel syndrome 4	AR	General Population	1 in 190	98%	1 in 9,451	1 in 7,182,760		
CEP290	Leber congenital amaurosis 10	AR	General Population	1 in 190	98%	1 in 9,451	1 in 7,182,760		
CEP290	CEP290-related disorders	AR	General Population	1 in 190	98%	1 in 9,451	1 in 7,182,760		
CEP290	Senior-Løken syndrome 6	AR	General Population	1 in 190	98%	1 in 9,451	1 in 7,182,760		
CEP290	Joubert syndrome 5	AR	General Population	1 in 190	98%	1 in 9,451	1 in 7,182,760		
CEP290	Bardet-Biedl syndrome 14	AR	General Population	1 in 190	98%	1 in 9,451	1 in 7,182,760		
CYP21A2	Congenital adrenal hyperplasia due to 21-hydroxylase deficiency	AR	General Population	1 in 61	99%	1 in 6,001	1 in 1,464,244		
			Inuit Population	1 in 9	99%	1 in 801	1 in 28,836		
			Middle-Eastern Population	1 in 35	99%	1 in 3,401	1 in 476,140		

^{*} For genes that have tested negative Abbreviations: AR, autosomal recessive; XL, X-linked

Patient: 5617, Donor; Sex: M;

DOB: MR#: 5617

Accession#: DocID: PAGE 4 of 4

Patient Information:

5617, Donor DOB:

Test#:

Sex: M MR#: 5617 Patient#: F

Specimen Type: DNA Collected: Feb 23,2023

Accession: Access

Accession: N/A

Not Tested

Partner Information:

Physician: Seitz, Suzanne ATTN: Seitz, Suzanne Fairfax Cryobank 3015 Williams Drive Fairfax, VA 22031 Laboratory:
Fulgent Therapeutics LLC
CAP#: 8042697
CLIA#: 05D2043189
Laboratory Director:
Lawrence M. Weiss, MD

Report Date: Apr 28,2024

FINAL RESULTS

No carrier mutations identified

TEST PERFORMED

Custom Beacon Carrier Screening Panel

(2 Gene Panel: *GBA* and *SEPSECS*; gene sequencing with deletion and duplication analysis)

INTERPRETATION:

Notes and Recommendations:

- No carrier mutations were identified in the submitted specimen. A negative result does not rule out the possibility of a genetic
 predisposition nor does it rule out any pathogenic mutations in areas not assessed by this test or in regions that were covered
 at a level too low to reliably assess. Also, it does not rule out mutations that are of the sort not queried by this test; see Methods
 and Limitations for more information. A negative result reduces, but does not eliminate, the chance to be a carrier for any
 condition included in this screen. Please see the supplemental table for details.
- This carrier screening test does not screen for all possible genetic conditions, nor for all possible mutations in every gene
 tested. This report does not include variants of uncertain significance; only variants classified as pathogenic or likely pathogenic
 at the time of testing, and considered relevant for reproductive carrier screening, are reported. Please see the gene specific
 notes for details. Please note that the classification of variants can change over time.
- Patients may wish to discuss any carrier results with blood relatives, as there is an increased chance that they are also carriers.
 These results should be interpreted in the context of this individual's clinical findings, biochemical profile, and family history.
- Gene specific notes and limitations may be present. See below.
- Genetic counseling is recommended. Available genetic counselors and additional resources can be found at the National Society of Genetic Counselors (NSGC; https://www.nsgc.org)

Accession#: FD Patient#: PAGE 1 of 4

Patient: 5617, Donor; Sex: M; DOB: Research ; MR#: 5617

GENES TESTED:

Custom Beacon Carrier Screening Panel - 2 Genes

This analysis was run using the Custom Beacon Carrier Screening Panel gene list. 2 genes were tested with 100.0% of targets sequenced at >20x coverage. For more gene-specific information and assistance with residual risk calculation, see the SUPPLEMENTAL TABLE.

GBA, SEPSECS

METHODS:

Genomic DNA was isolated from the submitted specimen indicated above (if cellular material was submitted). DNA was barcoded, and enriched for the coding exons of targeted genes using hybrid capture technology. Prepared DNA libraries were then sequenced using a Next Generation Sequencing technology. Following alignment to the human genome reference sequence (assembly GRCh37), variants were detected in regions of at least 10x coverage. For this specimen, 100.00% and 100.00% of coding regions and splicing junctions of genes listed had been seguenced with coverage of at least 10x and 20x, respectively, by NGS or by Sanger sequencing. The remaining regions did not have 10x coverage, and were not evaluated. Variants were interpreted manually using locus specific databases, literature searches, and other molecular biological principles. To minimize false positive results, any variants that do not meet internal quality standards are confirmed by Sanger sequencing. Variants classified as pathogenic, likely pathogenic, or risk allele which are located in the coding regions and nearby intronic regions (+/- 20bp) of the genes listed above are reported. Variants outside these intervals may be reported but are typically not guaranteed. When a single pathogenic or likely pathogenic variant is identified in a clinically relevant gene with autosomal recessive inheritance, the laboratory will attempt to ensure 100% coverage of coding sequences either through NGS or Sanger sequencing technologies ("fill-in"). All genes listed were evaluated for large deletions and/or duplications. However, single exon deletions or duplications will not be detected in this assay, nor will copy number alterations in regions of genes with significant pseudogenes. Putative deletions or duplications are analyzed using Fulgent Germline proprietary pipeline for this specimen. Bioinformatics: The Fulgent Germline v2019.2 pipeline was used to analyze this specimen.

LIMITATIONS:

General Limitations

These test results and variant interpretation are based on the proper identification of the submitted specimen, accuracy of any stated familial relationships, and use of the correct human reference sequences at the queried loci. In very rare instances, errors may result due to mix-up or co-mingling of specimens. Positive results do not imply that there are no other contributors, genetic or otherwise, to future pregnancies, and negative results do not rule out the genetic risk to a pregnancy. Official gene names change over time. Fulgent uses the most up to date gene names based on HUGO Gene Nomenclature Committee (https://www.genenames.org) recommendations. If the gene name on report does not match that of ordered gene, please contact the laboratory and details can be provided. Result interpretation is based on the available clinical and family history information for this individual, collected published information, and Alamut annotation available at the time of reporting. This assay is not designed or validated for the detection of low-level mosaicism or somatic mutations. This assay will not detect certain types of genomic aberrations such as translocations, inversions, or repeat expansions other than specified genes. DNA alterations in regulatory regions or deep intronic regions (greater than 20bp from an exon) may not be detected by this test. Unless otherwise indicated, no additional assays have been performed to evaluate genetic changes in this specimen. There are technical limitations on the ability of DNA sequencing to detect small insertions and deletions. Our laboratory uses a sensitive detection algorithm, however these types of alterations are not detected as reliably as single nucleotide variants. Rarely, due to systematic chemical, computational, or human error, DNA variants may be missed.

Patient: 5617, Donor; Sex: M; DOB: MR#: 5617 Accession#: FD Patient#:

DocID: PAGE 2 of 4

of pseudogene sequences or other highly-homologous sequences, sometimes these may still interfere with the technical ability of the assay to identify pathogenic alterations in both sequencing and deletion/duplication analyses. Deletion/duplication analysis can identify alterations of genomic regions which include one whole gene (buccal swab specimens and whole blood specimens) and are two or more contiguous exons in size (whole blood specimens only); single exon deletions or duplications may occasionally be identified, but are not routinely detected by this test. When novel DNA duplications are identified, it is not possible to discern the genomic location or orientation of the duplicated segment, hence the effect of the duplication cannot be predicted. Where deletions are detected, it is not always possible to determine whether the predicted product will remain in-frame or not. Unless otherwise indicated, deletion/duplication analysis has not been performed in regions that have been sequenced by Sanger.

Gene Specific Notes and Limitations

<u>GBA</u>: The current testing method may not be able to reliably detect certain pathogenic variants in the GBA gene due to homologous recombination between the pseudogene and the functional gene.

SIGNATURE:

Dr. Harry Gao, DABMG, FACMG on 4/28/2024

i Gao

Laboratory Director, Fulgent

DISCLAIMER:

This test was developed and its performance characteristics determined by **Fulgent Therapeutics LLC**. It has not been cleared or approved by the FDA. The laboratory is regulated under CLIA as qualified to perform high-complexity testing. This test is used for clinical purposes. It should not be regarded as investigational or for research. Since genetic variation, as well as systematic and technical factors, can affect the accuracy of testing, the results of testing should always be interpreted in the context of clinical and familial data. For assistance with interpretation of these results, healthcare professionals may contact us directly at (626) 350-0537 or **info@fulgentgenetics.com**. It is recommended that patients receive appropriate genetic counseling to explain the implications of the test result, including its residual risks, uncertainties and reproductive or medical options.

Patient: 5617, Donor; Sex: M;

DOB: MR#: 5617

Accession#: FD Patient#: DocID: PAGE 3 of 4

To view the supplemental table describing the carrier frequencies, detection rates, and residual risks associated with the genes on this test please visit the following link: Beacon Expanded Carrier Screening Supplemental Table

Patient: 5617, Donor; Sex: M;

DOB: MR#: 5617

Accession#: FD Patient#:

DocID: PAGE 4 of 4