

Donor 7624

Genetic Testing Summary

Fairfax Cryobank recommends reviewing this genetic testing summary with your healthcare provider to determine suitability.

Last Updated: 09/18/24

Donor Reported Ancestry: English, Irish Jewish Ancestry: No

Genetic Test*	Result Comments/Donor's Res	
		Risk**

Chromosome analysis (karyotype)	Normal male karyotype	No evidence of clinically significant chromosome abnormalities
Hemoglobin evaluation	Normal hemoglobin fractionation and MCV/MCH results	Reduced risk to be a carrier for sickle cell anemia, beta thalassemia, alpha thalassemia trait (aa/ and a-/a-) and other hemoglobinopathies
Expanded Genetic Disease Carrier Screening Panel attached- 549 diseases by gene sequencing.	Carrier: Congenital Myasthenic Syndrome, CHRNE-Related Carrier: Oculocutaneous Albinism, OCA2-Related Negative for other genes sequenced.	Partner testing is recommended before using this donor.

^{*}No single test can screen for all genetic disorders. A negative screening result significantly reduces, but cannot eliminate, the risk for these conditions in a pregnancy.

^{**}Donor residual risk is the chance the donor is still a carrier after testing negative.

Patient Name: Donor 7624

Date Of Birth:

Gender:

Ethnicity: Northern European

Caucasian

Patient ID:

Medical Record #: N/A

Collection Kit:

Accession ID: Case File ID:

N/A

Test Information

Ordering Physician:

Clinic Information: Fairfax Cryobank

Phone:

Report Date: Sample Collected: Sample Received:

06/13/2024 Sample Type:

Blood

CARRIER SCREENING REPORT

ABOUT THIS SCREEN: Horizon™ is a carrier screen for specific autosomal recessive and Xlinked diseases. This information can help patients learn their risk of having a child with specific genetic conditions.

ORDER SELECTED: The Horizon Custom panel was ordered for this patient. Males are not screened for X-linked diseases

FINAL RESULTS SUMMARY:

06/26/2024

06/12/2024

CARRIER for Congenital Myasthenic Syndrome, CHRNE-Related

Positive for the pathogenic variant c.295C>T (p.R99*) in the CHRNE gene. Although most variants in this gene are associated with an autosomal recessive form of CONGENITAL MYASTHENIC SYNDROME, CHRNE-RELATED, some rare CHRNE variants may cause an autosomal dominant form of the condition. To our knowledge, there is insufficient evidence that this variant causes an autosomal dominant form of this condition. If this individual's partner is a carrier for this CONGENITAL MYASTHENIC SYNDROME, CHRNE-RELATED, their chance to have a child with this condition is likely 1 in 4 (25%). Carrier screening for this individual's partner is suggested.

CARRIER for Oculocutaneous Albinism, OCA2-Related

Positive for the pathogenic variant c.1327G>A (p.V443I) in the OCA2 gene. If this individual's partner is a carrier for OCULOCUTANEOUS ALBINISM, OCA2-RELATED, their chance to have a child with this condition is 1 in 4 (25%). Carrier screening for this individual's partner is suggested.

Negative for 547 out of 549 diseases

No other pathogenic variants were detected in the genes that were screened. The patient's remaining carrier risk after the negative screening results is listed for each disease/gene on the Horizon website at https://www.natera.com/panel-option/h-all/. Please see the following pages of this report for a comprehensive list of all conditions included on this individual's screen.

Carrier screening is not diagnostic and may not detect all possible pathogenic variants in a given gene.

RECOMMENDATIONS

Individuals who would like to review their Horizon report with a Natera Laboratory Genetic Counselor may schedule a telephone genetic information session by calling 650-249-9090 or visiting naterasession.com. Clinicians with questions may contact Natera at 650-249-9090 or email support@natera.com. Individuals with positive results may wish to discuss these results with family members to allow them the option to be screened. Comprehensive genetic counseling to discuss the implications of these test results and possible associated reproductive risk is recommended.

Diambleakin

Patient Name: Donor 7624

Test Information

Ordering Physician:

Clinic Information: Fairfax Cryobank

horizon[™]
natera carrier screen

Date Of Birth: Case File ID:

Report Date: 06/26/2024

CONGENITAL MYASTHENIC SYNDROME, CHRNE-RELATED

Understanding Your Horizon Carrier Screen Results

What is Congenital Myasthenic Syndrome, CHRNE-Related?

Congenital Myasthenic Syndrome, CHRNE-Related is an inherited disorder that affects the muscles. Symptoms of muscle weakness (myasthenia) can begin after birth but may begin later in life. Affected infants and children often have feeding and swallowing problems, developmental delay, and at times may have breathing problems. Muscle weakness can worsen with exercise. Speech problems may occur due to facial muscle weakness. The weakness remains stable and does not worsen with age. The degree of muscle weakness varies among individuals affected with Congenital Myasthenic Syndrome, CHRNE-Related. Clinical trials involving potential new treatments for this condition may be available (see www.clinicaltrials.gov).

What causes Congenital Myasthenic Syndrome, CHRNE-Related?

The majority of cases of Congenital Myasthenic Syndrome, CHRNE-Related are caused by a change, or mutation, in both copies of the CHRNE gene pair. These mutations cause the genes to not work properly or not work at all. The function of the CHRNE genes is to help relay signals from the nerve cells to the muscle cells; these signals trigger muscle movement. When both copies of the CHRNE gene do not work correctly, the signals from the nerves to the muscles are disrupted, causing problems with movement of skeletal muscles, muscle weakness, and delayed development of motor skills. Most cases of Congenital Myasthenic Syndrome, CHRNE-Related are inherited in an autosomal recessive manner. This means that, in most cases, both parents must be carriers of a mutation in one copy of the CHRNE gene to have a child with this type of Congenital Myasthenic Syndrome. People who are carriers for Congenital Myasthenic Syndrome. CHRNE-Related are usually healthy and do not have symptoms of the disorder. Usually a child inherits two copies of each gene, one copy from the mother and one copy from the father. If the mother and father are both carriers for Congenital Myasthenic Syndrome, CHRNE-Related, there is a 1 in 4, or 25%, chance in each pregnancy for both partners to pass on their CHRNE gene mutations to the child, who will then have the disorder. Individuals found to carry more than one mutation for Congenital Myasthenic Syndrome, CHRNE- Related should discuss their risk for having an affected child, and any potential effects to their own health, with their health care provider. Some cases of late-onset Congenital Myasthenic Syndrome, CHRNE-Related are inherited in an autosomal dominant manner. This means that a person who has a mutation in just one copy of the CHRNE gene will have symptoms of the condition. A person with the autosomal dominant form of Congenital Myasthenic Syndrome, CHRNE-Related would have a 1 in 2, or 50%, chance with each pregnancy to pass the mutation to the child, who would then have the autosomal dominant form of this condition. It is sometimes, but not always, possible to determine whether a specific mutation in the CHRNE gene will cause the autosomal recessive or autosomal dominant form of this condition. There are a number of other forms of Congenital Myasthenic Syndrome, each caused by mutations in different genes. A person who is a carrier for Congenital Myasthenic Syndrome, CHRNE-Related is not likely to be at increased risk for having children with these other forms.

What can I do next?

You may wish to speak with a local genetic counselor about your carrier test results. A genetic counselor in your area can be located on the National Society of Genetic Counselors website (www.nsgc.org). Your siblings and other relatives are at increased risk to also have this mutation. You are encouraged to inform your family members of your test results as they may wish to consider being tested themselves. If you are pregnant, your partner can have carrier screening for Congenital Myasthenic Syndrome, CHRNE-Related ordered by a health care professional. If your partner is not found to be a carrier for Congenital Myasthenic Syndrome, CHRNE-Related, your risk of having a child with this disorder is greatly reduced. Couples at risk of having a baby with Congenital Myasthenic Syndrome, CHRNE-Related can opt to have prenatal diagnosis done through chorionic villus sampling (CVS) or amniocentesis during pregnancy or can choose to have the baby tested after birth for this condition. If you are not yet pregnant, your partner can have carrier screening for Congenital Myasthenic Syndrome, CHRNE-Related ordered by a health care professional. If your partner is found to be a carrier for this disorder, you have several reproductive options to consider:

- Natural pregnancy with or without prenatal diagnosis of the fetus or testing the baby after birth for Congenital Myasthenic Syndrome, CHRNE-Related
- Preimplantation genetic diagnosis (PGD) with in vitro fertilization (IVF) to test the embryos for Congenital Myasthenic Syndrome, CHRNE-Related
- Adoption or use of a sperm or egg donor who is not a carrier for Congenital Myasthenic Syndrome, CHRNE-Related

What resources are available?

- Genetics Home Reference: http://ghr.nlm.nih.gov/condition/congenital-myasthenic-syndrome
- Prenatal diagnosis done through CVS: http://www.marchofdimes.org/chorionic-villus-sampling.aspx
- Prenatal diagnosis done through Amniocentesis: http://www.marchofdimes.org/amniocentesis.aspx
- PGD with IVF: http://www.natera.com/spectrum

Patient	Information
Patient	Name:

Test Information	
Ordering Physician:	

Date Of Birth: Case File ID:

Report Date:

Clinic Information:

OCULOCUTANEOUS ALBINISM, OCA2-RELATED

Understanding Your Horizon Carrier Screen Results

What is Oculocutaneous Albinism, OCA2-Related?

Oculocutaneous Albinism, OCA2-Related, is an inherited disorder that affects the pigmentation (coloring) of the eyes, skin, and hair. People with Oculocutaneous Albinism, OCA2-Related, are born with less melanin, the substance that creates body coloring. This leads to lighter than average color of the hair, skin, and eyes, especially at birth and in infancy. Some people with this condition produce more pigment over time, leading to skin, hair, and eye color that is closer to that typical for their family. Some affected people have vision problems that can include light sensitivity (photophobia), involuntary eye movements (nystagmus), and blurry vision (decreased acuity).

Currently there is no cure for this condition and treatment is based on symptoms. Treatments may include avoiding sun exposure and use of eyeglasses, sunglasses, and other vision aids. Clinical trials involving potential new treatments for this condition may be available (see www.clinicaltrials.gov).

What causes Oculocutaneous Albinism, OCA2-Related?

Oculocutaneous Albinism, OCA2-Related, is caused by a change, or mutation, in both copies of the OCA2 gene pair. These mutations cause the gene to not work properly or not work at all. The job of the OCA2 gene is to help make melanin, which determines the coloring of our eyes, skin, and hair. When both copies of this gene are not working correctly, it leads to the symptoms described above.

Oculocutaneous Albinism, OCA2-Related, is inherited in an autosomal recessive manner. This means that, in most cases, both parents must be carriers of a mutation in one copy of the OCA2 gene to have a child with this condition. People who are carriers of Oculocutaneous Albinism, OCA2-Related, are usually healthy and do not have the condition themselves. Usually a child inherits two copies of each gene, one copy from their mother and one copy from their father. If the mother and father are both carriers of Oculocutaneous Albinism, OCA2-Related, there is a 1 in 4, or 25%, chance in each pregnancy for both partners to pass on their OCA2 gene mutations to a child, who will then have this condition.

Individuals found to carry more than one mutation for Oculocutaneous Albinism, OCA2-Related, should discuss their risk for having an affected child with their healthcare provider.

What can I do next?

You may wish to speak with a local genetic counselor about your carrier test results. A genetic counselor in your area can be located on the National Society of Genetic Counselors website (www.nsgc.org).

Your siblings and other relatives are at increased risk to also have this mutation. You are encouraged to inform your family members of your test results as they may wish to consider being tested themselves.

If you are pregnant, your partner can have carrier screening for OCA2 mutations ordered by a healthcare professional. If your partner is not found to be a carrier of an OCA2 mutation, the chance that you would have a child with Oculocutaneous Albinism, OCA2-Related, is very low and no further testing would be recommended. If your partner also carries an OCA2 mutation, and there is a 1 in 4, or 25%, chance of having an affected child, you can choose to test the pregnancy with chorionic villus sampling (CVS) or amniocentesis or you can have the baby tested after birth for this condition.

If you are not yet pregnant, your partner can have carrier screening for OCA2 mutations ordered by a healthcare professional. If your partner is also a carrier of Oculocutaneous Albinism, OCA2-Related, and your future children each have a 1 in 4, or 25%, chance of having Oculocutaneous Albinism, OCA2-Related, you have several reproductive options to consider:

- Natural pregnancy with or without prenatal diagnosis of the fetus or testing the baby after birth for Oculocutaneous Albinism, OCA2-Related,
- Preimplantation genetic testing (PGT) with in vitro fertilization (IVF) to test embryos for Oculocutaneous Albinism, OCA2-Related, or
- Adoption or use of a sperm or egg donor who is not a carrier for Oculocutaneous Albinism, OCA2-Related.

What resources are available?

- MedlinePlus: medlineplus.gov/genetics/condition/oculocutaneous-albinism/
- National Organization for Rare Disorders rarediseases.org/rare-diseases/oculocutaneous-albinism/
- National Organization for Albinism and Hypopigmentation <u>www.albinism.org</u>
- Prenatal diagnosis done through CVS <u>www.marchofdimes.org/chorionic-villus-sampling.aspx</u>
- Prenatal diagnosis done through amniocentesis <u>www.marchofdimes.org/amniocentesis.aspx</u>
- Preimplantation genetic diagnosis (PGD) with IVF <u>www.natera.com/spectrum</u>

Patient Information	Test Information	22 h
Patient Name:	Ordering Physician:	
	Clinic Information:	no
Date Of Birth:		

Report Date:

VARIANT DETAILS

Case File ID:

CHRNE, c.295C>T (p.R99*), heterozygous, pathogenic

- The c.295C>T (p.R99*) variant in the CHRNE gene has been observed at a frequency of 0.0004% in the gnomAD v2.1.1 dataset.
- This variant has been reported in a homozygous state or in conjunction with another variant in individual(s) with congenital myasthenic syndrome (PMID: 29702980).
- This premature termination variant is predicted to cause nonsense-mediated decay (NMD) in a gene where loss-of-function is a known mechanism of disease.
- This variant has been reported in ClinVar [ID: 1399349].

OCA2, c.1327G>A (p.V443I), heterozygous, pathogenic

- The c.1327G>A (p.V443I) variant in the OCA2 gene has been observed at a frequency of 0.3056% in the gnomAD v2.1.1 dataset.
- This variant has been reported in a homozygous state or in conjunction with another variant in individual(s) with oculocutaneous albinism, type II (PMID: 8302318, 15712365, 18326704, 18463683).
- This variant has been reported in ClinVar [ID: 955].

Patient Name:

Test Information

Ordering Physician:

Clinic Information:

Date Of Birth: Case File ID:

Report Date:

DISEASES SCREENED

Below is a list of all diseases screened and the result. Certain conditions have unique patient-specific numerical values, therefore, results for those conditions are formatted differently.

Autosomal Recessive

17-BETA HYDROXYSTEROID DEHYDROGENASE 3 DEFICIENCY (HSD17B3) negative

3-BETA-HYDROXYSTEROID DEHYDROGENASE TYPE II DEFICIENCY (HSD3B2) negative 3-HYDROXY-3-METHYLGLUTARYL-COENZYME A LYASE DEFICIENCY (HMGCL) negative 3-HYDROXYACYL-COA DEHYDROGENASE DEFICIENCY (HADH) negative 3-METHYLCROTONYL-CoA CARBOXYLASE 2 DEFICIENCY (MCCC2) negative 3-PHOSPHOGLYCERATE DEHYDROGENASE DEFICIENCY (PHGDH) negative

5-ALPHA-REDUCTASE DEFICIENCY (SRD5A2) negative

6-PYRUVOYL-TETRAHYDROPTERIN SYNTHASE (PTPS) DEFICIENCY (PTS) negative

ABCA4-RELATED CONDITIONS (ABCA4) negative ABETALIPOPROTEINEMIA (MTTP) negative ACHONDROGENESIS, TYPE 1B (SLC26A2) negative ACHROMATOPSIA, CNGB3-RELATED (CNGB3) negative
ACRODERMATITIS ENTEROPATHICA (SLC39A4) negative
ACTION MYOCLONUS-RENAL FAILURE (AMRF) SYNDROME (SCARB2) negative ACUTE INFANTILE LIVER FAILURE, TRMU-RELATED (TRMU) negative ACYL-COA OXIDASE I DEFICIENCY (ACOX1) negative AICARDI-GOUTIÈRES SYNDROME (SAMHD1) negative

AICARDI-GOUTIERES SYNDROME, RNASEH2A-RELATED (RNASEH2A) negative AICARDI-GOUTIERES SYNDROME, RNASEH/2B-RELATED (RNASEH/2B) negative AICARDI-GOUTIERES SYNDROME, RNASEH/2C-RELATED (RNASEH/2C) negative AICARDI-GOUTIÈRES SYNDROME, TREX1-RELATED (TREX1) negative

ALPHA-MANNOSIDOSIS (MAN2B1) negative ALPHA-THALASSEMIA (HBA1/HBA2) negative ALPORT SYNDROME, COL4A3-RELATED (COL4A3) negative

ALPORT SYNDROME, COL4A4-RELATED (COL4A4) negative

ALSTROM SYNDROME (ALMS1) negative
AMISH INFANTILE EPILEPSY SYNDROME (573GAL5) negative
ANDERMANN SYNDROME (SLC12A6) negative

ARGININE:GLYCINE AMIDINOTRANSFERASE DEFICIENCY (AGAT DEFICIENCY)

(GATM) negative
ARGININEMIA (ARG1) negative
ARGININOSUCCINATE LYASE DEFICIENCY (ASL) negative

ARGINIOSOCCINATE L'IASE DEFICIENCY (ASL) negative AROMATASE DEFICIENCY (CYP19A1) negative ASPARAGINE SYNTHETASE DEFICIENCY (ASNS) negative ASPARTYLGLYCOSAMINURIA (AGA) negative ATAXIA WITH VITAMIN E DEFICIENCY (TTPA) negative

ATAXIA-TELANGIECTASIA (ATM) negative
ATAXIA-TELANGIECTASIA-LIKE DISORDER 1 (MRE11) negative

ATRANSFERRINEMIA (TF) negative

AUTISM SPECTRUM, EPILEPSY AND ARTHROGRYPOSIS (SLC35A3) negative AUTOIMMUNE POLYGLANDULAR SYNDROME, TYPE 1 (AIRE) negative AUTOSOMAL RECESSIVE CONGENITAL ICHTHYOSIS (ARCI), SLC27A4-RELATED

(SLC27A4) negative

AUTOSOMAL RECESSIVE SPASTIC ATAXIA OF CHARLEVOIX-SAGUENAY (SACS) negative

BARDET-BIEDL SYNDROME, ARL6-RELATED (ARL6) negative BARDET-BIEDL SYNDROME, BBS10-RELATED (BBS10) negative BARDET-BIEDL SYNDROME, BBS12-RELATED (BBS12) negative BARDET-BIEDL SYNDROME, BBS1-RELATED (BBS1) negative BARDET-BIEDL SYNDROME, BBS2-RELATED (BBS2) negative BARDET-BIEDL SYNDROME, BBS4-RELATED (BBS4) negative BARDET-BIEDL SYNDROME, BBS5-RELATED (BBS5) negative BARDET-BIEDL SYNDROME, BBS7-RELATED (BBS7) negative BARDET-BIEDL SYNDROME, BBS9-RELATED (BBS9) negative BARDET-BIEDL SYNDROME, TTC8-RELATED (TTC8) negative BART LYMPHOCYTE SYNDROME, CIITA-RELATED (CIITA) negative BARTTER SYNDROME, BSND-RELATED (BSND) negative BARTTER SYNDROME, KCNJ1-RELATED (KCNJ1) negative BARTTER SYNDROME, SLC12A1-RELATED (SLC12A1) negative BATTEN DISEASE, CLN3-RELATED (CLN3) negative BETA-HEMOGLOBINOPATHIES (HBB) negative BETA-KETOTHIOLASE DEFICIENCY (ACAT1) negative BETA-MANNOSIDOSIS (MANBA) negative
BETA-UREIDOPROPIONASE DEFICIENCY (UPB1) negative
BILATERAL FRONTOPARIETAL POLYMICROGYRIA (GPR56) negative BIOTINIDASE DEFICIENCY (BTD) negative BIOTIN-THIAMINE-RESPONSIVE BASAL GANGLIA DISEASE (BTBGD) (SLC19A3) negative BLOOM SYNDROME (BLM) negative BRITTLE CORNEA SYNDROME 1 (ZNF469) negative BRITTLE CORNEA SYNDROME 2 (PRDM5) negative

CANAVAN DISEASE (ASPA) negative CARBAMOYL PHOSPHATE SYNTHETASE I DEFICIENCY (CPS1) negative CARNITINE DEFICIENCY (SLC22A5) negative

CARNITINE PALMITOYLTRANSFERASE IA DEFICIENCY (CPT1A) negative CARNITINE PALMITOYLTRANSFERASE II DEFICIENCY (CPT2) negative CARNITINE-ACYLCARNITINE TRANSLOCASE DEFICIENCY (SLC25A20) negative

CARPENTER SYNDROME (RAB23) negative
CARTILAGE-HAIR HYPOPLASIA (RMRP) negative
CATECHOLAMINERGIC POLYMORPHIC VENTRICULAR TACHYCARDIA (CASQ2) negative

CD59-MEDIATED HEMOLYTIC ANEMIA (CD59) negative

CEP152-RELATED MICROCEPHALY (CEP152) negative CEREBRAL DYSGENESIS, NEUROPATHY, ICHTHYOSIS, AND PALMOPLANTAR KERATODERMA (CEDNIK) SYNDROME (SNAP29) negative

CEREBROTENDINOUS XANTHOMATOSIS (CYP27A1) negative CHARCOT-MARIE-TOOTH DISEASE, RECESSIVE INTERMEDIATE C (PLEKHG5) negative CHARCOT-MARIE-TOOTH-DISEASE, TYPE 4D (NDRG1) negative

CHEDIAK-HIGASHI SYNDROME (LYST) negative

CHOREOACANTHOCYTOSIS (VP513A) negative CHRONIC GRANULOMATOUS DISEASE, CYBA-RELATED (CYBA) negative CHRONIC GRANULOMATOUS DISEASE, NCF2-RELATED (NCF2) negative

CILIOPATHIES, RPGRIP1L-RELATED (RPGRIP1L) negative CITRIN DEFICIENCY (SLC25A13) negative CITRULLINEMIA, TYPE 1 (ASS1) negative

CLN10 DISEASE (CTSD) negative

COHEN SYNDROME (VPS13B) negative COL11A2-RELATED CONDITIONS (COL11A2) negative COMBINED MALONIC AND METHYLMALONIC ACIDURIA (ACSF3) negative

COMBINED OXIDATIVE PHOSPHORYLATION DEFICIENCY 1 (GFM1) negative COMBINED OXIDATIVE PHOSPHORYLATION DEFICIENCY 3 (TSFM) negative COMBINED PITUITARY HORMONE DEFICIENCY 1 (POU1F1) negative

COMBINED PITUITARY HORMONE DEFICIENCY-2 (PROP1) negative

CONGENITAL ADRENAL HYPERPLASIA, 11-BETA-HYDROXYLASE DEFICIENCY

CONGENITAL ADRENAL HYPERPLASIA, 17-ALPHA-HYDROXYLASE DEFICIENCY (CYP17A1) negative
CONGENITAL ADRENAL HYPERPLASIA, 21-HYDROXYLASE DEFICIENCY

(CYP21A2) negative

CONGENITAL ADRENAL INSUFFICIENCY, CYP11A1-RELATED (CYP11A1) negative

CONGENITAL AMEGAKARYOCYTIC THROMBOCYTOPENIA (MPL) negative
CONGENITAL CHRONIC DIARRHEA (DGAT1) negative
CONGENITAL DISORDER OF GLYCOSYLATION TYPE 1, ALG1-RELATED (ALG1) negative

CONGENITAL DISORDER OF GLYCOSYLATION, TYPE 1A, PMM2-Related (PMM2) negative CONGENITAL DISORDER OF GLYCOSYLATION, TYPE 1B (MPI) negative CONGENITAL DISORDER OF GLYCOSYLATION, TYPE 1C (ALG6) negative

CONGENITAL DYSERYTHROPOIETIC ANEMIA TYPE 2 (SEC23B) negative

CONGENITAL FINNISH NEPHROSIS (NPHS1) negative
CONGENITAL HYDROCEPHALUS 1 (CCDC88C) negative
CONGENITAL HYPERINSULINISM, KCNJ11-Related (KCNJ11) negative

CONGENITAL HYPERINSULINISM, RCNJ11-Related (RCNJ11) negative CONGENITAL INSENSITIVITY TO PAIN WITH ANHIDROSIS (CIPA) (NTRK1) negative CONGENITAL MYASTHENIC SYNDROME, CHAT-RELATED (CHAT) negative CONGENITAL MYASTHENIC SYNDROME, CHRNE-RELATED (CHRNE) see first page CONGENITAL MYASTHENIC SYNDROME, COLQ-RELATED (COLQ) negative CONGENITAL MYASTHENIC SYNDROME, DOK7-RELATED (DOK7) negative CONGENITAL MYASTHENIC SYNDROME, RAPSN-RELATED (RAPSN) negative

CONGENITAL NEPHROTIC SYNDROME, PLCE1-RELATED (PLCE1) negative

CONGENITAL NEUTROPENIA, G6PC3-RELATED (G6PC3) negative CONGENITAL NEUTROPENIA, HAX1-RELATED (HAX1) negative CONGENITAL NEUTROPENIA, VPS45-RELATED (VPS45) negative

CONGENITAL SECRETORY CHLORIDE DIARRHEA 1 (SLC26A3) negative

CORNEAL DYSTROPHY AND PERCEPTIVE DEAFNESS (SLC4A11) negative CORTICOSTERONE METHYLOXIDASE DEFICIENCY (CYP11B2) negative

COSTEFF SYNDROME (3-METHYLGLUTACONIC ACIDURIA, TYPE 3) (OPA3) negative

CRB1-RELATED RETINAL DYSTROPHIES (CRB1) negative

CYSTIC FIBROSIS (CFTR) negative CYSTINOSIS (CTNS) negative

CYTOCHROME C OXIDASE DEFICIENCY, PET100-RELATED (PET100) negative

CYTOCHROME P450 OXIOREDUCTASE DEFICIENCY (POR) negative

D-BIFUNCTIONAL PROTEIN DEFICIENCY (HSD17B4) negative

Patient Name:

Test Information

Ordering Physician:

Clinic Information:

Date Of Birth: Case File ID:

Report Date:

DEAFNESS, AUTOSOMAL RECESSIVE 77 (LOXHD1) negative DIHYDROPTERIDINE REDUCTASE (DHPR) DEFICIENCY (QDPR) negative

DONNAI-BARROW SYNDROME (LRP2) negative

DUBIN-JOHNSON SYNDROME (ABCC2) negative DYSKERATOSIS CONGENITA SPECTRUM DISORDERS (TERT) negative DYSKERATOSIS CONGENITA, RTEL1-RELATED (RTEL1) negative

DYSTROPHIC EPIDERMOLYSIS BULLOSA, COL7A1-Related (COL7A1) negative

EARLY INFANTILE EPILEPTIC ENCEPHALOPATHY, CAD-RELATED (CAD) negative EHLERS-DANLOS SYNDROME TYPE VI (PLOD1) negative EHLERS-DANLOS SYNDROME, CLASSIC-LIKE, TNXB-RELATED (TNXB) negative

EHLERS-DANLOS SYNDROME, CLASSIC-LIKE, TNXB-RELATED (TNXB) negative EHLERS-DANLOS SYNDROME, TYPE VII C (ADAMTS2) negative ELLIS-VAN CREVELD SYNDROME, EVC2-RELATED (EVC2) negative ELLIS-VAN CREVELD SYNDROME, EVC-RELATED (EVC) negative ENHANCED S-CONE SYNDROME (NR2E3) negative EPIMERASE DEFICIENCY (GALACTOSEMIA TYPE III) (GALE) negative EPIPHYSEAL DYSPLASIA, MULTIPLE, 7/DESBUQUOIS DYSPLASIA 1 (CANT1) negative ERCC6-RELATED DISORDERS (ERCC6) negative

ERCC8-RELATED DISORDERS (ERCC8) negative

ETHYLMALONIC ENCEPHALOPATHY (ETHE1) negative

F
FACTOR XI DEFICIENCY (F11) negative
FAMILIAL DYSAUTONOMIA (IKBKAP) negative
FAMILIAL HEMOPHAGOCYTIC LYMPHOHISTIOCYTOSIS, PRF1-RELATED (PRF1) negative
FAMILIAL HEMOPHAGOCYTIC LYMPHOHISTIOCYTOSIS, STX11-RELATED (STX11) negative
FAMILIAL HEMOPHAGOCYTIC LYMPHOHISTIOCYTOSIS, STXBP2-RELATED
(STXBP2) negative
FAMILIAL HEMOPHAGOCYTIC LYMPHOHISTIOCYTOSIS, UNC13D-RELATED

FAMILIAL HEMOPHAGOCYTIC LYMPHOHISTIOCYTOSIS, UNC13D-RELATED (UNC13D) negative FAMILIAL HYPERCHOLESTEROLEMIA, LDLRAP1-RELATED (LDLRAP1) negative FAMILIAL HYPERCHOLESTEROLEMIA, LDLR-RELATED (LDLR) negative FAMILIAL HYPERINSULINISM, ABCC8-RELATED (ABCC8) negative FAMILIAL NEPHROGENIC DIABETES INSIPIDUS, AQP2-RELATED (AQP2) negative FANCONI ANEMIA, GROUP A (FANCA) negative FANCONI ANEMIA, GROUP C (FANCC) negative

FANCONI ANEMIA, GROUP D2 (FANCD2) negative FANCONI ANEMIA, GROUP E (FANCE) negative FANCONI ANEMIA, GROUP F (FANCF) negative

FANCONI ANEMIA, GROUP F (FANCF) negative FANCONI ANEMIA, GROUP I (FANCG) negative FANCONI ANEMIA, GROUP J (BRIP1) negative FANCONI ANEMIA, GROUP L (FANCL) negative FANCONI ANEMIA, GROUP L (FANCL) negative

FARBER LIPOGRANULOMATOSIS (ASAH1) negative FOVEAL HYPOPLASIA (SLC38A8) negative FRASER SYNDROME 3, GRIP1-RELATED (GRIP1) negative FRASER SYNDROME, FRAS1-RELATED (FRAS1) negative

FRASER SYNDROME, FREM2-RELATED (FREM2) negative FRIEDREICH ATAXIA (FXN) negative FRUCTOSE-1,6-BISPHOSPHATASE DEFICIENCY (FBP1) negative

FUCOSIDOSIS, FUCA1-RELATED (FUCA1) negative FUMARASE DEFICIENCY (FH) negative

GABA-TRANSAMINASE DEFICIENCY (ABAT) negative GALACTOKINASE DEFICIENCY (GALACTOSEMIA, TYPE II) (GALK1) negative

GALACTOSEMIA (GALT) negative

GALACTOSIALIDOSIS (CTSA) negative GAUCHER DISEASE (GBA) negative GCH1-RELATED CONDITIONS (GCH1) negative

GDF5-RELATED CONDITIONS (GDF5) negative

GERODERMA OSTEODYSPLASTICA (GORAB) negative GITELMAN SYNDROME (SLC12A3) negative GLANZMANN THROMBASTHENIA (ITGB3) negative

GLANZMANN THROMBASTHENIA (ITGB3) negative
GLUTARIC ACIDEMIA, TYPE 1 (GCDH) negative
GLUTARIC ACIDEMIA, TYPE 2A (ETFA) negative
GLUTARIC ACIDEMIA, TYPE 2B (ETFB) negative
GLUTARIC ACIDEMIA, TYPE 2C (ETFDH) negative
GLUTARIC ACIDEMIA, TYPE 2C (ETFDH) negative
GLUTATHIONE SYNTHETASE DEFICIENCY (GSS) negative
GLYCINE ENCEPHALOPATHY, AMT-RELATED (AMT) negative
GLYCINE ENCEPHALOPATHY, GLDC-RELATED (GLDC) negative
GLYCOGEN STORAGE DISEASE TYPE 5 (McArdle Disease) (PYGM) negative
GLYCOGEN STORAGE DISEASE TYPE IXE (PHKB) negative
GLYCOGEN STORAGE DISEASE TYPE IXC (PHKG2) negative
GLYCOGEN STORAGE DISEASE TYPE IXC (PHKG2) negative

GLYCOGEN STORAGE DISEASE, TYPE 1a (G6PC) negative GLYCOGEN STORAGE DISEASE, TYPE 1b (SLC37A4) negative GLYCOGEN STORAGE DISEASE, TYPE 2 (POMPE DISEASE) (GAA) negative

GLYCOGEN STORAGE DISEASE, TYPE 3 (AGL) negative GLYCOGEN STORAGE DISEASE, TYPE 4 (GBE1) negative GLYCOGEN STORAGE DISEASE, TYPE 7 (PFKM) negative

GRACILE SYNDROME (BCS1L) negative GUANIDINOACETATE METHYLTRANSFERASE DEFICIENCY (GAMT) negative

HARLEQUIN ICHTHYOSIS (ABCA12) negative
HEME OXYGENASE 1 DEFICIENCY (HMOX1) negative

HEMOCHROMATOSIS TYPE 2A (HFE2) negative

HEMOCHROMATOSIS, TYPE 3, TFR2-Related (TFR2) negative
HEPATOCEREBRAL MITOCHONDRIAL DNA DEPLETION SYNDROME, MPV17-RELATED

(MPV17) negative

HEREDITARY FRUCTOSE INTOLERANCE (ALDOB) negative

HEREDITARY HEMOCHROMATOSIS TYPE 2B (HAMP) negative HEREDITARY SPASTIC PARAPARESIS, TYPE 49 (TECPR2) negative

HEREDITARY SPASTIC PARAPARESIS, 17PE 49 (TECPK2) negative HEREDITARY SPASTIC PARAPLEGIA, CYP7B1-RELATED (CYP7B1) negative HERMANSKY-PUDLAK SYNDROME, AP3B1-RELATED (BLOC1S3) negative HERMANSKY-PUDLAK SYNDROME, BLOC1S3-RELATED (BLOC1S3) negative HERMANSKY-PUDLAK SYNDROME, BLOC1S6-RELATED (BLOC1S6) negative

HERMANSKY-PUDLAK SYNDROME, HPS1-RELATED (HPS1) negative HERMANSKY-PUDLAK SYNDROME, HPS3-RELATED (HPS3) negative HERMANSKY-PUDLAK SYNDROME, HPS4-RELATED (HPS4) negative

HERMANSKY-PUDLAK SYNDROME, HPS4-RELATED (HPS4) negative HERMANSKY-PUDLAK SYNDROME, HPS5-RELATED (HPS5) negative HERMANSKY-PUDLAK SYNDROME, HPS6-RELATED (HPS6) negative HOLOCARBOXYLASE SYNTHETASE DEFICIENCY (HLCS) negative HOMOCYSTINURIA AND MEGALOBLASTIC ANEMIA TYPE CBLG (MTR) negative

HOMOCYSTINURIA AND MEGALOBLASTIC ANEMIA TYPE CBLG (MTR)
HOMOCYSTINURIA DUE TO DEFICIENCY OF MTHFR (MTHFR) negative
HOMOCYSTINURIA, CBS-RELATED (CBS) negative
HOMOCYSTINURIA, Type cblE (MTRR) negative
HYDROLETHALUS SYNDROME (HYLS1) negative

HYPER-IGM IMMUNODEFICIENCY (CD40) negative
HYPERORNITHINEMIA-HYPERAMMONEMIA-HOMOCITRULLINURIA (HHH SYNDROME)

(SLC25A15) negative HYPERPHOSPHATEMIC FAMILIAL TUMORAL CALCINOSIS, GALNT3-RELATED

(GALNT3) negative HYPOMYELINATING LEUKODYSTROPHY 12 (VPS11) negative

HYPOPHOSPHATASIA, ALPL-RELATED (ALPL) negative

IMERSLUND-GRÄSBECK SYNDROME 2 (AMN) negative

IMMUNODEFICIENCY-CENTROMERIC INSTABILITY-FACIAL ANOMALIES (ICF) SYNDROME, DNMT3B-RELATED (DNMT3B) negative IMMUNODEFICIENCY-CENTROMERIC INSTABILITY-FACIAL ANOMALIES (ICF)

SYNDROME, ZBTB24-RELATED (ZBTB24) negative
INCLUSION BODY MYOPATHY 2 (GNE) negative
INFANTILE CEREBRAL AND CEREBELLAR ATROPHY (MED17) negative

INFANTILE NEPHRONOPHTHISIS (INVS) negative

INFANTILE NEUROAXONAL DYSTROPHY (PLA2G6) negative ISOLATED ECTOPIA LENTIS (ADAMTSL4) negative ISOLATED SULFITE OXIDASE DEFICIENCY (SUOX) negative

ISOLATED THYROID-STIMULATING HORMONE DEFICIENCY (TSHB) negative

ISOVALERIC ACIDEMIA (IVD) negative

JOHANSON-BLIZZARD SYNDROME (*UBR1*) negative JOUBERT SYNDROME 2 / MECKEL SYNDROME 2 (*TMEM216*) negative JOUBERT SYNDROME AND RELATED DISORDERS (JSRD), TMEM67-RELATED

(TMEM67) negative

JOUBERT SYNDROME, AHI1-RELATED (AHI1) negative JOUBERT SYNDROME, ARL13B-RELATED (ARL13B) negative JOUBERT SYNDROME, B9D1-RELATED (B9D1) negative

JOUBERT SYNDROME, B9D2-RELATED (B9D2) negative

JOUBERT SYNDROME, C2CD3-RELATED/OROFACIODIGITAL SYNDROME 14

(C2CD3) negative JOUBERT SYNDROME, CC2D2A-RELATED/COACH SYNDROME (CC2D2A) negative

JOUBERT SYNDROME, CEP104-RELATED (CEP104) negative
JOUBERT SYNDROME, CEP120-RELATED/SHORT-RIB THORACIC DYSPLASIA 13 WITH OR

WITHOUT POLYDACTYLY (CEP120) negative

JOUBERT SYNDROME, CEP41-RELATED (CEP41) negative JOUBERT SYNDROME, CPLANE1-RELATED / OROFACIODIGITAL SYNDROME 6

(CPLANE1) negative

JOUBERT SYNDROME, CSPP1-RELATED (CSPP1) negative
JOUBERT SYNDROME, INPP5E-RELATED (INPP5E) negative
JUNCTIONAL EPIDERMOLYSIS BULLOSA, COL17A1-RELATED (COL17A1) negative

JUNCTIONAL EPIDERMOLYSIS BULLOSA, ITGA6-RELATED (ITGA6) negative

JUNCTIONAL EPIDERMOLYSIS BULLOSA, ITGAG-RELATED (ITGAG) negative
JUNCTIONAL EPIDERMOLYSIS BULLOSA, ITGB4-RELATED (ITGB4) negative
JUNCTIONAL EPIDERMOLYSIS BULLOSA, LAMB3-RELATED (LAMB3) negative
JUNCTIONAL EPIDERMOLYSIS BULLOSA, LAMC2-RELATED (LAMC2) negative
JUNCTIONAL EPIDERMOLYSIS BULLOSA/LARYNGOONYCHOCUTANEOUS SYNDROME,

LAMA3-RELATED (LAMA3) negative

KRABBE DISEASE (GALC) negative

LAMELLAR ICHTHYOSIS, TYPE 1 (TGM1) negative

Patient Name:

Test Information

Ordering Physician:

Clinic Information:

Date Of Birth: Case File ID:

Report Date:

LARON SYNDROME (GHR) negative LEBER CONGENITAL AMAUROSIS 2 (RPE65) negative

LEBER CONGENITAL AMAUROSIS TYPE AIPL1 (AIPL1) negative

LEBER CONGENITAL AMAUROSIS TYPE GUCY2D (GUCY2D) negative
LEBER CONGENITAL AMAUROSIS TYPE TULP1 (TULP1) negative
LEBER CONGENITAL AMAUROSIS, IQCB1-RELATED/SENIOR-LOKEN SYNDROME 5

(IQCB1) negative

LEBER CONGENITAL AMAUROSIS, TYPE CEP290 (CEP290) negative LEBER CONGENITAL AMAUROSIS, TYPE LCA5 (LCA5) negative

LEBER CONGENITAL AMAUROSIS, TYPE RDH12 (RDH12) negative

LEIGH SYNDROME, FRENCH-CANADIAN TYPE (LRPPRC) negative LETHAL CONGENITAL CONTRACTURE SYNDROME 1 (GLE1) negative

LEUKOENCEPHALOPATHY WITH VANISHING WHITE MATTER (EIF2B5) negative LEUKOENCEPHALOPATHY WITH VANISHING WHITE MATTER, EIF2B1-RELATED (EIF2B1) negative

LEUKOENCEPHALOPATHY WITH VANISHING WHITE MATTER, EIF2B2-RELATED

(EIF2B2) negative LEUKOENCEPHALOPATHY WITH VANISHING WHITE MATTER, EIF2B3-RELATED (EIF2B3) negative

LEUKOENCEPHALOPATHY WITH VANISHING WHITE MATTER, EIF2B4-RELATED (EIF2B4) negative LIG4 SYNDROME (LIG4) negative

LIMB-GIRDLE MUSCULAR DYSTROPHY TYPE 8 (TRIM32) negative

LIMB-GIRDLE MUSCULAR DYSTROPHY, TYPE 2A (CAPN3) negative

LIMB-GIRDLE MUSCULAR DYSTROPHY, TYPE 2A (CAPN3) negative LIMB-GIRDLE MUSCULAR DYSTROPHY, TYPE 2B (DYSF) negative LIMB-GIRDLE MUSCULAR DYSTROPHY, TYPE 2C (SGCG) negative LIMB-GIRDLE MUSCULAR DYSTROPHY, TYPE 2D (SGCA) negative LIMB-GIRDLE MUSCULAR DYSTROPHY, TYPE 2E (SGCB) negative LIMB-GIRDLE MUSCULAR DYSTROPHY, TYPE 2F (SGCD) negative LIMB-GIRDLE MUSCULAR DYSTROPHY, TYPE 2F (SGCD) negative LIMB-GIRDLE DELIVERAGE AND ASSESSED ASSESSED AND ASSESSED ASSESS

LIPOAMIDE DEHYDROGENASE DEFICIENCY (DIHYDROLIPOAMIDE DEHYDROGENASE

DEFICIENCY) (DLD) negative LIPOID ADRENAL HYPERPLASIA (STAR) negative

LIPOPROTEIN LIPASE DEFICIENCY (LPL) negative

LONG CHAIN 3-HYDROXYACYL-COA DEHYDROGENASE DEFICIENCY (HADHA) negative LRAT-RELATED CONDITIONS (LRAT) negative LUNG DISEASE, IMMUNODEFICIENCY, AND CHROMOSOME BREAKAGE SYNDROME

(LICS) (NSMCE3) negative LYSINURIC PROTEIN INTOLERANCE (SLC7A7) negative

MALONYL-COA DECARBOXYLASE DEFICIENCY (MLYCD) negative MAPLE SYRUP URINE DISEASE, TYPE 1A (BCKDHA) negative MAPLE SYRUP URINE DISEASE, TYPE 1B (BCKDHB) negative

MAPLE STRUP URINE DISEASE, TYPE 2 (DBT) negative MAPLE SYRUP URINE DISEASE, TYPE 2 (DBT) negative MCKUSICK-KAUFMAN SYNDROME (MKKS) negative MECKEL SYNDROME 7/NEPHRONOPHTHISIS 3 (NPHP3) negative MECKEL-GRUBER SYNDROME, TYPE 1 (MK51) negative

MECR-RELATED NEUROLOGIC DISORDER (MECR) negative MEDIUM CHAIN ACYL-CoA DEHYDROGENASE DEFICIENCY (ACADM) negative

MEDNIK SYNDROME (AP1S1) negative

MEGALENCEPHALIC LEUKOENCEPHALOPATHY WITH SUBCORTICAL CYSTS

(MLC1) negative MEROSIN-DEFICIENT MUSCULAR DYSTROPHY (LAMA2) negative

METABOLIC ENCEPHALOPATHY AND ARRHYTHMIAS, TANGO2-RELATED

(TANGO2) negative METACHROMATIC LEUKODYSTROPHY, ARSA-RELATED (ARSA) negative METACHROMATIC LEUKODYSTROPHY, PSAP-RELATED (PSAP) negative

METHYLMALONIC ACIDEMIA AND HOMOCYSTINURIA TYPE CBLF (LMBRD1) negative METHYLMALONIC ACIDEMIA, MCEE-RELATED (MCEE) negative METHYLMALONIC ACIDURIA AND HOMOCYSTINURIA, TYPE CBLC (MMACHC) negative METHYLMALONIC ACIDURIA AND HOMOCYSTINURIA, TYPE CBLC (MMADHC) negative METHYLMALONIC ACIDURIA AND HOMOCYSTINURIA, TYPE CBID (MMADHC) negative

METHYLMALONIC ACIDURIA, MMAA-RELATED (MMAA) negative METHYLMALONIC ACIDURIA, MMAB-RELATED (MMAB) negative

METHYLMALONIC ACIDURIA, TYPE MUT(0) (MUT) negative

MEVALONIC KINASE DEFICIENCY (MVK) negative
MICROCEPHALIC OSTEODYSPLASTIC PRIMORDIAL DWARFISM TYPE II (PCNT) negative
MICROPHTHALMIA / ANOPHTHALMIA, VSX2-RELATED (VSX2) negative

MITOCHONDRIAL COMPLEX 1 DEFICIENCY, ACAD9-RELATED (ACAD9) negative

MITOCHONDRIAL COMPLEX 1 DEFICIENCY, NDUFAF5-RELATED (NDUFAF5) negative MITOCHONDRIAL COMPLEX 1 DEFICIENCY, NDUFS6-RELATED (NDUFS6) negative

MITOCHONDRIAL COMPLEX I DEFICIENCY, NUCLEAR TYPE 1 (NDUFS4) negative

MITOCHONDRIAL COMPLEX I DEFICIENCY, NUCLEAR TYPE 10 (NDUFAF2) negative MITOCHONDRIAL COMPLEX I DEFICIENCY, NUCLEAR TYPE 17 (NDUFAF6) negative MITOCHONDRIAL COMPLEX I DEFICIENCY, NUCLEAR TYPE 19 (FOXRED1) negative

MITOCHONDRIAL COMPLEX I DEFICIENCY, NUCLEAR TYPE 3 (NDUFST) negative MITOCHONDRIAL COMPLEX I DEFICIENCY, NUCLEAR TYPE 4 (NDUFV1) negative MITOCHONDRIAL COMPLEX IV DEFICIENCY, NUCLEAR TYPE 2, SCO2-RELATED

(SCO2) negative

MITOCHONDRIAL COMPLEX IV DEFICIENCY, NUCLEAR TYPE 6 (COX15) negative MITOCHONDRIAL DNA DEPLETION SYNDROME 2 (TK2) negative

MITOCHONDRIAL DNA DEPLETION SYNDROME 3 (DGUOK) negative MITOCHONDRIAL MYOPATHY AND SIDEROBLASTIC ANEMIA (MLASA1) (PUS1) negative MITOCHONDRIAL TRIFUNCTIONAL PROTEIN DEFICIENCY, HADHB-RELATED

(HADHB) negative

MOLYBDENUM COFACTOR DEFICIENCY TYPE B (MOCS2) negative MOLYBDENUM COFACTOR DEFICIENCY, TYPE A (MOCS1) negative

MUCOLIPIDOSIS II/III A (GNPTAB) negative

MUCOLIPIDOSIS III GAMMA (GNPTG) negative
MUCOLIPIDOSIS, TYPE IV (MCOLN1) negative
MUCOPOLYSACCHARIDOSIS, TYPE I (HURLER SYNDROME) (IDUA) negative

MUCOPOLYSACCHARIDOSIS, TYPE II A (SANFILIPPO A) (SGSH) negative MUCOPOLYSACCHARIDOSIS, TYPE III A (SANFILIPPO B) (NAGLU) negative MUCOPOLYSACCHARIDOSIS, TYPE III B (SANFILIPPO B) (NAGLU) negative MUCOPOLYSACCHARIDOSIS, TYPE III C (SANFILIPPO C) (HGSNAT) negative MUCOPOLYSACCHARIDOSIS, TYPE III D (SANFILIPPO D) (GNS) negative MUCOPOLYSACCHARIDOSIS, TYPE IV A (MORQUIO SYNDROME) (GALNS) negative MUCOPOLYSACCHARIDOSIS, TYPE IV B/GM1 GANGLIOSIDOSIS (GLB1) negative MUCOPOLYSACCHARIDOSIS, TYPE IV (HYAL1) negative

MUCOPOLYSACCHARIDOSIS, TYPE VI (MAROTEAUX-LAMY) (ARSB) negative MUCOPOLYSACCHARIDOSIS, TYPE VI (MAROTEAUX-LAMY) (ARSB) negative MUCOPOLYSACCHARIDOSIS, TYPE VII (GUSB) negative MULIBREY NANISM (TRIM37) negative MULIBREY PRENGLIM SYNDROME, CHRNG-RELATED/ESCOBAR SYNDROME

(CHRNG) negative
MULTIPLE SULFATASE DEFICIENCY (SUMF1) negative

MUSCLE-EYE-BRAIN DISEASE, POMGNT1-RELATED (POMGNT1) negative MUSCULAR DYSTROPHY-DYSTROGLYCANOPATHY (RXYLT1) negative

MUSK-RELATED CONGENITAL MYASTHENIC SYNDROME (MUSK) negative MYONEUROGASTROINTESTINAL ENCEPHALOPATHY (MNGIE) (TYMP) negative

MYOTONIA CONGENITA (CLCN1) negative

N-ACETYLGLUTAMATE SYNTHASE DEFICIENCY (NAGS) negative

N-ACETYLGLOTAMATE SYNTHASE DEFICIENCY (NAGS) negative
NEMALINE MYOPATHY, NEB-RELATED (NEB) negative
NEPHRONOPHTHISIS 1 (NPHP1) negative
NEURONAL CEROID LIPOFUSCINOSIS, CLN5-RELATED (CLN5) negative
NEURONAL CEROID LIPOFUSCINOSIS, CLN6-RELATED (CLN6) negative

NEURONAL CEROID LIPOFUSCINOSIS, CLNS-RELATED (CLN8) negative NEURONAL CEROID LIPOFUSCINOSIS, MFSD8-RELATED (MFSD8) negative NEURONAL CEROID LIPOFUSCINOSIS, PPT1-RELATED (PPT1) negative

NEURONAL CEROID LIPOFUSCINOSIS, PP11-RELATED (PP11) negative NEURONAL CEROID LIPOFUSCINOSIS, TPP1-RELATED (TPP1) negative NGLY1-CONGENITAL DISORDER OF GLYCOSYLATION (NGLY1) negative NIEMANN-PICK DISEASE, TYPE C1 / D (NPC1) negative NIEMANN-PICK DISEASE, TYPE C2 (NPC2) negative NIEMANN-PICK DISEASE, TYPES A / B (SMPD1) negative NIMEGEN BREAKAGE SYNDROME (NBN) negative NON-SYNDROMIC HEARING LOSS, GJB2-RELATED (GJB2) negative

NON-SYNDROMIC HEARING LOSS, MYO15A-RELATED (MYO15A) negative NONSYNDROMIC HEARING LOSS, OTOA-RELATED (OTOA) negative NONSYNDROMIC HEARING LOSS, OTOF-RELATED (OTOF) negative

NONSYNDROMIC HEARING LOSS, PJVK-RELATED (PJVK) negative

NONSYNDROMIC HEARING LOSS, SYNE4-RELATED (SYNE4) negative NONSYNDROMIC HEARING LOSS, TMC1-RELATED (TMC1) negative

NONSYNDROMIC HEARING LOSS, TMPRSS3-RELATED (TMPRSS3) negative

NONSYNDROMIC INTELLECTUAL DISABILITY (CC2D1A) negative NORMOPHOSPHATEMIC TUMORAL CALCINOSIS (SAMD9) negative

OCULOCUTANEOUS ALBINISM TYPE IV (SLC45A2) negative OCULOCUTANEOUS ALBINISM TYPE, III (TYRP1) negative

OCULOCUTANEOUS ALBINISM, OCA2-RELATED (OCA2) see first page

OCULOCUTANEOUS ALBINISM, TYPES 1A AND 1B (TYR) negative ODONTO-ONYCHO-DERMAL DYSPLASIA / SCHOPF-SCHULZ-PASSARGE SYNDROME

(WNT10A) negative

OMENN SYNDROME, RAG2-RELATED (RAG2) negative

ORNITHINE AMINOTRANSFERASE DEFICIENCY (OAT) negative OSTEOGENESIS IMPERFECTA TYPE VII (CRTAP) negative

OSTEOGENESIS IMPERFECTA TYPE VIII (P3H1) negative

OSTEOGENESIS IMPERFECTA TYPE XI (FKBP10) negative
OSTEOGENESIS IMPERFECTA TYPE XIII (BMP1) negative
OSTEOPETROSIS, INFANTILE MALIGNANT, TCIRG1-RELATED (TCIRG1) negative

OSTEOPETROSIS, OSTM1-RELATED (OSTM1) negative

PANTOTHENATE KINASE-ASSOCIATED NEURODEGENERATION (PANK2) negative

PAPILLON LEFÈVRE SYNDROME (CTSC) negative PARKINSON DISEASE 15 (FBXO7) negative PENDRED SYNDROME (SLC26A4) negative

PENDRED SYNDROME (SLCZOA4) negative
PERLMAN SYNDROME (DIS3L2) negative
PGM3-CONGENITAL DISORDER OF GLYCOSYLATION (PGM3) negative
PHENYLKETONURIA (PAH) negative
PIGN-CONGENITAL DISORDER OF GLYCOSYLATION (PIGN) negative

PITUITARY HORMONE DEFICIENCY, COMBINED 3 (LHX3) negative POLG-RELATED DISORDERS (POLG) negative

Patient Name:

Test Information

Clinic Information:

Ordering Physician:

Date Of Birth:

Case File ID:

Report Date:

POLYCYSTIC KIDNEY DISEASE, AUTOSOMAL RECESSIVE (PKHD1) negative PONTOCEREBELLAR HYPOPLASIA, EXOSC3-RELATED (EXOSC3) negative PONTOCEREBELLAR HYPOPLASIA, RARS2-RELATED (RARS2) negative PONTOCEREBELLAR HYPOPLASIA, TSEN2-RELATED (TSEN2) negative PONTOCEREBELLAR HYPOPLASIA, TSEN54-RELATED (TSEN54) negative PONTOCEREBELLAR HYPOPLASIA, TYPE 1A (VRK1) negative PONTOCEREBELLAR HYPOPLASIA, TYPE 1A (WAT) Hegative PONTOCEREBELLAR HYPOPLASIA, TYPE 2D (SEPSECS) negative PONTOCEREBELLAR HYPOPLASIA, VP553-RELATED (VP553) negative PRIMARY CILIARY DYSKINESIA, CCDC103-RELATED (CCDC103) negative PRIMARY CILIARY DYSKINESIA, CCDC39-RELATED (CCDC39) negative PRIMARY CILIARY DYSKINESIA, DNAH11-RELATED (DNAH11) negative PRIMARY CILIARY DYSKINESIA, DNAH5-RELATED (DNAH5) negative PRIMARY CILIARY DYSKINESIA, DNAI1-RELATED (DNAI1) negative PRIMARY CILIARY DYSKINESIA, DNAI2-RELATED (DNAI2) negative PRIMARY CONGENITAL GLAUCOMA/PETERS ANOMALY (CYP1B1) negative PRIMARY HYPEROXALURIA, TYPE 1 (AGXT) negative

PRIMARY HYPEROXALURIA, TYPE 2 (GRIPR) negative
PRIMARY HYPEROXALURIA, TYPE 3 (HOGA1) negative
PRIMARY MICROCEPHALY 1, AUTOSOMAL RECESSIVE (MCPH1) negative

PROGRESSIVE EARLY-ONSET ENCEPAHLOPATHY WITH BRAIN ATROPHY AND THIN

CORPUS CALLOSUM (TBCD) negative
PROGRESSIVE FAMILIAL INTRAHEPATIC CHOLESTASIS, ABCB4-RELATED (ABCB4) negative PROGRESSIVE FAMILIAL INTRAHEPATIC CHOLESTASIS, TYPE 1 (PFIC1) (ATP8B1) negative

PROGRESSIVE FAMILIAL INTRAHEPATIC CHOLESTASIS, TYPE 2 (ABCB11) negative PROGRESSIVE FAMILIAL INTRAHEPATIC CHOLESTASIS, TYPE 4 (PFIC4) (TJP2) negative PROGRESSIVE PSEUDORHEUMATOID DYSPLASIA (CCN6) negative

PROGRESSIVE PSEUDORHEUMATOID DYSPLASIA (CCN6) negative
PROLIDASE DEFICIENCY (PEPD) negative
PROPIONIC ACIDEMIA, PCCA-RELATED (PCCA) negative
PROPIONIC ACIDEMIA, PCCB-RELATED (PCCB) negative
PSEUDOXANTHOMA ELASTICUM (ABCC6) negative
PSEUDOXANTHOMA ELASTICUM (ABCC6) negative
PTERIN-4 ALPHA-CARBINOLAMINE DEHYDRATASE (PCD) DEFICIENCY (PCBD1) negative
PYCNODYSOSTOSIS (CTSK) negative
PYRIDOXAL 5"-PHOSPHATE-DEPENDENT EPILEPSY (PNPO) negative
PYRIDOXAL 5"-PHOSPHATE-DEPENDENT EPILEPSY (PNPO) negative

PYRIDOXINE-DEPENDENT EPILEPSY (ALDH7A1) negative

PYRUVATE CARBOXYLASE DEFICIENCY (PC) negative PYRUVATE DEHYDROGENASE DEFICIENCY, PDHB-RELATED (PDHB) negative

REFSUM DISEASE, PHYH-RELATED (PHYH) negative RENAL TUBULAR ACIDOSIS AND DEAFNESS, ATP6V1B1-RELATED (ATP6V1B1) negative

RENAL TUBULAR ACIDOSIS, PROXIMAL, WITH OCULAR ABNORMALITIES AND MENTAL

RETARDATION (SLC4A4) negative RETINITIS PIGMENTOSA 25 (EYS) negative RETINITIS PIGMENTOSA 26 (CERKL) negative

RETINITIS PIGMENTOSA 28 (FAM161A) negative RETINITIS PIGMENTOSA 36 (PRCD) negative RETINITIS PIGMENTOSA 59 (DHDDS) negative

RETINITIS PIGMENTOSA 62 (MAK) negative

RHIZOMELIC CHONDRODYSPLASIA PUNCTATA, TYPE 1 (PEX7) negative RHIZOMELIC CHONDRODYSPLASIA PUNCTATA, TYPE 2 (GNPAT) negative RHIZOMELIC CHONDRODYSPLASIA PUNCTATA, TYPE 3 (AGPS) negative

RLBP1-RELATED RETINOPATHY (RLBP1) negative ROBERTS SYNDROME (ESCO2) negative RYR1-RELATED CONDITIONS (RYR1) negative

SALLA DISEASE (SLC17A5) negative SANDHOFF DISEASE (HEXB) negative

SCHIMKE IMMUNOOSSEOUS DYSPLASIA (SMARCAL1) negative

SCHINDLER DISEASE (NAGA) negative SEGAWA SYNDROME, TH-RELATED (TH) negative

SENIOR-LOKEN SYNDROME 4/NEPHRONOPHTHISIS 4 (NPHP4) negative

SEPIAPTERIN REDUCTASE DEFICIENCY (SPR) negative
SEVERE COMBINED IMMUNODEFICIENCY (SCID), CD3D-RELATED (CD3D) negative
SEVERE COMBINED IMMUNODEFICIENCY (SCID), CD3E-RELATED (CD3E) negative

SEVERE COMBINED IMMUNODEFICIENCY (SCID), FOXN1-RELATED (FOXN1) negative SEVERE COMBINED IMMUNODEFICIENCY (SCID), IKBKB-RELATED (IKBKB) negative SEVERE COMBINED IMMUNODEFICIENCY (SCID), IL7R-RELATED (IL7R) negative

SEVERE COMBINED IMMUNODEFICIENCY (SCID), JAK3-RELATED (JAK3) negative SEVERE COMBINED IMMUNODEFICIENCY (SCID), PTPRC-RELATED (PTPRC) negative SEVERE COMBINED IMMUNODEFICIENCY (SCID), RAG1-RELATED (RAG1) negative

SEVERE COMBINED IMMUNODEFICIENCY, ADA-Related (ADA) negative

SEVERE COMBINED IMMUNODEFICIENCY, TYPE ATHABASKAN (DCLRE1C) negative SHORT-RIB THORACIC DYSPLASIA 3 WITH OR WITHOUT POLYDACTYLY

(DYNC2H1) negative

SHWACHMAN-DIAMOND SYNDROME, SBDS-RELATED (SBDS) negative

SIALIDOSIS (NEU1) negative SJÖGREN-LARSSON SYNDROME (ALDH3A2) negative SMITH-LEMLI-OPITZ SYNDROME (DHCR7) negative

SPASTIC PARAPLEGIA, TYPE 15 (ZFYVE26) negative

SPASTIC TETRAPLEGIA, THIN CORPUS CALLOSUM, AND PROGRESSIVE MICROCEPHALY (SPATCCM) (SLC1A4) negative SPG11-RELATED CONDITIONS (SPG11) negative

SPINAL MUSCULAR ATROPHY (SMN1) negative SMN1: Two copies; g.27134T>G: absent; the absence of the g.27134T>G variant decreases the chance to be a silent (2+0) carrier. SPINAL MUSCULAR ATROPHY WITH RESPIRATORY DISTRESS TYPE 1 (IGHMBP2) negative

SPINOCEREBELLAR ATAXIA, AUTOSOMAL RECESSIVE 10 (ANO10) negative

SPINOCEREBELLAR ATAXIA, AUTOSOMAL RECESSIVE 12 (WWOX) negative SPONDYLOCOSTAL DYSOSTOSIS 1 (DLL3) negative SPONDYLOTHORACIC DYSOSTOSIS, MESP2-Related (MESP2) negative

STEEL SYNDROME (COL27A1) negative

STEROID-RESISTANT NEPHROTIC SYNDROME (NPHS2) negative STUVE-WIEDEMANN SYNDROME (LIFR) negative

SURF1-RELATED CONDITIONS (SURF1) negative

SURFACTANT DYSFUNCTION, ABCA3-RELATED (ABCA3) negative

TAY-SACHS DISEASE (HEXA) negative
TBCE-RELATED CONDITIONS (TBCE) negative
THIAMINE-RESPONSIVE MEGALOBLASTIC ANEMIA SYNDROME (SLC19A2) negative

THYROID DYSHORMONOGENESIS 1 (SLC5A5) negative

THYROID DYSHORMONOGENESIS 2A (TPO) negative THYROID DYSHORMONOGENESIS 3 (TG) negative THYROID DYSHORMONOGENESIS 6 (DUOX2) negative

TRANSCOBALAMIN II DEFICIENCY (TCN2) negative
TRICHOHEPATOENTERIC SYNDROME, SKIC2-RELATED (SKIC2) negative
TRICHOHEPATOENTERIC SYNDROME, TTC37-RELATED (TTC37) negative

TRICHOTHIODYSTROPHY 1/XERODERMA PIGMENTOSUM, GROUP D (ERCC2) negative

TRIMETHYLAMINURIA (FMO3) negative TRIPLE A SYNDROME (AAAS) negative TSHR-RELATED CONDITIONS (TSHR) negative

TYROSINEMIA TYPE III (HPD) negative TYROSINEMIA, TYPE 1 (FAH) negative TYROSINEMIA, TYPE 2 (TAT) negative

USHER SYNDROME, TYPE 1B (MYO7A) negative

USHER SYNDROME, TYPE 1C (USH1C) negative

USHER SYNDROME, TYPE 1D (CDH23) negative

USHER SYNDROME, TYPE 1F (PCDH15) negative USHER SYNDROME, TYPE 1J/DEAFNESS, AUTOSOMAL RECESSIVE, 48 (CIB2) negative USHER SYNDROME, TYPE 2A (USH2A) negative

USHER SYNDROME, TYPE 2C (ADGRV1) negative USHER SYNDROME, TYPE 3 (CLRN1) negative

VERY LONG-CHAIN ACYL-CoA DEHYDROGENASE DEFICIENCY (ACADVL) negative VICI SYNDROME (EPG5) negative

VITAMIN D-DEPENDENT RICKETS, TYPE 1A (CYP27B1) negative

VITAMIN D-RESISTANT RICKETS TYPE 2A (VDR) negative VLDLR-ASSOCIATED CEREBELLAR HYPOPLASIA (VLDLR) negative

WALKER-WARBURG SYNDROME, CRPPA-RELATED (CRPPA) negative WALKER-WARBURG SYNDROME, FKTN-RELATED (FKTN) negative

WALKER-WARBURG SYNDROME, LARGE1-RELATED (LARGE1) negative

WALKER-WARBURG SYNDROME, POMT1-RELATED (POMT1) negative WALKER-WARBURG SYNDROME, POMT2-RELATED (POMT2) negative

WARSAW BREAKAGE SYNDROME (DDX11) negative

WERNER SYNDROME (WRN) negative
WILSON DISEASE (ATP7B) negative
WOLCOTT-RALLISON SYNDROME (EIF2AK3) negative

WOLMAN DISEASE (LIPA) negative WOODHOUSE-SAKATI SYNDROME (DCAF17) negative

XERODERMA PIGMENTOSUM VARIANT TYPE (POLH) negative XERODERMA PIGMENTOSUM, GROUP A (XPA) negative XERODERMA PIGMENTOSUM, GROUP C (XPC) negative

Z ZELLWEGER SPECTRUM DISORDER, PEX13-RELATED (PEX13) negative ZELLWEGER SPECTRUM DISORDER, PEX16-RELATED (PEX16) negative ZELLWEGER SPECTRUM DISORDER, PEXS-RELATED (PEXS) negative ZELLWEGER SPECTRUM DISORDERS, PEX10-RELATED (PEX10) negative ZELLWEGER SPECTRUM DISORDERS, PEX12-RELATED (PEX12) negative ZELLWEGER SPECTRUM DISORDERS, PEX1-RELATED (PEX1) negative ZELLWEGER SPECTRUM DISORDERS, PEX26-RELATED (PEX26) negative ZELLWEGER SPECTRUM DISORDERS, PEX2-RELATED (PEX26) negative

Patient Name:

Test Information
Ordering Physician:

horizon natera carrier screen

Date Of Birth: Case File ID:

Report Date:

Clinic Information:

 ${\bf Z}$ ZELLWEGER SPECTRUM DISORDERS, PEX6-RELATED (PEX6) $\,$ negative

Patient	Information
D 11 1	N.I.

Patient Name:

Test InformationOrdering Physician:

Clinic Information:

Date Of Birth: Case File ID:

Report Date:

Testing Methodology, Limitations, and Comments:

Next-generation sequencing (NGS)

Sequencing library prepared from genomic DNA isolated from a patient sample is enriched for targets of interest using standard hybridization capture protocols and PCR amplification (for targets specified below). NGS is then performed to achieve the standards of quality control metrics, including a minimum coverage of 99% of targeted regions at 20X sequencing depth. Sequencing data is aligned to human reference sequence, followed by deduplication, metric collection and variant calling (coding region +/- 20bp). Variants are then classified according to ACMGG/AMP standards of interpretation using publicly available databases including but not limited to ENSEMBL, HGMD Pro, ClinGen, ClinVar, 1000G, ESP and gnomAD. Variants predicted to be pathogenic or likely pathogenic for the specified diseases are reported. It should be noted that the data interpretation is based on our current understanding of the genes and variants at the time of reporting. Putative positive sequencing variants that do not meet internal quality standards or are within highly homologous regions are confirmed by Sanger sequencing or gene-specific long-range PCR as needed prior to reporting.

Copy Number Variant (CNV) analysis is limited to deletions involving two or more exons for all genes on the panel, in addition to specific known recurrent single-exon deletions. CNVs of small size may have reduced detection rate. This method does not detect gene inversions, single-exonic and sub-exonic deletions (unless otherwise specified), and duplications of all sizes (unless otherwise specified). Additionally, this method does not define the exact breakpoints of detected CNV events. Confirmation testing for copy number variation is performed by specific PCR, Multiplex Ligation-dependent Probe Amplification (MLPA), next generation sequencing, or other methodology.

This test may not detect certain variants due to local sequence characteristics, high/low genomic complexity, homologous sequence, or allele dropout (PCR-based assays). Variants within noncoding regions (promoter, 5'UTR, 3'UTR, deep intronic regions, unless otherwise specified), small deletions or insertions larger than 25bp, low-level mosaic variants, structural variants such as inversions, and/or balanced translocations may not be detected with this technology.

SPECIAL NOTES

For ABCC6, variants in exons 1-9 are not detected due to the presence of regions of high homology.

For CFTR, when the CFTR R117H variant is detected, reflex analysis of the polythymidine variations (5T, 7T and 9T) at the intron 9 branch/acceptor site of the CFTR gene will be performed.

For CYP21A2, targets were enriched using long-range PCR amplification, followed by next generation sequencing. Duplication analysis will only be performed and reported when c.955C>T (p.Q319*) is detected. Sequencing and CNV analysis may have reduced sensitivity, if variants result from complex rearrangements, in trans with a gene deletion, or CYP21A2 gene duplication on one chromosome and deletion on the other chromosome. This analysis cannot detect sequencing variants located on the CYP21A2 duplicated copy.

For DDX11, only NM_030653.3:c.1763 - 1G > C variant will be analyzed and reported.

For HBA1/HBA2, CNV analysis is offered to detect common deletions of -alpha3.7, -alpha4.2, --MED, --SEA, --FIL, --THAI, --alpha20.5, and/or HS-40.

For OTOA, variants in exons 20 - 28 are not analyzed due to high sequence homology.

For RPGRIP1L, variants in exon 23 are not detected due to assay limitation.

For SAMD9, only p.K1495E variant will be analyzed and reported.

Friedreich Ataxia (FXN)

The GAA repeat region of the FXN gene is assessed by trinucleotide PCR assay and capillary electrophoresis. Variances of +/-1 repeat for normal alleles and up to +/-3 repeats for premutation alleles may occur. For fully penetrant expanded alleles, the precise repeat size cannot be determined, therefore the approximate allele size is reported. Sequencing and copy number variants are analyzed by next-generation sequencing analysis.

Friedreich Ataxia Repeat Categories

Categories	GAA Repeat Sizes
Normal	<34
Premutation	34 - 65
Full	>65

Patient Information Patient Name:	Test Information Ordering Physician:
Date Of Birth:	Clinic Information:
Case File ID:	Report Date:

Spinal Muscular Atrophy (SMN1)

The total combined copy number of SMN1 and SMN2 exon 7 is quantified based on NGS read depth. The ratio of SMN1 to SMN2 is calculated based on the read depth of a single nucleotide that distinguishes these two genes in exon 7. In addition to copy number analysis, testing for the presence or absence of a single nucleotide polymorphism (g.27134T>G in intron 7 of SMN1) associated with the presence of a SMN1 duplication allele is performed using NGS.

Ethnicity T	Two SMN1 copies carrier risk before g.27134T>G testing	Carrier risk after g.27134T	Carrier risk after g.27134T>G testing		
		g.27134T>G ABSENT	g.27134T>G PRESENT		
Caucasian	1 in 632	1 in 769	1 in 29		
Ashkenazi Jewish	1 in 350	1 in 580	LIKELY CARRIER		
Asian	1 in 628	1 in 702	LIKELY CARRIER		
African-American	1 in 121	1 in 396	1 in 34		
Hispanic	1 in 1061	1 in 1762	1 in 140		

Variant Classification

Only pathogenic or likely pathogenic variants are reported. Other variants including benign variants, likely benign variants, variants of uncertain significance, or inconclusive variants identified during this analysis may be reported in certain circumstances. Our laboratory's variant classification criteria are based on the ACMG and internal guidelines and our current understanding of the specific genes. This interpretation may change over time as more information about a gene and/or variant becomes available. Natera and its lab partner(s) may reclassify variants at certain intervals but may not release updated reports without a specific request made to Natera by the ordering provider. Natera may disclose incidental findings if deemed clinically pertinent to the test performed.

Negative Results

A negative carrier screening result reduces the risk for a patient to be a carrier of a specific disease but does not completely rule out carrier status. Please visit https://www.natera.com/panel-option/h-all/ for a table of carrier rates, detection rates, residual risks and promised variants/exons per gene. Carrier rates before and after testing vary by ethnicity and assume a negative family history for each disease screened and the absence of clinical symptoms in the patient. Any patient with a family history for a specific genetic disease will have a higher carrier risk prior to testing and, if the disease-causing mutation in their family is not included on the test, their carrier risk would remain unchanged. Genetic counseling is recommended for patients with a family history of genetic disease so that risk figures based on actual family history can be determined and discussed along with potential implications for reproduction. Horizon carrier screening has been developed to identify the reproductive risks for monogenic inherited conditions. Even when one or both members of a couple screen negative for pathogenic variants in a specific gene, the disease risk for their offspring is not zero. There is still a low risk for the condition in their offspring due to a number of different mechanisms that are not detected by Horizon including, but not limited to, pathogenic variant(s) in the tested gene or in a different gene not included on Horizon, pathogenic variant(s) in an upstream regulator, uniparental disomy, de novo mutation(s), or digenic or polygenic inheritance.

Additional Comments

These analyses generally provide highly accurate information regarding the patient's carrier status. Despite this high level of accuracy, it should be kept in mind that there are many potential sources of diagnostic error, including misidentification of samples, polymorphisms, or other rare genetic variants that interfere with analysis. Families should understand that rare diagnostic errors may occur for these reasons.

Nichols Institute, Chantilly

SPECIMEN INFORMATION

SPECIMEN:
REQUISITION:
LAB REF NO:

COLLECTED: 06/12/2024 15:00 RECEIVED: 06/13/2024 14:29 REPORTED: 06/21/2024 12:53 PATIENT INFORMATION

DONOR,7624

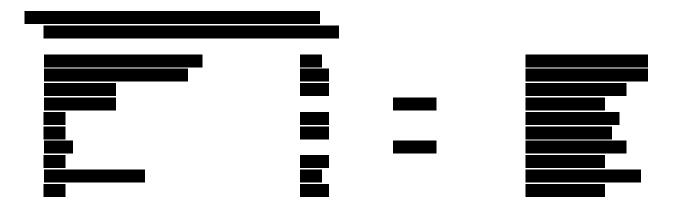
DOB: SEX: M

Age:

ID: 7624-PHONE: REPORT STATUS Final

ORDERING PHYSICIAN

CLIENT INFORMATION


Test Name	In Range	Out of Range	Reference Range	Lab
Hemoglobinopathy Evaluation				AMD
Red Blood Cell Count HEMOGLOBIN Hematocrit	5.64 16.4		4.20-5.80 Mill/uL 13.2-17.1 g/dL	
Hematocrit MCV MCH RDW	91.8 29.1 12.0	51.8 н	38.5-50.0 % 80.0-100.0 fL 27.0-33.0 pg 11.0-15.0 %	
Hemoglobin A Hemoglobin F Hemoglobin A2 (Quant) Interpretation	97.7 0.0 2.3		>96.0 % <2.0 % 2.0-3.2 %	

NORMAL PATTERN

normal levels of Hb A2 and Hb F are present. No variant hemoglobins are observed. This is consistent with A/A phenotype.

If iron deficiency coexists with a mild/silent beta thalassemia trait Hb A2 may be in the normal range. Rare variant hemoglobins have no separation from hemoglobin A by capillary zone electrophoresis (CZE) or high-performance liquid chromatography (HPLC). If clinically indicated, Thalassemia and Hemoglobinopathy Comprehensive (TC 17365) should be considered.

There is a normal pattern of hemoglobins and

PATIENT INFORMATION DONOR, 7624

REPORT STATUS

Final

Nichols Institute, Chantilly

DOB:

Age:

ORDERING PHYSICIAN

COLLECTED: 06/12/2024 15:00 REPORTED: 06/21/2024 12:53

SEX: M ID: 7624

Test Name

In Range
Out of Range
Reference Range
Lab

Chromosome Analysis, Blood Chromosome Analysis, Blood Chromosome Analysis, Blood

Order ID:

Specimen Type:

Clinical Indication: Gamete donor

RESULT:

NORMAL MALE KARYOTYPE

INTERPRETATION:

Chromosome analysis revealed normal G-band patterns within the limits of standard cytogenetic analysis.

Blood

Please expect the results of any other concurrent study in a separate report.

NOMENCLATURE:

46,XY

ASSAY INFORMATION:

Method: G-Band (Digital Analysis:

 ${\tt MetaSystems/Ikaros)}$

Cells Counted: 20
Band Level: 550
Cells Analyzed: 6
Cells Karyotyped: 6

This test does not address genetic disorders that cannot be detected by standard cytogenetic methods or rare events such as low level mosaicism or subtle rearrangements.

Steven A. Schonberg, Ph.D., FACMG, Technical Director, Cytogenetics

PATIENT INFORMATION DONOR, 7624

REPORT STATUS

Final

Nichols Institute, Chantilly

Test Name

DOB:

Age:

ORDERING PHYSICIAN

COLLECTED: 06/12/2024 15:00 REPORTED: 06/21/2024 12:53

SEX: M ID: 7624

In Range Out of Range Reference Range

Lab

Chromosome Analysis, Blood (Continued) Chromosome Analysis, Blood (Continued)

and Genomics, 703-802-7156

Electronic Signature:

6/21/2024 12:10 PM

For additional information, please refer to http://education.questdiagnostics.com/faq/chromsblood (This link is being provided for informational/educational purposes only).

Performing Laboratory Information:

AMD Quest Diagnostics Nichols Institute 14225 Newbrook Drive Chantilly VA 20151 Laboratory Director: Patrick W Mason, MD PhD