

Donor 7169

Genetic Testing Summary

Fairfax Cryobank recommends reviewing this genetic testing summary with your healthcare provider to determine suitability.

Last Updated: 2/24/2025

Donor Reported Ancestry: African American Jewish Ancestry: No

Genetic Test*	Result	Comments/Donor's Residual
		Risk**

Chromosome analysis (karyotype)	Normal male karyotype	No evidence of clinically significant chromosome abnormalities
Hemoglobin evaluation	Normal hemoglobin fractionation and MCV/MCH results	Reduced risk to be a carrier for sickle cell anemia, beta thalassemia, alpha thalassemia trait (aa/ and a-/a-) and other hemoglobinopathies
Expanded Genetic Disease Carrier Screening Panel attached- 549 diseases by gene sequencing.	Carrier: Congenital Adrenal Hyperplasia, 21-Hydroxylase Deficiency (CYP21A2) Carrier: Joubert Syndrome, AHI1- Related (AHI1) Carrier: J Thyroid Dyshormonogenesis 6 (DUOX2) Negative for other genes sequenced.	Partner testing is recommended before using this donor.

^{*}No single test can screen for all genetic disorders. A negative screening result significantly reduces, but cannot eliminate, the risk for these conditions in a pregnancy.

^{**}Donor residual risk is the chance the donor is still a carrier after testing negative.

Patient Name: Donor 7169

Date Of Birth:

Gender: Male

Ethnicity: African American/Black

N/A

Patient ID: N/A
Medical Record #: N/A

Collection Kit:
Accession ID:
Case File ID:

Test Information
Ordering Physicia

Ordering Physician:

Clinic Information: Fairfax Cryobank

Phone:

Report Date:
Sample Collected:
Sample Received:
Sample Type:

horizon[™]
natera carrier screen

CARRIER SCREENING REPORT

ABOUT THIS SCREEN: Horizon™ is a carrier screen for specific autosomal recessive and X-linked diseases. This information can help patients learn their risk of having a child with specific genetic conditions.

ORDER SELECTED: The Horizon Custom panel was ordered for this patient. Males are not

screened for X-linked diseases

FINAL RESULTS SUMMARY:

12/29/2024

12/16/2024

12/17/2024

Blood

CARRIER for Congenital Adrenal Hyperplasia, 21-Hydroxylase Deficiency

Positive for the likely pathogenic variant c.-113G>A in the CYP21A2 gene. This variant has been reported in a homozygous state or in conjunction with another variant in individual(s) with non-classic congenital adrenal hyperplasia (PMID: 17666484, 19449670, 23359698, 30968594, 30995443, 32616876). It was often detected with other promoter variants including c.(-126C>T; -113G>A; -110T>C; -103A>G). If this individual's partner is a carrier for CONGENITAL ADRENAL HYPERPLASIA, 21-HYDROXYLASE DEFICIENCY, their chance to have a child with this condition is 1 in 4 (25%). Carrier screening for this individual's partner is recommended.

CARRIER for Joubert Syndrome, AHI1-Related

Positive for the likely pathogenic variant c.2623+1G>A in the AHI1 gene. If this individual's partner is a carrier for JOUBERT SYNDROME, AHI1-RELATED, their chance to have a child with this condition may be as high as 1 in 4 (25%). Carrier screening for this individual's partner is suggested.

CARRIER for Thyroid Dyshormonogenesis 6

Positive for the pathogenic variant c.1462G>A (p.G488R) in the DUOX2 gene. If this individual's partner is a carrier for THYROID DYSHORMONOGENESIS 6, their chance to have a child with this condition is 1 in 4 (25%). Carrier screening for this individual's partner is suggested.

Negative for 546 out of 549 diseases

No other pathogenic variants were detected in the genes that were screened. The patient's remaining carrier risk after the negative screening results is listed for each disease/gene on the Horizon website at https://www.natera.com/panel-option/h-all/. Please see the following pages of this report for a comprehensive list of all conditions included on this individual's screen.

Carrier screening is not diagnostic and may not detect all possible pathogenic variants in a given gene.

RECOMMENDATIONS

Individuals who would like to review their Horizon report with a Natera Laboratory Genetic Counselor may schedule a telephone genetic information session by calling 650-249-9090 or visiting naterasession.com. Clinicians with questions may contact Natera at 650-249-9090 or email support@natera.com. Individuals with positive results may wish to discuss these results with family members to allow them the option to be screened. Comprehensive genetic counseling to discuss the implications of these test results and possible associated reproductive risk is recommended.

Christine M. Eng, M.D.
Medical Director, Baylor Genetics

Drumberkun J. Dianne Keen-Kim, Ph.D., FACMGG un Chen, Ph.D.

Yang Wang, Ph.D., FACMGG

Patient Name: Donor 7169

Test Information

Ordering Physician:

Clinic Information: Fairfax Cryobank

Date Of Birth: Case File ID:

Report Date: 12/29/2024

CONGENITAL ADRENAL HYPERPLASIA, 21-HYDROXYLASE DEFICIENCY

Understanding Your Horizon Carrier Screen Results

What is Congenital Adrenal Hyperplasia, 21-Hydroxylase Deficiency?

Congenital Adrenal Hyperplasia, 21-Hydroxylase Deficiency (also called 21-Hydroxylase Deficiency) is an inherited disorder that causes the adrenal glands, the organs that sit on top of the kidneys, to make decreased amounts of the hormones cortisol and aldosterone and increased amounts of male sex hormones called androgens.

There are three forms of 21-Hydroxylase Deficiency. The most common and severe form is called the 'salt-wasting type' with signs and symptoms that are often present at birth. Babies with the salt-wasting type of 21-Hydroxylase Deficiency are at risk for losing large amounts of sodium in the urine due to too low a level of aldosterone hormone. These 'salt-wasting crises' can lead to poor feeding, weight loss, dehydration, vomiting, low blood pressure, and shock, and can be life-threatening if not treated quickly. Symptoms in females include being born with external genitals that do not have the typical appearance of male or female (ambiguous genitalia). Over time, affected females may also have early puberty, rapid early growth with short adult height, increased body hair (hirsutism), male pattern baldness, irregular menstrual periods, and decreased fertility. Affected males have normal genitals at birth but are at risk for salt-wasting crises and may have increased penis size and decreased testicle size over time as well as an early growth spurt with short adult height. Some males with this form have decreased fertility due to benign growths in their testicles called 'testicular adrenal rest tumors' (TART).

The 'simple virilizing type' of 21-Hydroxylase Deficiency has similar symptoms to the salt-wasting type except babies with the simple virilizing type are not at risk for salt wasting crises.

The mildest form of 21-Hydroxylase Deficiency is called the 'non-classical type'. People with the nonclassical type of 21-Hydroxylase Deficiency have normal external genitals. Signs and symptoms may begin as early as childhood or not until adulthood and may include an early growth spurt with short adult height, early puberty, and acne. Additional symptoms in females may include excess body hair, male pattern baldness, irregular periods, and decreased fertility. Additional symptoms in males may include early and heavy facial hair and small testicles. Some people with this type never develop symptoms.

Currently, there is no cure for 21-Hydroxylase Deficiency. However, hormone replacement therapy can prevent or lessen some or all of the symptoms. Clinical trials involving potential new treatments for this condition may be available (see www.clinicaltrials.gov).

What causes Congenital Adrenal Hyperplasia, 21-Hydroxylase Deficiency?

21-Hydroxylase Deficiency is caused by a change, or mutation, in both copies of the CYP21A2 gene pair. These mutations cause the genes to not work properly or not work at all. The function of the CYP21A2 genes is to help make sex hormones and other hormones. When both copies of this gene do not work correctly, it leads to the symptoms described above.

21-Hydroxylase Deficiency is inherited in an autosomal recessive manner. This means that, in most cases, both parents must be carriers of a mutation in one copy of the CYP21A2 gene to have a child with 21-Hydroxylase Deficiency. People who are carriers for 21-Hydroxylase Deficiency are usually healthy and do not have symptoms nor do they have the disorder themselves. Usually a child inherits two copies of each gene, one copy from the mother and one copy from the father. If the mother and father are both carriers for 21-Hydroxylase Deficiency, there is a 1 in 4, or 25%, chance in each pregnancy for both partners to pass on their CYP21A2 gene mutations to the child, who will then have this condition. It is sometimes, but not always, possible to determine whether a specific mutation in the CYP21A2 gene will cause the salt-wasting type, the simple virilizing type, or the non-classic type of 21-Hydroxylase Deficiency.

Individuals found to carry more than one mutation for 21-Hydroxylase Deficiency should discuss their risk for having an affected child, and any potential effects to their own health, with their health care provider.

There are a number of other forms of Congenital Adrenal Hyperplasia, each caused by mutations in different genes. A person who is a carrier for Congenital Adrenal Hyperplasia, 21-Hydroxylase Deficiency is not likely to be at increased risk for having a child with these other forms.

What can I do next?

You may wish to speak with a local genetic counselor about your carrier test results. A genetic counselor in your area can be located on the National Society of Genetic Counselors website (www.nsgc.org).

Your siblings and other relatives are at increased risk to also have this mutation. You are encouraged to inform your family members of your test results as they may wish to consider being tested themselves.

If you are pregnant, your partner can have carrier screening for 21-Hydroxylase Deficiency ordered by a health care professional. If your partner is not found to be a carrier for 21-Hydroxylase Deficiency, your risk of having an affected child is greatly reduced. Couples at risk of having a baby with 21-Hydroxylase Deficiency can opt to have prenatal diagnosis done through chorionic villus sampling (CVS) or amniocentesis during pregnancy or can choose to have the baby tested after birth for this condition. If you are not yet pregnant, your partner can have carrier screening for 21-Hydroxylase Deficiency ordered by a health care professional. If your partner is found to be a carrier for 21-Hydroxylase Deficiency, you have several reproductive options to consider:

- Natural pregnancy with or without prenatal diagnostic testing of the fetus or testing the baby after birth for 21-Hydroxylase Deficiency
- Preimplantation genetic diagnosis (PGD) with in vitro fertilization (IVF) to test embryos for 21Hydroxylase Deficiency
- Adoption or use of a sperm or egg donor who is not a carrier for 21-Hydroxylase Deficiency

What resources are available?

- Genetics Home Reference: http://ghr.nlm.nih.gov/condition/21-hydroxylase-deficiency
- GeneReviews: https://www.ncbi.nlm.nih.gov/books/NBK1171/
- Prenatal diagnosis by CVS: http://www.marchofdimes.org/chorionic-villus-sampling.aspx

Patient Name:

Test Information

Clinic Information:

Ordering Physician:

Date Of Birth:

Case File ID:

Report Date:

- Prenatal diagnosis by amniocentesis: http://www.marchofdimes.org/amniocentesis.aspx
 PGD with IVF: http://www.natera.com/spectrum

Pa	itie	nt	Information	1
_				

atient Name:		

Test Information	
Ordering Physician:	

Date Of Birth: Case File ID:

Report Date:

Clinic Information:

JOUBERT SYNDROME, AHI1-RELATED

Understanding Your Horizon Carrier Screen Results

What is Joubert Syndrome, AHI1-Related?

Joubert Syndrome, AHI1-Related (also known as Joubert Syndrome 3) is an inherited disorder that affects many parts of the body. Affected children are born with abnormalities in the parts of the brain called the cerebellum and brainstem. Signs and symptoms of Joubert Syndrome, AHI1-Related begin in infancy and include breathing problems, feeding problems, poor muscle tone, abnormal eye movements, unusual facial features, and developmental delay. Affected children may have mild to severe intellectual disability, gait problems (ataxia), vision problems, seizures, and liver, and/or kidney disease. Currently, there is no cure or specific treatment for Joubert Syndrome, AHI1-Related. Clinical trials involving potential new treatments for this condition may be available (see www.clinicaltrials.gov).

What causes Joubert Syndrome, AHI1-Related?

Joubert Syndrome, AHI1-Related is caused by a change, or mutation, in both copies of the AHI1 gene pair. These mutations cause the genes to not work properly or not work at all. When both copies of this gene pair do not work correctly, it leads to the symptoms described above. Joubert Syndrome, AHI1-Related is inherited in an autosomal recessive manner. This means that, in most cases, both parents must be carriers of a mutation in one copy of the AHI1 gene to have a child with Joubert Syndrome, AHI1-Related. People who are carriers for Joubert Syndrome, AHI1-Related are usually healthy and do not have symptoms, nor do they have the disorder themselves. Usually a child inherits two copies of each gene, one copy from the mother and one copy from the father. If the mother and father are both carriers for Joubert Syndrome, AHI1-Related, there is a 1 in 4, or 25%, chance in each pregnancy for both partners to pass on their AHI1 gene mutations to the child, who will then have this disorder. Individuals found to carry more than one mutation for Joubert Syndrome AHI1-Related should discuss their risk for having an affected child with their health care provider.

What can I do next?

You may wish to speak with a local genetic counselor about your carrier test results. A genetic counselor in your area can be located on the National Society of Genetic Counselors website (www.nsgc.org). Your siblings and other relatives are at increased risk to also have this mutation. You are encouraged to inform your family members of your test results as they may wish to consider being tested themselves. If you are pregnant, your partner can have carrier screening for Joubert Syndrome, AHI1-Related ordered by a health care professional. If your partner is not found to be a carrier for Joubert Syndrome, AHI1-Related, your risk of having a child with this disorder is greatly reduced. Couples at risk of having a baby with Joubert Syndrome, AHI1-Related can opt to have prenatal diagnosis done through chorionic villus sampling (CVS) or amniocentesis during pregnancy or can choose to have the baby tested after birth. If you are not yet pregnant, your partner can have carrier screening for Joubert Syndrome, AHI1-Related ordered by a health care professional. If your partner is found to be a carrier for Joubert Syndrome, AHI1-Related, you have several reproductive options to consider:

- Natural pregnancy with or without prenatal diagnosis of the fetus or testing the baby after birth for Joubert Syndrome, AHI1-Related
- Preimplantation genetic diagnosis (PGD) with in vitro fertilization (IVF) to test embryos for Joubert Syndrome, AHI1-Related
- Adoption or use of a sperm or egg donor who is not a carrier for Joubert Syndrome, AHI1-Related

What resources are available?

- Genetics Home Reference: http://ghr.nlm.nih.gov/condition/joubert-syndrome
- Prenatal diagnosis done through CVS: http://www.marchofdimes.org/chorionic-villus-sampling.aspx
- Prenatal diagnosis done through Amniocentesis: http://www.marchofdimes.org/amniocentesis.aspx
- PGD with IVF: http://www.natera.com/spectrum

Patient	Information
Patient	Name:

l est information	
Ordering Physician:	

Clinic Information:

Date Of Birth: Case File ID:

Report Date:

THYROID DYSHORMONOGENESIS 6

Understanding Your Horizon Carrier Screen Results

What does being a carrier mean?

Your results show that you are a carrier of thyroid dyshormonogenesis 6 (TDH6). Most people with a variant in this gene are carriers of TDH6, but do not have the condition. Some people with a variant in this gene have symptoms of TDH6 as babies that go away as they age.

Your children are at risk for TDH6 or for short-term symptoms of this condition, but you are not certain to have a child with this condition. Further testing can be done to see if your partner or donor is a carrier.

What is thyroid dyshormonogenesis 6 (TDH6)?

TDH6 causes the body to not make enough thyroid hormones, resulting in congenital hypothyroidism (CH).^{1,2} Some people with CH have no symptoms. Other people with CH can be less active, sleep more than normal, and have feeding problems or constipation. People with CH that is not treated can also have slow growth and intellectual disability.² With early treatment, people with TDH6 usually have normal development.³ Newborn screening can detect over 90% of babies with CH.⁴

Carriers of TDH6 can have mild hypothyroidism as babies. Thyroid hormone levels can be lower than average at birth and increase with age. 1.2

Clinical trials involving potential new treatments for this condition could be available (see clinicaltrials.gov).

What causes thyroid dyshormonogenesis 6 (TDH6)?

TDH6 is caused by changes, or variants, in the DUOX2 gene. These changes make the gene not work properly. Genes are a set of instructions inside the cells of our bodies that tell our bodies how to grow and function. Everyone has two copies of the DUOX2 gene. Carriers of TDH6 have one working copy and one non-working copy of the gene. Some carriers have low levels of thyroid hormones as babies, but have normal thyroid function as they get older. People with TDH6 have no working copies of the gene.

TDH6 is usually passed down, or inherited, from both genetic parents. We inherit one copy of the DUOX2 gene from each of our genetic parents. When both genetic parents are carriers, each child has a 1 in 4 (25%) chance of inheriting two non-working genes and having TDH6. Each child also has a 1 in 2 (50%) chance of being a carrier of TDH6 and a 1 in 4 (25%) chance of inheriting two working copies of the gene. This type of inheritance is called autosomal recessive inheritance.

Will my children have thyroid dyshormonogenesis 6 (TDH6)?

If your partner or donor also has a non-working copy of the DUOX2 gene, your children could have TDH6. Each child you have together would have a 1 in 4 (25%) chance of having TDH6. Each child you have together would also have a 1 in 4 (25%) chance of **not** having any variants in the DUOX2 gene. Each child would have a 1 in 2 (50%) chance of being a carrier and could have symptoms of the condition as a baby.

If your partner or donor has DUOX2 carrier screening and no variants are found, the chance that your children would have two TDH6 variants is very low. In this situation, each child you have together would have a 1 in 2 (50%) chance of being a carrier and could have symptoms of TDH6 as a baby.

What can I do next?

If you want to know if your children are at risk for TDH6, your partner or donor would need to have DUOX2 carrier screening. If you have questions about this testing, please ask your healthcare provider or use the resources below. Many people find it helpful to speak with a genetic counselor.

If your partner or donor is found to be a TDH6 carrier, your children would be at risk for having TDH6. Your children are also at risk of being carriers who have low levels of thyroid hormones as babies.

If you or your partner or surrogate are currently pregnant, tests called CVS (chorionic villus sampling) and amniocentesis can be done during pregnancy to find out if a baby has TDH6. These tests both have a small risk of miscarriage. Babies can also be tested for TDH6 after birth instead.

If you or your partner or surrogate are not yet pregnant, you could have these options:

- natural pregnancy with CVS or amniocentesis to test for TDH6 during pregnancy;
- natural pregnancy and testing the baby after birth for TDH6;
- preimplantation genetic testing (PGT-M) with in vitro fertilization (IVF) to test embryos for TDH6;
- adoption; or
- use of a sperm or egg donor who had no variants found in DUOX2 carrier screening.

Where can I find more information?

- Pediatric Endocrine Society <u>pedsendo.org/patient-resource/congenital-hypothyroidism</u>
- American Thyroid Association thyroid.org/professionals
- CVS marchofdimes.org/chorionic-villus-sampling
- Amniocentesis <u>marchofdimes.org/pregnancy/amniocentesis</u>
- PGT-M natera.com/womens-health/spectrum-preimplantation-genetics

What does this mean for my family?

Patient Information
Patient Name:

atient Name:		

Test Information	
Ordering Physician:	

Date Of Birth: Case File ID:

Report Date:

Clinic Information:

You likely got (inherited) this non-working gene from one of your genetic parents. Your genetic siblings and other family members could also carry it. You should tell your family members about your test results so they can decide if they want carrier screening for TDH6.

References

- 1. Moreno JC et al. Inactivating mutations in the gene for thyroid oxidase 2 (THOX2) and congenital hypothyroidism. New Eng. J. Med. 347: 95-102, 2002.
- 2. Vigone MC et al. Persistent mild hypothyroidism associated with novel sequence variants of the DUOX2 gene in two siblings. Hum. Mutat. 26: 395, 2005.
- 3. MedlinePlus [Internet]. Bethesda (MD): National Library of Medicine (US). Congenital hypothyroidism; [updated 2015 Sep 1; cited 2024 March 3]. Available
- from: https://medlineplus.gov/genetics/condition/congenital-hypothyroidism/.

 4. Büyükgebiz A. Newborn screening for congenital hypothyroidism. J Clin Res Pediatr Endocrinol. 2013;5 Suppl 1(Suppl 1):8-12. doi: 10.4274/jcrpe.845. Epub 2012 Nov 15. PMID: 23154158; PMCID: PMC3608007.

Patient Information Patient Name:	Test Information Ordering Physician: Clinic Information:	horizo natera carrier scro
Date Of Birth:		
Case File ID:		

VARIANT DETAILS

AHI1, c.2623+1G>A, likely pathogenic

• The c.2623+1G>A variant in the AHI1 gene has been observed at a frequency of 0.0015% in the gnomAD v2.1.1 dataset.

Report Date:

- This canonical splicing variant is predicted to alter the reading frame and cause nonsense-mediated decay (NMD) in a gene where loss-of-function is a known mechanism of disease.
- This variant has been reported in ClinVar [ID: 842564].

CYP21A2, c.-113G>A, likely pathogenic

- The c.-113G>A variant in the CYP21A2 gene has been observed at a frequency of 0.2392% in the gnomAD v2.1.1 dataset.
- This variant has been reported in a homozygous state or in conjunction with another variant in individual(s) with non-classic congenital adrenal hyperplasia (PMID: 17666484, 19449670, 23359698, 30968594, 30995443, 32616876). It was often detected with other promoter variants including c.(-126C>T; -113G>A; -110T>C; -103A>G).
- Functional studies demonstrated that the c.-113G>A variant alone leads to an 80% decrease in transcription activity and a lower binding capacity to nuclear factors (PMID 9518489, 17666484).
- This variant has been reported in ClinVar [ID: 987867].

DUOX2, c.1462G>A (p.G488R), pathogenic

- The c.1462G>A (p.G488R) variant in the DUOX2 gene has been observed at a frequency of 0.0149% in the gnomAD v2.1.1 dataset.
- This variant has been reported in a homozygous state or in conjunction with another variant in individual(s) with thyroid dyshormonogenesis 6 (PMID: 29092890, 27821020, 26709262, 21900383).
- Functional studies demonstrated that this variant causes markedly reduced H2O2-producing activities (PMID: 21900383).
- This variant has been reported in ClinVar [ID: 225342].

Patient Name:

Test Information

Ordering Physician:

Clinic Information:

Date Of Birth: Case File ID:

Report Date:

DISEASES SCREENED

Below is a list of all diseases screened and the result. Certain conditions have unique patient-specific numerical values, therefore, results for those conditions are formatted differently.

Autosomal Recessive

17-BETA HYDROXYSTEROID DEHYDROGENASE 3 DEFICIENCY (HSD17B3) negative

3-BETA-HYDROXYSTEROID DEHYDROGENASE TYPE II DEFICIENCY (HSD3B2) negative 3-HYDROXY-3-METHYLGLUTARYL-COENZYME A LYASE DEFICIENCY (HMGCL) negative 3-HYDROXYACYL-COA DEHYDROGENASE DEFICIENCY (HADH) negative 3-METHYLCROTONYL-CoA CARBOXYLASE 2 DEFICIENCY (MCCC2) negative 3-PHOSPHOGLYCERATE DEHYDROGENASE DEFICIENCY (PHGDH) negative

5-ALPHA-REDUCTASE DEFICIENCY (SRD5A2) negative

6-PYRUVOYL-TETRAHYDROPTERIN SYNTHASE (PTPS) DEFICIENCY (PTS) negative

ABCA4-RELATED CONDITIONS (ABCA4) negative ABETALIPOPROTEINEMIA (MTTP) negative ACHONDROGENESIS, TYPE 1B (SLC26A2) negative ACHROMATOPSIA, CNGB3-RELATED (CNGB3) negative
ACRODERMATITIS ENTEROPATHICA (SLC39A4) negative
ACTION MYOCLONUS-RENAL FAILURE (AMRF) SYNDROME (SCARB2) negative ACUTE INFANTILE LIVER FAILURE, TRMU-RELATED (TRMU) negative ACYL-COA OXIDASE I DEFICIENCY (ACOX1) negative AICARDI-GOUTIÈRES SYNDROME (SAMHD1) negative AICARDI-GOUTIERES SYNDROME, RNASEH2A-RELATED (RNASEH2A) negative

AICARDI-GOUTIERES SYNDROME, RNASEH/2B-RELATED (RNASEH/2B) negative AICARDI-GOUTIERES SYNDROME, RNASEH/2C-RELATED (RNASEH/2C) negative AICARDI-GOUTIÈRES SYNDROME, TREX1-RELATED (TREX1) negative ALPHA-MANNOSIDOSIS (MAN2B1) negative

ALPHA-THALASSEMIA (HBA1/HBA2) negative ALPORT SYNDROME, COL4A3-RELATED (COL4A3) negative ALPORT SYNDROME, COL4A4-RELATED (COL4A4) negative

ALSTROM SYNDROME (ALMS1) negative
AMISH INFANTILE EPILEPSY SYNDROME (573GAL5) negative
ANDERMANN SYNDROME (SLC12A6) negative

ARGININE:GLYCINE AMIDINOTRANSFERASE DEFICIENCY (AGAT DEFICIENCY)

(GATM) negative
ARGININEMIA (ARG1) negative
ARGININOSUCCINATE LYASE DEFICIENCY (ASL) negative

ARGINIOSOCCINATE L'IASE DEFICIENCY (ASL) negative AROMATASE DEFICIENCY (CYP19A1) negative ASPARAGINE SYNTHETASE DEFICIENCY (ASNS) negative ASPARTYLGLYCOSAMINURIA (AGA) negative ATAXIA WITH VITAMIN E DEFICIENCY (TTPA) negative

ATAXIA-TELANGIECTASIA (ATM) negative ATAXIA-TELANGIECTASIA-LIKE DISORDER 1 (MRE11) negative

ATRANSFERRINEMIA (TF) negative

AUTISM SPECTRUM, EPILEPSY AND ARTHROGRYPOSIS (SLC35A3) negative AUTOIMMUNE POLYGLANDULAR SYNDROME, TYPE 1 (AIRE) negative AUTOSOMAL RECESSIVE CONGENITAL ICHTHYOSIS (ARCI), SLC27A4-RELATED

(SLC27A4) negative

AUTOSOMAL RECESSIVE SPASTIC ATAXIA OF CHARLEVOIX-SAGUENAY (SACS) negative

BARDET-BIEDL SYNDROME, ARL6-RELATED (ARL6) negative BARDET-BIEDL SYNDROME, BBS10-RELATED (BBS10) negative BARDET-BIEDL SYNDROME, BBS12-RELATED (BBS12) negative BARDET-BIEDL SYNDROME, BBS1-RELATED (BBS1) negative BARDET-BIEDL SYNDROME, BBS2-RELATED (BBS2) negative BARDET-BIEDL SYNDROME, BBS4-RELATED (BBS4) negative BARDET-BIEDL SYNDROME, BBS5-RELATED (BBS5) negative BARDET-BIEDL SYNDROME, BBS7-RELATED (BBS7) negative BARDET-BIEDL SYNDROME, BBS9-RELATED (BBS9) negative BARDET-BIEDL SYNDROME, TTC8-RELATED (TTC8) negative BART LYMPHOCYTE SYNDROME, CIITA-RELATED (CIITA) negative BARTTER SYNDROME, BSND-RELATED (BSND) negative BARTTER SYNDROME, KCNJ1-RELATED (KCNJ1) negative BARTTER SYNDROME, SLC12A1-RELATED (SLC12A1) negative BATTEN DISEASE, CLN3-RELATED (CLN3) negative BETA-HEMOGLOBINOPATHIES (HBB) negative BETA-KETOTHIOLASE DEFICIENCY (ACAT1) negative BETA-MANNOSIDOSIS (MANBA) negative
BETA-UREIDOPROPIONASE DEFICIENCY (UPB1) negative
BILATERAL FRONTOPARIETAL POLYMICROGYRIA (GPR56) negative BIOTINIDASE DEFICIENCY (BTD) negative BIOTIN-THIAMINE-RESPONSIVE BASAL GANGLIA DISEASE (BTBGD) (SLC19A3) negative BLOOM SYNDROME (BLM) negative BRITTLE CORNEA SYNDROME 1 (ZNF469) negative BRITTLE CORNEA SYNDROME 2 (PRDM5) negative

CANAVAN DISEASE (ASPA) negative CARBAMOYL PHOSPHATE SYNTHETASE I DEFICIENCY (CPS1) negative CARNITINE DEFICIENCY (SLC22A5) negative

CARNITINE PALMITOYLTRANSFERASE IA DEFICIENCY (CPT1A) negative CARNITINE PALMITOYLTRANSFERASE II DEFICIENCY (CPT2) negative CARNITINE-ACYLCARNITINE TRANSLOCASE DEFICIENCY (SLC25A20) negative

CARPENTER SYNDROME (RAB23) negative
CARTILAGE-HAIR HYPOPLASIA (RMRP) negative
CATECHOLAMINERGIC POLYMORPHIC VENTRICULAR TACHYCARDIA (CASQ2) negative

CD59-MEDIATED HEMOLYTIC ANEMIA (CD59) negative

CEP152-RELATED MICROCEPHALY (CEP152) negative CEREBRAL DYSGENESIS, NEUROPATHY, ICHTHYOSIS, AND PALMOPLANTAR KERATODERMA (CEDNIK) SYNDROME (SNAP29) negative

CEREBROTENDINOUS XANTHOMATOSIS (CYP27A1) negative CHARCOT-MARIE-TOOTH DISEASE, RECESSIVE INTERMEDIATE C (PLEKHG5) negative CHARCOT-MARIE-TOOTH-DISEASE, TYPE 4D (NDRG1) negative

CHEDIAK-HIGASHI SYNDROME (LYST) negative

CHOREOACANTHOCYTOSIS (VP513A) negative CHRONIC GRANULOMATOUS DISEASE, CYBA-RELATED (CYBA) negative

CHRONIC GRANULOMATOUS DISEASE, NCF2-RELATED (NCF2) negative

CILIOPATHIES, RPGRIP1L-RELATED (RPGRIP1L) negative CITRIN DEFICIENCY (SLC25A13) negative CITRULLINEMIA, TYPE 1 (ASS1) negative CLN10 DISEASE (CTSD) negative

COHEN SYNDROME (VPS13B) negative COL11A2-RELATED CONDITIONS (COL11A2) negative COMBINED MALONIC AND METHYLMALONIC ACIDURIA (ACSF3) negative COMBINED OXIDATIVE PHOSPHORYLATION DEFICIENCY 1 (GFM1) negative COMBINED OXIDATIVE PHOSPHORYLATION DEFICIENCY 3 (TSFM) negative COMBINED PITUITARY HORMONE DEFICIENCY 1 (POU1F1) negative

COMBINED PITUITARY HORMONE DEFICIENCY-2 (PROP1) negative

CONGENITAL ADRENAL HYPERPLASIA, 11-BETA-HYDROXYLASE DEFICIENCY

CONGENITAL ADRENAL HYPERPLASIA, 17-ALPHA-HYDROXYLASE DEFICIENCY (CYP17A1) negative CONGENITAL ADRENAL HYPERPLASIA, 21-HYDROXYLASE DEFICIENCY (CYP21A2) see

CONGENITAL ADRENAL INSUFFICIENCY, CYP11A1-RELATED (CYP11A1) negative

CONGENITAL AMEGAKARYOCYTIC THROMBOCYTOPENIA (MPL) negative
CONGENITAL CHRONIC DIARRHEA (DGAT1) negative
CONGENITAL DISORDER OF GLYCOSYLATION TYPE 1, ALG1-RELATED (ALG1) negative

CONGENITAL DISORDER OF GLYCOSYLATION, TYPE 1A, PMM2-Related (PMM2) negative CONGENITAL DISORDER OF GLYCOSYLATION, TYPE 1B (MPI) negative CONGENITAL DISORDER OF GLYCOSYLATION, TYPE 1C (ALG6) negative

CONGENITAL DYSERYTHROPOIETIC ANEMIA TYPE 2 (SEC23B) negative

CONGENITAL FINNISH NEPHROSIS (NPHS1) negative
CONGENITAL HYDROCEPHALUS 1 (CCDC88C) negative
CONGENITAL HYPERINSULINISM, KCNJ11-Related (KCNJ11) negative

CONGENITAL HYPERINSULINISM, RCNJ11-Related (RCNJ11) negative CONGENITAL INSENSITIVITY TO PAIN WITH ANHIDROSIS (CIPA) (NTRK1) negative CONGENITAL MYASTHENIC SYNDROME, CHAT-RELATED (CHAT) negative CONGENITAL MYASTHENIC SYNDROME, CHRNE-RELATED (CHRNE) negative CONGENITAL MYASTHENIC SYNDROME, COLQ-RELATED (COLQ) negative CONGENITAL MYASTHENIC SYNDROME, DOK7-RELATED (DOK7) negative CONGENITAL MYASTHENIC SYNDROME, RAPSN-RELATED (RAPSN) negative

CONGENITAL NEPHROTIC SYNDROME, PLCE1-RELATED (PLCE1) negative

CONGENITAL NEUTROPENIA, G6PC3-RELATED (G6PC3) negative CONGENITAL NEUTROPENIA, HAX1-RELATED (HAX1) negative CONGENITAL NEUTROPENIA, VPS45-RELATED (VPS45) negative CONGENITAL SECRETORY CHLORIDE DIARRHEA 1 (SLC26A3) negative

CORNEAL DYSTROPHY AND PERCEPTIVE DEAFNESS (SLC4A11) negative CORTICOSTERONE METHYLOXIDASE DEFICIENCY (CYP11B2) negative

COSTEFF SYNDROME (3-METHYLGLUTACONIC ACIDURIA, TYPE 3) (OPA3) negative

CRB1-RELATED RETINAL DYSTROPHIES (CRB1) negative CYSTIC FIBROSIS (CFTR) negative

CYSTINOSIS (CTNS) negative

CYTOCHROME C OXIDASE DEFICIENCY, PET100-RELATED (PET100) negative CYTOCHROME P450 OXIDOREDUCTASE DEFICIENCY (POR) negative

Patient Name:

Test Information

Ordering Physician:

Clinic Information:

Date Of Birth: Case File ID:

Report Date:

D-BIFUNCTIONAL PROTEIN DEFICIENCY (HSD1784) negative DEAFNESS, AUTOSOMAL RECESSIVE 77 (LOXHD1) negative

DIHYDROPTERIDINE REDUCTASE (DHPR) DEFICIENCY (QDPR) negative

DONNAI-BARROW SYNDROME (LRP2) negative
DUBIN-JOHNSON SYNDROME (ABCC2) negative
DYSKERATOSIS CONGENITA SPECTRUM DISORDERS (TERT) negative

DYSKERATOSIS CONGENITA, RTEL1-RELATED (RTEL1) negative DYSTROPHIC EPIDERMOLYSIS BULLOSA, COL7A1-Related (COL7A1) negative

EARLY INFANTILE EPILEPTIC ENCEPHALOPATHY, CAD-RELATED (CAD) negative EHLERS-DANLOS SYNDROME TYPE VI (PLOD1) negative EHLERS-DANLOS SYNDROME, CLASSIC-LIKE, TNXB-RELATED (TNXB) negative

EHLERS-DANLOS SYNDROME, TYPE VII C (ADAMTS2) negative ELLIS-VAN CREVELD SYNDROME, EVC2-RELATED (EVC2) negative ELLIS-VAN CREVELD SYNDROME, EVC-RELATED (EVC) negative

ENHANCED S-CONE SYNDROME (NR2E3) negative
EPIMERASE DEFICIENCY (GALACTOSEMIA TYPE III) (GALE) negative
EPIPHYSEAL DYSPLASIA, MULTIPLE, 7/DESBUQUOIS DYSPLASIA 1 (CANT1) negative

ERCC6-RELATED DISORDERS (ERCC6) negative

ERCC8-RELATED DISORDERS (ERCC8) negative ETHYLMALONIC ENCEPHALOPATHY (ETHE1) negative

FACTOR XI DEFICIENCY (F11) negative FAMILIAL DYSAUTONOMIA (IKBKAP) negative

FAMILIAL HEMOPHAGOCYTIC LYMPHOHISTIOCYTOSIS, PRF1-RELATED (PRF1) negative

FAMILIAL HEMOPHAGOCYTIC LYMPHOHISTIOCYTOSIS, STX11-RELATED (STX11) negative FAMILIAL HEMOPHAGOCYTIC LYMPHOHISTIOCYTOSIS, STXBP2-RELATED

(STXBP2) negative

FAMILIAL HEMOPHAGOCYTIC LYMPHOHISTIOCYTOSIS, UNC13D-RELATED

(UNC13D) negative FAMILIAL HYPERCHOLESTEROLEMIA, LDLRAP1-RELATED (LDLRAP1) negative

FAMILIAL HYPERCHOLESTEROLEMIA, LDLR-RELATED (LDLR) negative FAMILIAL HYPERCHOLESTEROLEMIA, LDLR-RELATED (LDLR) negative FAMILIAL HYPERINSULINISM, ABCC8-RELATED (ABCC8) negative FAMILIAL NEPHROGENIC DIABETES INSIPIDUS, AQP2-RELATED (AQP2) negative FANCONI ANEMIA, GROUP A (FANCA) negative FANCONI ANEMIA, GROUP C (FANCC) negative FANCONI ANEMIA, GROUP D2 (FANCD2) negative FANCONI ANEMIA, GROUP B (FANCE) negative FANCONI ANEMIA, GROUP F (FANCF) negative FANCONI ANEMIA, GROUP G (FANCG) negative FANCONI ANEMIA, GROUP J (FANCG) negative FANCONI ANEMIA, GROUP J (BRIP1) negative

FANCONI ANEMIA, GROUP L (FANCL) negative FARBER LIPOGRANULOMATOSIS (ASAH1) negative FOVEAL HYPOPLASIA (SLC38A8) negative FRASER SYNDROME 3, GRIP1-RELATED (GRIP1) negative

FRASER SYNDROME, FRAS1-RELATED (FRAS1) negative FRASER SYNDROME, FREM2-RELATED (FREM2) negative FRIEDREICH ATAXIA (FXN) negative

FRUCTOSE-1,6-BISPHOSPHATASE DEFICIENCY (FBP1) negative FUCOSIDOSIS, FUCA1-RELATED (FUCA1) negative FUMARASE DEFICIENCY (FH) negative

GABA-TRANSAMINASE DEFICIENCY (ABAT) negative GALACTOKINASE DEFICIENCY (GALACTOSEMIA, TYPE II) (GALK1) negative

GALACTOSEMIA (GALT) negative GALACTOSIALIDOSIS (CTSA) negative GAUCHER DISEASE (GBA) negative

GCH1-RELATED CONDITIONS (GCH1) negative

GDF5-RELATED CONDITIONS (GDF5) negative GERODERMA OSTEODYSPLASTICA (GORAB) negative

GITELMAN SYNDROME (SLC12A3) negative

GLANZMANN THROMBASTHENIA (ITGB3) negative GLUTARIC ACIDEMIA, TYPE 1 (GCDH) negative GLUTARIC ACIDEMIA, TYPE 2A (ETFA) negative

GLUTARIC ACIDEMIA, TYPE 2B (ETFB) negative

GLUTARIC ACIDEMIA, TYPE 2C (ETFDH) negative GLUTATHIONE SYNTHETASE DEFICIENCY (GSS) negative

GLYCINE ENCEPHALOPATHY, AMT-RELATED (AMT) negative

GLYCINE ENCEPHALOPATHY, GLDC-RELATED (GLDC) negative GLYCOGEN STORAGE DISEASE TYPE 5 (McArdle Disease) (PYGM) negative GLYCOGEN STORAGE DISEASE TYPE IXB (PHKB) negative

GLYCOGEN STORAGE DISEASE TYPE IXC (PHKG2) negative GLYCOGEN STORAGE DISEASE, TYPE 1a (G6PC) negative GLYCOGEN STORAGE DISEASE, TYPE 1b (SLC37A4) negative

GLYCOGEN STORAGE DISEASE, TYPE 2 (POMPE DISEASE) (GAA) negative GLYCOGEN STORAGE DISEASE, TYPE 3 (AGL) negative GLYCOGEN STORAGE DISEASE, TYPE 4 (GBE1) negative

GLYCOGEN STORAGE DISEASE, TYPE 7 (PFKM) negative GRACILE SYNDROME (BC511) negative
GUANIDINOACETATE METHYLTRANSFERASE DEFICIENCY (GAMT) negative

HARLEQUIN ICHTHYOSIS (ABCA12) negative

HEME OXYGENASE 1 DEFICIENCY (HMOX1) negative

HEMOCHROMATOSIS TYPE 2A (HFE2) negative
HEMOCHROMATOSIS, TYPE 3, TFR2-Related (TFR2) negative
HEPATOCEREBRAL MITOCHONDRIAL DNA DEPLETION SYNDROME, MPV17-RELATED

(MPV17) negative

HEREDITARY FRUCTOSE INTOLERANCE (ALDOB) negative
HEREDITARY HEMOCHROMATOSIS TYPE 2B (HAMP) negative
HEREDITARY SPASTIC PARAPARESIS, TYPE 49 (TECPR2) negative

HEREDITARY SPASTIC PARAPLEGIA, CYP7B1-RELATED (CYP7B1) negative HERMANSKY-PUDLAK SYNDROME, AP3B1-RELATED (AP3B1) negative HERMANSKY-PUDLAK SYNDROME, BLOC1S3-RELATED (BLOC1S3) negative

HERMANSKY-PUDLAK SYNDROME, BLOC156-RELATED (BLOC156) negative HERMANSKY-PUDLAK SYNDROME, HPS1-RELATED (HPS1) negative HERMANSKY-PUDLAK SYNDROME, HPS3-RELATED (HPS3) negative

HERMANSKY-PUDLAK SYNDROME, HPS4-RELATED (HPS4) negative

HERMANSKY-PUDLAK SYNDROME, HPS5-RELATED (HPS5) negative HERMANSKY-PUDLAK SYNDROME, HPS6-RELATED (HPS6) negative

HOLOCARBOXYLASE SYNTHETASE DEFICIENCY (HLCS) negative

HOMOCYSTINURIA AND MEGALOBLASTIC ANEMIA TYPE CBLG (MTR) negative HOMOCYSTINURIA DUE TO DEFICIENCY OF MTHFR (MTHFR) negative HOMOCYSTINURIA, CBS-RELATED (CBS) negative

HOMOCYSTINURIA, CBS-RELATED (CBS) negative
HOMOCYSTINURIA, Type cblE (MTRR) negative
HYDROLETHALUS SYNDROME (HYLS1) negative
HYPER-IGM IMMUNODEFICIENCY (CD40) negative
HYPERORNITHINEMIA-HYPERAMMONEMIA-HOMOCITRULLINURIA (HHH SYNDROME)

(SLC25A15) negative HYPERPHOSPHATEMIC FAMILIAL TUMORAL CALCINOSIS, GALNT3-RELATED

(GALNT3) negative

HYPOMYELINATING LEUKODYSTROPHY 12 (VPS11) negative

HYPOPHOSPHATASIA, ALPL-RELATED (ALPL) negative

IMERSLUND-GRÄSBECK SYNDROME 2 (AMN) negative

IMMUNODEFICIENCY-CENTROMERIC INSTABILITY-FACIAL ANOMALIES (ICF) SYNDROME, DNMT3B-RELATED (DNMT3B) negative

SYNDROME, DININI 3B-RELATED (DININI 3B) negative IMMUNODEFICIENCY-CENTROMERIC INSTABILITY-FACIAL ANOMALIES (ICF) SYNDROME, ZBTB24-RELATED (ZBTB24) negative INCLUSION BODY MYOPATHY 2 (GNE) negative INFANTILE CEREBRAL AND CEREBELLAR ATROPHY (MED17) negative

INFANTILE NEPHRONOPHTHISIS (INVS) negative INFANTILE NEUROAXONAL DYSTROPHY (PLA2G6) negative ISOLATED ECTOPIA LENTIS (ADAMTSL4) negative

ISOLATED SULFITE OXIDASE DEFICIENCY (SUOX) negative

ISOLATED THYROID-STIMULATING HORMONE DEFICIENCY (TSHB) negative ISOVALERIC ACIDEMIA (IVD) negative

JOHANSON-BLIZZARD SYNDROME (*UBR1*) negative JOUBERT SYNDROME 2 / MECKEL SYNDROME 2 (*TMEM216*) negative

JOUBERT SYNDROME AND RELATED DISORDERS (JSRD), TMEM67-RELATED

(TMEM67) negative
JOUBERT SYNDROME, AHI1-RELATED (AHI1) see first page

JOUBERT SYNDROME, ARL13B-RELATED (ARL13B) negative

JOUBERT SYNDROME, B9D1-RELATED (B9D1) negative
JOUBERT SYNDROME, B9D2-RELATED (B9D2) negative
JOUBERT SYNDROME, C2CD3-RELATED/OROFACIODIGITAL SYNDROME 14

(C2CD3) negative

JOUBERT SYNDROME, CC2D2A-RELATED/COACH SYNDROME (CC2D2A) negative
JOUBERT SYNDROME, CEP104-RELATED (CEP104) negative
JOUBERT SYNDROME, CEP120-RELATED/SHORT-RIB THORACIC DYSPLASIA 13 WITH OR

WITHOUT POLYDACTYLY (CEP120) negative
JOUBERT SYNDROME, CEP41-RELATED (CEP41) negative
JOUBERT SYNDROME, CPLANE1-RELATED / OROFACIODIGITAL SYNDROME 6

(CPLANE1) negative

JOUBERT SYNDROME, CSPP1-RELATED (CSPP1) negative

JOUBERT SYNDROME, INPPSE-RELATED (INPPSE) negative

JUNCTIONAL EPIDERMOLYSIS BULLOSA, COL17A1-RELATED (COL17A1) negative

JUNCTIONAL EPIDERMOLYSIS BULLOSA, ITGA6-RELATED (ITGA6) negative
JUNCTIONAL EPIDERMOLYSIS BULLOSA, ITGB4-RELATED (ITGB4) negative
JUNCTIONAL EPIDERMOLYSIS BULLOSA, LAMB3-RELATED (LAMB3) negative

JUNCTIONAL EPIDERMOLYSIS BULLOSA, LAMC2-RELATED (LAMC2) negative
JUNCTIONAL EPIDERMOLYSIS BULLOSA/LARYNGOONYCHOCUTANEOUS SYNDROME,
LAMA3-RELATED (LAMA3) negative

KRABBE DISEASE (GALC) negative

Patient Name:

Test Information

Ordering Physician:

Clinic Information:

Date Of Birth: Case File ID:

Report Date:

MITOCHONDRIAL DNA DEPLETION SYNDROME 2 (TK2) negative MITOCHONDRIAL DNA DEPLETION SYNDROME 3 (DGUOK) negative MITOCHONDRIAL MYOPATHY AND SIDEROBLASTIC ANEMIA (MLASA1) (PUS1) negative

MITOCHONDRIAL TRIFUNCTIONAL PROTEIN DEFICIENCY, HADHB-RELATED

(HADHB) negative MOLYBDENUM COFACTOR DEFICIENCY TYPE B (MOCS2) negative

MOLYBDENUM COFACTOR DEFICIENCY, TYPE A (MOCS1) negative

MUCOLIPIDOSIS II/III A (GNPTAB) negative MUCOLIPIDOSIS III GAMMA (GNPTG) negative MUCOLIPIDOSIS, TYPE IV (MCOLN1) negative

MUCOPOLYSACCHARIDOSIS, TYPE I (HURLER SYNDROME) (IDUA) negative MUCOPOLYSACCHARIDOSIS, TYPE III A (SANFILIPPO A) (SGSH) negative MUCOPOLYSACCHARIDOSIS, TYPE III B (SANFILIPPO B) (NAGLU) negative MUCOPOLYSACCHARIDOSIS, TYPE III B (SANFILIPPO B) (NAGLU) negative MUCOPOLYSACCHARIDOSIS, TYPE III C (SANFILIPPO C) (HGSNAT) negative MUCOPOLYSACCHARIDOSIS, TYPE III D (SANFILIPPO D) (GNS) negative MUCOPOLYSACCHARIDOSIS, TYPE IV A (MORQUIO SYNDROME) (GALNS) negative MUCOPOLYSACCHARIDOSIS, TYPE IV B/GM1 GANGLIOSIDOSIS (GLB1) negative

MUCOPOLYSACCHARIDOSIS, TYPE IX (HYAL1) negative
MUCOPOLYSACCHARIDOSIS, TYPE VI (MAROTEAUX-LAMY) (ARSB) negative
MUCOPOLYSACCHARIDOSIS, TYPE VII (GUSB) negative

MULIBREY NANISM (TRIM37) negative

MULTIPLE PTERYGIUM SYNDROME, CHRNG-RELATED/ESCOBAR SYNDROME (CHRNG) negative

MULTIPLE SULFATASE DEFICIENCY (SUMF1) negative

MUSCLE-EYE-BRAIN DISEASE, POMGNT1-RELATED (POMGNT1) negative MUSCULAR DYSTROPHY-DYSTROGLYCANOPATHY (RXYLT1) negative MUSK-RELATED CONGENITAL MYASTHENIC SYNDROME (MUSK) negative MYONEUROGASTROINTESTINAL ENCEPHALOPATHY (MNGIE) (TYMP) negative

MYOTONIA CONGENITA (CLCN1) negative

N-ACETYLGLUTAMATE SYNTHASE DEFICIENCY (NAGS) negative NEMALINE MYOPATHY, NEB-RELATED (NEB) negative NEPHRONOPHTHISIS 1 (NPHP1) negative NEURONAL CEROID LIPOFUSCINOSIS, CLN5-RELATED (CLN5) negative

NEURONAL CEROID LIPOFUSCINOSIS, CLN6-RELATED (CLN6) negative NEURONAL CEROID LIPOFUSCINOSIS, CLN8-RELATED (CLN8) negative NEURONAL CEROID LIPOFUSCINOSIS, MFSD8-RELATED (MFSD8) negative

NEURONAL CEROID LIPOFUSCINOSIS, PPT1-RELATED (PPT1) negative NEURONAL CEROID LIPOFUSCINOSIS, TPP1-RELATED (TPP1) negative NGLY1-CONGENITAL DISORDER OF GLYCOSYLATION (NGLY1) negative

NGLY1-CONGENTIAL DISORDER OF GLYCOSYLATION NIEMANN-PICK DISEASE, TYPE C1 / D (NPC1) negative NIEMANN-PICK DISEASE, TYPE C2 (NPC2) negative NIEMANN-PICK DISEASE, TYPES A / B (SMPD1) negative NIJMEGEN BREAKAGE SYNDROME (NBN) negative

NON-SYNDROMIC HEARING LOSS, GJB2-RELATED (GJB2) negative NON-SYNDROMIC HEARING LOSS, MYO15A-RELATED (MYO15A) negative NONSYNDROMIC HEARING LOSS, OTOA-RELATED (OTOA) negative

NONSYNDROMIC HEARING LOSS, OTOF-RELATED (OTOF) negative

NONSYNDROMIC HEARING LOSS, PJVK-RELATED (PJVK) negative NONSYNDROMIC HEARING LOSS, SYNE4-RELATED (SYNE4) negative

NONSYNDROMIC HEARING LOSS, TMC1-RELATED (TMC1) negative

NONSYNDROMIC HEARING LOSS, TMPRSS3-RELATED (TMPRSS3) negative NONSYNDROMIC INTELLECTUAL DISABILITY (CC2D1A) negative NORMOPHOSPHATEMIC TUMORAL CALCINOSIS (SAMD9) negative

OCULOCUTANEOUS ALBINISM TYPE III (TYRP1) negative OCULOCUTANEOUS ALBINISM TYPE IV (SLC45A2) negative OCULOCUTANEOUS ALBINISM, OCA2-RELATED (OCA2) negative
OCULOCUTANEOUS ALBINISM, TYPES 1A AND 1B (TYR) negative
ODONTO-ONYCHO-DERMAL DYSPLASIA / SCHOPF-SCHULZ-PASSARGE SYNDROME

(WNT10A) negative

OMENN SYNDROME, RAG2-RELATED (RAG2) negative
ORNITHINE AMINOTRANSFERASE DEFICIENCY (OAT) negative

OSTEOGENESIS IMPERFECTA TYPE VII (CRTAP) negative

OSTEOGENESIS IMPERFECTA TYPE VIII (P3H1) negative OSTEOGENESIS IMPERFECTA TYPE XI (FKBP10) negative OSTEOGENESIS IMPERFECTA TYPE XII (BMP1) negative

OSTEOPETROSIS, INFANTILE MALIGNANT, TCIRG1-RELATED (TCIRG1) negative

OSTEOPETROSIS, OSTM1-RELATED (OSTM1) negative

PANTOTHENATE KINASE-ASSOCIATED NEURODEGENERATION (PANK2) negative PAPILLON LEFÈVRE SYNDROME (CTSC) negative PARKINSON DISEASE 15 (FBXO7) negative PENDRED SYNDROME (SLC26A4) negative
PERLMAN SYNDROME (DIS3L2) negative
PGM3-CONGENITAL DISORDER OF GLYCOSYLATION (PGM3) negative

PHENYLKETONURIA (PAH) negative
PIGN-CONGENITAL DISORDER OF GLYCOSYLATION (PIGN) negative
PITUITARY HORMONE DEFICIENCY, COMBINED 3 (LHX3) negative

LAMELLAR ICHTHYOSIS, TYPE 1 (TGM1) negative LARON SYNDROME (GHR) negative

LEBER CONGENITAL AMAUROSIS 2 (RPE65) negative

LEBER CONGENITAL AMAUROSIS TYPE AIPL1 (AIPL1) negative LEBER CONGENITAL AMAUROSIS TYPE GUCY2D (GUCY2D) negative

LEBER CONGENITAL AMAUROSIS TYPE TULP1 (TULP1) negative LEBER CONGENITAL AMAUROSIS, IQCB1-RELATED/SENIOR-LOKEN SYNDROME 5

(IQCB1) negative
LEBER CONGENITAL AMAUROSIS, TYPE CEP290 (CEP290) negative

LEBER CONGENITAL AMAUROSIS, TYPE LCAS (LCA5) negative LEBER CONGENITAL AMAUROSIS, TYPE RDH12 (RDH12) negative LEIGH SYNDROME, FRENCH-CANADIAN TYPE (LRPPRC) negative

LETHAL CONGENITAL CONTRACTURE SYNDROME 1 (GLE1) negative LEUKOENCEPHALOPATHY WITH VANISHING WHITE MATTER (EIF2B5) negative LEUKOENCEPHALOPATHY WITH VANISHING WHITE MATTER, EIF2B1-RELATED

(EIF2B1) negative LEUKOENCEPHALOPATHY WITH VANISHING WHITE MATTER, EIF2B2-RELATED

(EIF2B2) negative LEUKOENCEPHALOPATHY WITH VANISHING WHITE MATTER, EIF2B3-RELATED (EIF2B3) negative

LEUKOENCEPHALOPATHY WITH VANISHING WHITE MATTER, EIF2B4-RELATED

(EIF2B4) negative

LIG4 SYNDROME (LIG4) negative

LIMB-GIRDLE MUSCULAR DYSTROPHY TYPE 8 (TRIM32) negative

LIMB-GIRDLE MUSCULAR DYSTROPHY TYPE 28 (TRIM32) negative
LIMB-GIRDLE MUSCULAR DYSTROPHY, TYPE 2A (CAPN3) negative
LIMB-GIRDLE MUSCULAR DYSTROPHY, TYPE 2B (DYSF) negative
LIMB-GIRDLE MUSCULAR DYSTROPHY, TYPE 2C (SGCG) negative
LIMB-GIRDLE MUSCULAR DYSTROPHY, TYPE 2D (SGCA) negative
LIMB-GIRDLE MUSCULAR DYSTROPHY, TYPE 2E (SGCB) negative
LIMB-GIRDLE MUSCULAR DYSTROPHY, TYPE 2F (SGCD) negative
LIMB-GIRDLE MUSCULAR DYSTROPHY, TYPE 2F (SGCD) negative
LIMB-GIRDLE MUSCULAR DYSTROPHY, TYPE 2I (FKRP) negative
LIPOAMIDE DEHYDROGENASE DEFICIENCY (DIHYDROLIPOAMIDE DEHYDROGENASE
DEFICIENCY) (DID) negative

DEFICIENCY) (DLD) negative
LIPOID ADRENAL HYPERPLASIA (STAR) negative

LIPOPROTEIN LIPASE DEFICIENCY (LPL) negative
LONG CHAIN 3-HYDROXYACYL-COA DEHYDROGENASE DEFICIENCY (HADHA) negative LRAT-RELATED CONDITIONS (LRAT) negative

LUNG DISEASE, IMMUNODEFICIENCY, AND CHROMOSOME BREAKAGE SYNDROME

(LICS) (NSMCE3) negative LYSINURIC PROTEIN INTOLERANCE (SLC7A7) negative

MALONYL-COA DECARBOXYLASE DEFICIENCY (MLYCD) negative MAPLE SYRUP URINE DISEASE, TYPE 1A (BCKDHA) negative MAPLE SYRUP URINE DISEASE, TYPE 1B (BCKDHB) negative MAPLE SYRUP URINE DISEASE, TYPE 2 (DBT) negative MCKUSICK-KAUFMAN SYNDROME (MKKS) negative MECKEL SYNDROME 7/NEPHRONOPHTHISIS 3 (NPHP3) negative MECKEL-GRUBER SYNDROME, TYPE 1 (MKS1) negative
MECR-RELATED NEUROLOGIC DISORDER (MECR) negative
MEDIUM CHAIN ACYL-CoA DEHYDROGENASE DEFICIENCY (ACADM) negative MEDNIK SYNDROME (AP151) negative
MEGALENCEPHALIC LEUKOENCEPHALOPATHY WITH SUBCORTICAL CYSTS (MLC1) negative MEROSIN-DEFICIENT MUSCULAR DYSTROPHY (LAMA2) negative

METABOLIC ENCEPHALOPATHY AND ARRHYTHMIAS, TANGO2-RELATED (TANGO2) negative

METACHROMATIC LEUKODYSTROPHY, ARSA-RELATED (ARSA) negative METACHROMATIC LEUKODYSTROPHY, PSAP-RELATED (PSAP) negative METHYLMALONIC ACIDEMIA AND HOMOCYSTINURIA TYPE CBLF (LMBRD1) negative

METHYLMALONIC ACIDEMIA, MCEE-RELATED (MCEE) negative

METHYLMALONIC ACIDURIA, MICES-RELATED (MICE) negative METHYLMALONIC ACIDURIA AND HOMOCYSTINURIA, TYPE CBLC (MMACHC) negative METHYLMALONIC ACIDURIA AND HOMOCYSTINURIA, TYPE CbID (MMADHC) negative METHYLMALONIC ACIDURIA, MMAA-RELATED (MMAA) negative METHYLMALONIC ACIDURIA, MMAB-RELATED (MMAB) negative

METHYLMALONIC ACIDURIA, TYPE MUT(0) (MUT) negative
MEVALONIC KINASE DEFICIENCY (MVK) negative
MICROCEPHALIC OSTEODYSPLASTIC PRIMORDIAL DWARFISM TYPE II (PCNT) negative MICROPHTHALMIA / ANOPHTHALMIA, VSX2-RELATED (VSX2) negative

MITOCHONDRIAL COMPLEX 1 DEFICIENCY, ACAD9-RELATED (ACAD9) negative MITOCHONDRIAL COMPLEX 1 DEFICIENCY, NDUFAF5-RELATED (NDUFAF5) negative MITOCHONDRIAL COMPLEX 1 DEFICIENCY, NDUFS6-RELATED (NDUFS6) negative MITOCHONDRIAL COMPLEX I DEFICIENCY, NUCLEAR TYPE 1 (NDUFS4) negative MITOCHONDRIAL COMPLEX I DEFICIENCY, NUCLEAR TYPE 10 (NDUFAF2) negative MITOCHONDRIAL COMPLEX I DEFICIENCY, NUCLEAR TYPE 17 (NDUFAF6) negative MITOCHONDRIAL COMPLEX I DEFICIENCY, NUCLEAR TYPE 19 (FOXRED1) negative

MITOCHONDRIAL COMPLEX I DEFICIENCY, NUCLEAR TYPE 3 (NDUFS7) negative MITOCHONDRIAL COMPLEX I DEFICIENCY, NUCLEAR TYPE 4 (NDUFV1) negative MITOCHONDRIAL COMPLEX IV DEFICIENCY, NUCLEAR TYPE 2, SCO2-RELATED

(SCO2) negative
MITOCHONDRIAL COMPLEX IV DEFICIENCY, NUCLEAR TYPE 6 (COX15) negative

Patient Name:

Test Information

Ordering Physician:

Clinic Information:

Date Of Birth: Case File ID:

Report Date:

POLG-RELATED DISORDERS (POLG) negative
POLYCYSTIC KIDNEY DISEASE, AUTOSOMAL RECESSIVE (PKHD1) negative

PONTOCEREBELLAR HYPOPLASIA, EXOSC3-RELATED (EXOSC3) negative

PONTOCEREBELLAR HYPOPLASIA, RARS2-RELATED (RARS2) negative PONTOCEREBELLAR HYPOPLASIA, TSEN2-RELATED (TSEN2) negative PONTOCEREBELLAR HYPOPLASIA, TSEN54-RELATED (TSEN54) negative

PONTOCEREBELLAR HYPOPLASIA, TYPE 1A (VRK1) negative PONTOCEREBELLAR HYPOPLASIA, TYPE 2D (SEPSECS) negative PONTOCEREBELLAR HYPOPLASIA, VPS53-RELATED (VPS53) negative

PRIMARY CILIARY DYSKINESIA, CCDC103-RELATED (CCDC103) negative

PRIMARY CILIARY DYSKINESIA, CCDC39-RELATED (CCDC39) negative PRIMARY CILIARY DYSKINESIA, DNAH11-RELATED (DNAH11) negative

PRIMARY CILIARY DYSKINESIA, DNAH5-RELATED (DNAH5) negative

PRIMARY CILIARY DYSKINESIA, DNAI1-RELATED (DNAI1) negative PRIMARY CILIARY DYSKINESIA, DNAI2-RELATED (DNAI2) negative PRIMARY CONGENITAL GLAUCOMA/PETERS ANOMALY (CYP1B1) negative

PRIMARY HYPEROXALURIA, TYPE 1 (AGXT) negative PRIMARY HYPEROXALURIA, TYPE 2 (GRIPR) negative PRIMARY HYPEROXALURIA, TYPE 3 (HOGA1) negative PRIMARY MICROCEPHALY 1, AUTOSOMAL RECESSIVE (MCPH1) negative

PROGRESSIVE EARLY-ONSET ENCEPAHLOPATHY WITH BRAIN ATROPHY AND THIN CORPUS CALLOSUM (TBCD) negative PROGRESSIVE FAMILIAL INTRAHEPATIC CHOLESTASIS, ABCB4-RELATED (ABCB4) negative

PROGRESSIVE FAMILIAL INTRAHEPATIC CHOLESTASIS, TYPE 1 (PFIC1) (AF881) negative PROGRESSIVE FAMILIAL INTRAHEPATIC CHOLESTASIS, TYPE 2 (ABCB11) negative PROGRESSIVE FAMILIAL INTRAHEPATIC CHOLESTASIS, TYPE 4 (PFIC4) (TJP2) negative

PROGRESSIVE PAGULIAL INTRAHEPATIC CHOLESTASIS, 1YPE 4 (PFI PROGRESSIVE PSEUDORHEUMATOID DYSPLASIA (CCN6) negative PROLIDASE DEFICIENCY (PEPD) negative PROPIONIC ACIDEMIA, PCCA-RELATED (PCCA) negative PROPIONIC ACIDEMIA, PCCB-RELATED (PCCB) negative

PSEUDOXANTHOMA ELASTICUM (ABCC6) negative
PTERIN-4 ALPHA-CARBINOLAMINE DEHYDRATASE (PCD) DEFICIENCY (PCBD1) negative

PTERIN-4 ALPHA-CARBINOLAMINE DEHYDRATASE (PCD) DEFICIENCY (PCBD1 PYCNODYSOSTOSIS (CTSK) negative PYRIDOXAL 5'-PHOSPHATE-DEPENDENT EPILEPSY (PNPO) negative PYRIDOXINE-DEPENDENT EPILEPSY (ALDH7A1) negative PYRUVATE CARBOXYLASE DEFICIENCY (PC) negative PYRUVATE DEHYDROGENASE DEFICIENCY, PDHB-RELATED (PDHB) negative

REFSUM DISEASE, PHYH-RELATED (PHYH) negative
RENAL TUBULAR ACIDOSIS AND DEAFNESS, ATP6V1B1-RELATED (ATP6V1B1) negative
RENAL TUBULAR ACIDOSIS, PROXIMAL, WITH OCULAR ABNORMALITIES AND MENTAL
RETARDATION (SLC4A4) negative
RETINITIS PIGMENTOSA 25 (EYS) negative

RETINITIS PIGMENTOSA 26 (CERKL) negative RETINITIS PIGMENTOSA 28 (FAM161A) negative RETINITIS PIGMENTOSA 36 (PRCD) negative

RETINITIS PIGMENTOSA 59 (DHDDS) negative

RETINITIS PIGMENTOSA 62 (MAK) negative RHIZOMELIC CHONDRODYSPLASIA PUNCTATA, TYPE 1 (PEX7) negative

RHIZOMELIC CHONDRODYSPLASIA PUNCTATA, TYPE 2 (GNPAT) negative

RHIZOMELIC CHONDRODYSPLASIA PUNCTATA, TYPE 3 (AGPS) negative RLBP1-RELATED RETINOPATHY (RLBP1) negative ROBERTS SYNDROME (ESCO2) negative

RYR1-RELATED CONDITIONS (RYR1) negative

SALLA DISEASE (SLC17A5) negative

SANDHOFF DISEASE (HEXB) negative SCHIMKE IMMUNOOSSEOUS DYSPLASIA (SMARCAL1) negative SCHINDLER DISEASE (NAGA) negative

SEGAWA SYNDROME, TH-RELATED (TH) negative
SENIOR-LOKEN SYNDROME 4/NEPHRONOPHTHISIS 4 (NPHP4) negative
SEPIAPTERIN REDUCTASE DEFICIENCY (SPR) negative
SEVERE COMBINED IMMUNODEFICIENCY (SCID), CD3D-RELATED (CD3D) negative

SEVERE COMBINED IMMUNODEFICIENCY (SCID), CD3E-RELATED (CD3E) negative SEVERE COMBINED IMMUNODEFICIENCY (SCID), FOXN1-RELATED (FOXN1) negative SEVERE COMBINED IMMUNODEFICIENCY (SCID), IKBKB-RELATED (IKBKB) negative

SEVERE COMBINED IMMUNODEFICIENCY (SCID), IL7R-RELATED (IL7R) negative

SEVERE COMBINED IMMUNODEFICIENCY (SCID), JAK3-RELATED (JAK3) negative SEVERE COMBINED IMMUNODEFICIENCY (SCID), PTPRC-RELATED (PTPRC) negative

SEVERE COMBINED IMMUNODEFICIENCY (SCID), RAG1-RELATED (RAG1) negative

SEVERE COMBINED IMMUNODEFICIENCY, ADA-Related (ADA) negative SEVERE COMBINED IMMUNODEFICIENCY, TYPE ATHABASKAN (DCLRE1C) negative

SHORT-RIB THORACIC DYSPLASIA 3 WITH OR WITHOUT POLYDACTYLY

(DYNC2H1) negative

SHWACHMAN-DIAMOND SYNDROME, SBDS-RELATED (SBDS) negative

SIALIDOSIS (NEU1) negative SJÖGREN-LARSSON SYNDROME (ALDH3A2) negative

SMITH-LEMLI-OPITZ SYNDROME (DHCR7) negativ

SPASTIC PARAPLEGIA, TYPE 15 (ZFYVE26) negative

SPASTIC TETRAPLEGIA, THIN CORPUS CALLOSUM, AND PROGRESSIVE MICROCEPHALY (SPATCCM) (SLC1A4) negative

SPG11-RELATED CONDITIONS (SPG11) negative

SPINAL MUSCULAR ATROPHY (SMN1) negative SMN1: Two copies; g.27134T>G: absent; the absence of the g.27134T>G variant decreases the chance to be a silent (2+0) carrier.

SPINAL MUSCULAR ATROPHY WITH RESPIRATORY DISTRESS TYPE 1 (IGHMBP2) negative

SPINOCEREBELLAR ATAXIA, AUTOSOMAL RECESSIVE 10 (ANO10) negative SPINOCEREBELLAR ATAXIA, AUTOSOMAL RECESSIVE 12 (WWOX) negative SPONDYLOCOSTAL DYSOSTOSIS 1 (DLL3) negative

SPONDYLOTHORACIC DYSOSTOSIS, MESP2-Related (MESP2) negative

STEEL SYNDROME (COL27A1) negative STEROID-RESISTANT NEPHROTIC SYNDROME (NPHS2) negative

STUVE-WIEDEMANN SYNDROME (LIFR) negative

SURF1-RELATED CONDITIONS (SURF1) negative SURFACTANT DYSFUNCTION, ABCA3-RELATED (ABCA3) negative

TAY-SACHS DISEASE (HEXA) negative
TBCE-RELATED CONDITIONS (TBCE) negative

THIAMINE-RESPONSIVE MEGALOBLASTIC ANEMIA SYNDROME (SLC19A2) negative

THYROID DYSHORMONOGENESIS 1 (SLC5A5) negative THYROID DYSHORMONOGENESIS 2A (TPO) negative

THYROID DYSHORMONOGENESIS 3 (TG) negative

THYROID DYSHORMONOGENESIS 3 (16) negative THYROID DYSHORMONOGENESIS 6 (DUOX2) see first page TRANSCOBALAMIN II DEFICIENCY (TCN2) negative TRICHOHEPATOENTERIC SYNDROME, SKIC2-RELATED (SKIC2) negative TRICHOHEPATOENTERIC SYNDROME, TTC37-RELATED (TTC37) negative

TRICHOTHIODYSTROPHY 1/XERODERMA PIGMENTOSUM, GROUP D (ERCC2) negative TRIMETHYLAMINURIA (FMO3) negative

TRIME I HYLAMINURIA (FMO3) negative TRIPLE A SYNDROME (AAAS) negative TSHR-RELATED CONDITIONS (TSHR) negative TYROSINEMIA TYPE III (HPD) negative TYROSINEMIA, TYPE 1 (FAH) negative TYROSINEMIA, TYPE 2 (TAT) negative

USHER SYNDROME, TYPE 1B (MYO7A) negative

USHER SYNDROME, TYPE 1C (USH1C) negative

USHER SYNDROME, TYPE 1D (CDH23) negative USHER SYNDROME, TYPE 1F (PCDH15) negative

USHER SYNDROME, TYPE 1J/DEAFNESS, AUTOSOMAL RECESSIVE, 48 (CIB2) negative

USHER SYNDROME, TYPE 2A (USH2A) negative USHER SYNDROME, TYPE 2C (ADGRV1) negative USHER SYNDROME, TYPE 3 (CLRN1) negative

VERY LONG-CHAIN ACYL-CoA DEHYDROGENASE DEFICIENCY (ACADVL) negative

VICI SYNDROME (EPG5) negative

VITAMIN D-DEPENDENT RICKETS, TYPE 1A (CYP27B1) negative VITAMIN D-RESISTANT RICKETS TYPE 2A (VDR) negative VLDLR-ASSOCIATED CEREBELLAR HYPOPLASIA (VLDLR) negative

WALKER-WARBURG SYNDROME, CRPPA-RELATED (CRPPA) negative

WALKER-WARBURG SYNDROME, FKTN-RELATED (FKTN) negative WALKER-WARBURG SYNDROME, LARGE1-RELATED (LARGE1) negative WALKER-WARBURG SYNDROME, POMT1-RELATED (POMT1) negative

WALKER-WARBURG SYNDROME, POMT2-RELATED (POMT2) negative

WARSAW BREAKAGE SYNDROME (DDX11) negative WERNER SYNDROME (WRN) negative WILSON DISEASE (ATP7B) negative

WOLCOTT-RALLISON SYNDROME (EIF2AK3) negative

WOLMAN DISEASE (LIPA) negative WOODHOUSE-SAKATI SYNDROME (DCAF17) negative

XERODERMA PIGMENTOSUM, GROUP C (XPC) negative

XERODERMA PIGMENTOSUM VARIANT TYPE (POLH) negative XERODERMA PIGMENTOSUM, GROUP A (XPA) negative

ZELLWEGER SPECTRUM DISORDER, PEX13-RELATED (PEX13) negative ZELLWEGER SPECTRUM DISORDER, PEX16-RELATED (PEX16) negative ZELLWEGER SPECTRUM DISORDER, PEX5-RELATED (PEX5) negative ZELLWEGER SPECTRUM DISORDERS, PEX10-RELATED (PEX10) negative ZELLWEGER SPECTRUM DISORDERS, PEX12-RELATED (PEX12) negative ZELLWEGER SPECTRUM DISORDERS, PEX1-RELATED (PEX1) negative ZELLWEGER SPECTRUM DISORDERS, PEX26-RELATED (PEX26) negative

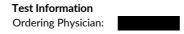
Patient Name:

Test Information Ordering Physician:

Clinic Information:

Date Of Birth: Case File ID:

Report Date:


Z
ZELLWEGER SPECTRUM DISORDERS, PEX2-RELATED (PEX2) negative
ZELLWEGER SPECTRUM DISORDERS, PEX6-RELATED (PEX6) negative

Patient	Information
D	N.I.

Patient Name:

Clinic Information:

Report Date:

Testing Methodology, Limitations, and Comments:

Next-generation sequencing (NGS)

Sequencing library prepared from genomic DNA isolated from a patient sample is enriched for targets of interest using standard hybridization capture protocols and PCR amplification (for targets specified below). NGS is then performed to achieve the standards of quality control metrics, including a minimum coverage of 99% of targeted regions at 20X sequencing depth. Sequencing data is aligned to human reference sequence, followed by deduplication, metric collection and variant calling (coding region +/- 20bp). Variants are then classified according to ACMGG/AMP standards of interpretation using publicly available databases including but not limited to ENSEMBL, HGMD Pro, ClinGen, ClinVar, 1000G, ESP and gnomAD. Variants predicted to be pathogenic or likely pathogenic for the specified diseases are reported. It should be noted that the data interpretation is based on our current understanding of the genes and variants at the time of reporting. Putative positive sequencing variants that do not meet internal quality standards or are within highly homologous regions are confirmed by Sanger sequencing or gene-specific long-range PCR as needed prior to reporting.

Copy Number Variant (CNV) analysis is limited to deletions involving two or more exons for all genes on the panel, in addition to specific known recurrent single-exon deletions. CNVs of small size may have reduced detection rate. This method does not detect gene inversions, single-exonic and sub-exonic deletions (unless otherwise specified), and duplications of all sizes (unless otherwise specified). Additionally, this method does not define the exact breakpoints of detected CNV events. Confirmation testing for copy number variation is performed by specific PCR, Multiplex Ligation-dependent Probe Amplification (MLPA), next generation sequencing, or other methodology.

This test may not detect certain variants due to local sequence characteristics, high/low genomic complexity, homologous sequence, or allele dropout (PCR-based assays). Variants within noncoding regions (promoter, 5'UTR, 3'UTR, deep intronic regions, unless otherwise specified), small deletions or insertions larger than 25bp, low-level mosaic variants, structural variants such as inversions, and/or balanced translocations may not be detected with this technology.

SPECIAL NOTES

For ABCC6, sequencing variants in exons 1-7 are not detected due to the presence of regions of high homology.

For CFTR, when the CFTR R117H variant is detected, reflex analysis of the polythymidine variations (5T, 7T and 9T) at the intron 9 branch/acceptor site of the CFTR gene will be performed. Multi-exon duplication analysis is included.

For CYP21A2, targets were enriched using long-range PCR amplification, followed by next generation sequencing. Duplication analysis will only be performed and reported when c.955C>T (p.Q319*) is detected. Sequencing and CNV analysis may have reduced sensitivity, if variants result from complex rearrangements, in trans with a gene deletion, or CYP21A2 gene duplication on one chromosome and deletion on the other chromosome. This analysis cannot detect sequencing variants located on the CYP21A2 duplicated copy.

For DDX11, sequencing variants in exons 7-11 and CNV for the entire gene are not analyzed due to high sequence homology.

For GJB2, CNV analysis of upstream deletions of GJB6-D13S1830 (309kb deletion) and GJB6-D13S1854 (232kb deletion) is included.

For HBA1/HBA2, CNV analysis is offered to detect common deletions of -alpha3.7, -alpha4.2, --MED, --SEA, --FIL, --THAI, --alpha20.5, and/or HS-40.

For OTOA, sequencing variants in exons 25-29 and CNV in exons 21-29 are not analyzed due to high sequence homology.

For RPGRIP1L, variants in exon 23 are not detected due to assay limitation.

For SAMD9, only p.K1495E variant will be analyzed and reported.

Friedreich Ataxia (FXN)

The GAA repeat region of the FXN gene is assessed by trinucleotide PCR assay and capillary electrophoresis. Variances of +/-1 repeat for normal alleles and up to +/-3 repeats for premutation alleles may occur. For fully penetrant expanded alleles, the precise repeat size cannot be determined, therefore the approximate allele size is reported. Sequencing and copy number variants are analyzed by next-generation sequencing analysis.

Friedreich Ataxia Repeat Categories

Categories	GAA Repeat Sizes
Normal	<34
Premutation	34 - 65
Full	>65

Patient Information	Test Information
Patient Name:	Ordering Physician:
	Clinic Information:
Date Of Birth:	
Case File ID:	
	Report Date:

Spinal Muscular Atrophy (SMN1)

The total combined copy number of SMN1 and SMN2 exon 7 is quantified based on NGS read depth. The ratio of SMN1 to SMN2 is calculated based on the read depth of a single nucleotide that distinguishes these two genes in exon 7. In addition to copy number analysis, testing for the presence or absence of a single nucleotide polymorphism (g.27134T>G in intron 7 of SMN1) associated with the presence of a SMN1 duplication allele is performed using NGS.

Ethnicity Two SMN1 copies carrier risk before g.27134T>G testing Carrier risk after g.27134T>G testing g.27134T>G ABSENT g.27134T>G PRESENT Caucasian 1 in 632 1 in 769 1 in 29 Ashkenazi Jewish 1 in 350 1 in 580 LIKELY CARRIER 1 in 628 1 in 702 LIKELY CARRIER African-American 1 in 121 1 in 396 1 in 34 Hispanic 1 in 1061 1 in 1762 1 in 140

Variant Classification

Only pathogenic or likely pathogenic variants are reported. Other variants including benign variants, likely benign variants, variants of uncertain significance, or inconclusive variants identified during this analysis may be reported in certain circumstances. Our laboratory's variant classification criteria are based on the ACMG and internal guidelines and our current understanding of the specific genes. This interpretation may change over time as more information about a gene and/or variant becomes available. Natera and its lab partner(s) may reclassify variants at certain intervals but may not release updated reports without a specific request made to Natera by the ordering provider. Natera may disclose incidental findings if deemed clinically pertinent to the test performed.

Negative Results

A negative carrier screening result reduces the risk for a patient to be a carrier of a specific disease but does not completely rule out carrier status. Please visit https://www.natera.com/panel-option/h-all/ for a table of carrier rates, detection rates, residual risks and promised variants/exons per gene. Carrier rates before and after testing vary by ethnicity and assume a negative family history for each disease screened and the absence of clinical symptoms in the patient. Any patient with a family history for a specific genetic disease will have a higher carrier risk prior to testing and, if the disease-causing mutation in their family is not included on the test, their carrier risk would remain unchanged. Genetic counselling is recommended for patients with a family history of genetic disease so that risk figures based on actual family history can be determined and discussed along with potential implications for reproduction. Horizon carrier screening has been developed to identify the reproductive risks for monogenic inherited conditions. Even when one or both members of a couple screen negative for pathogenic variants in a specific gene, the disease risk for their offspring is not zero. There is still a low risk for the condition in their offspring due to a number of different mechanisms that are not detected by Horizon including, but not limited to, pathogenic variant(s) in the tested gene or in a different gene not included on Horizon, pathogenic variant(s) in an upstream regulator, uniparental disomy, de novo mutation(s), or digenic or polygenic inheritance.

Additional Comments

These analyses generally provide highly accurate information regarding the patient's carrier status. Despite this high level of accuracy, it should be kept in mind that there are many potential sources of diagnostic error, including misidentification of samples, polymorphisms, or other rare genetic variants that interfere with analysis. Families should understand that rare diagnostic errors may occur for these reasons.

