

Donor 7901

Genetic Testing Summary

Fairfax Cryobank recommends reviewing this genetic testing summary with your healthcare provider to determine suitability.

Last Updated: 04/22/25

Donor Reported Ancestry: French, German, Swiss, Norwegian Jewish Ancestry: No

Genetic Test*	Result	Comments/Donor's Residual
		Risk**

Chromosome analysis (karyotype)	Normal male karyotype	No evidence of clinically significant chromosome abnormalities
Hemoglobin evaluation	Normal hemoglobin fractionation and MCV/MCH results	Reduced risk to be a carrier for sickle cell anemia, beta thalassemia, alpha thalassemia trait (aa/ and a-/a-) and other hemoglobinopathies
Expanded Genetic Disease Carrier Screening Panel attached- 549 diseases by gene sequencing.	Carrier: Alport Syndrome, COL4A4-Related (COL4A4) Carrier: ERCC6-Related Disorders (ERCC6) Carrier: Mitochondrial Complex 1 Deficiency, NDUFAF5-Related Carrier: Retinitis Pigmentosa 26 (CERK) Negative for other genes sequenced.	Partner testing is recommended before using this donor. Note: See the attached result for more information on the COL4A4 variant. Genetic Counseling can be considered before using this donor.

^{*}No single test can screen for all genetic disorders. A negative screening result significantly reduces, but cannot eliminate, the risk for these conditions in a pregnancy.

^{**}Donor residual risk is the chance the donor is still a carrier after testing negative.

Patient Name: **Donor 7901**

Date Of Birth:

Gender:

Ethnicity: Northern European

Caucasian

N/A

7901

N/A

Patient ID: Medical Record #:

Collection Kit:

Accession ID: Case File ID:

Test Information Ordering Physician:

Clinic Information: Fairfax Cryobank

Phone: N/A

Report Date: 02/24/2025 02/10/2025 Sample Collected: Sample Received: 02/11/2025

Sample Type: Blood

CARRIER SCREENING REPORT

ABOUT THIS SCREEN: Horizon™ is a carrier screen for specific autosomal recessive and Xlinked diseases. This information can help patients learn their risk of having a child with specific genetic conditions.

ORDER SELECTED: The Horizon Custom panel was ordered for this patient. Males are not screened for X-linked diseases

FINAL RESULTS SUMMARY:

POSITIVE for Alport Syndrome, COL4A4-Related

Positive for the likely pathogenic variant c.3734G>A (p.G1245D) in the COL4A4 gene. Variants in the COL4A4 gene can be associated with either autosomal recessive or autosomal dominant forms of Alport Syndrome. To our knowledge, there is insufficient evidence to associate this variant with a specific form of this condition. Individuals with autosomal dominant Alport Syndrome may have a mild form of the disorder. Approximately 50% of carriers may have intermittent or persistent microhematuria. Comprehensive genetic counseling and additional medical workup as clinically indicated should be considered. This individual's chance to have a child with ALPORT SYNDROME, COL4A4-RELATED is as high as 1 in 2 (50%). Carrier screening for this individual's partner is suggested.

CARRIER for ERCC6-Related Disorders

Positive for the likely pathogenic variant c.207dup (p.P70Afs*17) in the ERCC6 gene. If this individual's partner is a carrier for ERCC6-RELATED DISORDERS, their chance to have a child with this condition may be as high as 1 in 4 (25%). Carrier screening for this individual's partner is suggested.

CARRIER for Mitochondrial Complex 1 Deficiency, NDUFAF5-Related

Positive for the likely pathogenic variant c.327G>C (p.K109N) in the NDUFAF5 gene. If this individual's partner is a carrier for MITOCHONDRIAL COMPLEX 1 DEFICIENCY, NDUFAF5-RELATED, their chance to have a child with this condition may be as high as 1 in 4 (25%). Carrier screening for this individual's partner is suggested.

CARRIER for Retinitis Pigmentosa 26

Positive for the pathogenic variant c.847C>T (p.R283*) in the CERKL gene. If this individual's partner is a carrier for RETINITIS PIGMENTOSA 26, their chance to have a child with this condition is 1 in 4 (25%). Carrier screening for this individual's partner is suggested.

Negative for 545 out of 549 diseases

No other pathogenic variants were detected in the genes that were screened. The patient's remaining carrier risk after the negative screening results is listed for each disease/gene on the Horizon website at https://www.natera.com/panel-option/h-all/. Please see the following pages of this report for a comprehensive list of all conditions included on this individual's screen.

Carrier screening is not diagnostic and may not detect all possible pathogenic variants in a given gene.

RECOMMENDATIONS

Individuals who would like to review their Horizon report with a Natera Laboratory Genetic Counselor may schedule a telephone genetic information session by calling 650-249-9090 or visiting naterasession.com. Clinicians with questions may contact Natera at 650-249-9090 or email support@natera.com. Individuals with positive results may wish to discuss these results with family members to allow them the option to be screened. Comprehensive genetic counseling to discuss the implications of these test results and possible associated reproductive risk is recommended.

Diambleakin

Patient Name: **Donor 7901** **Test Information**

Ordering Physician:

Clinic Information: Fairfax Cryobank

Report Date: 02/24/2025

ALPORT SYNDROME, COL4A4-RELATED

Understanding Your Horizon Carrier Screen Results

What is Alport Syndrome, COL4A4-Related?

Alport Syndrome, COL4A4-Related is an inherited disorder that affects the kidneys, eyes, and ears. There are two forms of Alport Syndrome, COL4A4-Related: autosomal recessive and autosomal dominant. Each is inherited in a different manner. Autosomal recessive Alport Syndrome, COL4A4-Related causes progressive loss of kidney function, often starting in childhood, which leads to blood and protein in the urine. Over time, the kidneys can no longer work properly and dialysis or kidney transplant is usually needed, typically in early to mid-adulthood. Sensorineural hearing loss often occurs by late childhood or early teens, but hearing aids are helpful. Eye problems include increased risk for cataracts, abnormally shaped lenses, and wearing away of the cornea. People with Alport Syndrome often need glasses, but it is rare for them to have vision loss. Autosomal dominant Alport Syndrome, COL4A4-Related is typically milder than the autosomal recessive form. People with the autosomal dominant form have symptoms that vary greatly from person to person and often start later and progress more slowly than those seen in the autosomal recessive form. Kidney disease and hearing loss often do not occur until adulthood and in rare cases may not occur at all. Eye problems are less common in the autosomal dominant form. Clinical trials involving potential new treatments for one or both forms of this condition may be available (see www.clinicaltrials.gov).

What causes Alport Syndrome, COL4A4-Related?

Autosomal recessive Alport Syndrome, COL4A4-Related is caused by gene changes, or mutations, that occur in both copies of the COL4A4 gene pair. These mutations cause the genes to not work properly or not work at all. When both copies of this gene do not work correctly, it leads to the symptoms of autosomal recessive Alport Syndrome described above. In most cases, both parents must be carriers of a mutation in one copy of the COL4A4 gene to have a child with Alport Syndrome, COL4A4-Related. People who are carriers for autosomal recessive Alport Syndrome, COL4A4-Related may have no symptoms at all or may have a mild condition called Thin Basement Membrane Nephropathy (TBMN) which leads to episodes of blood in the urine but, in most cases, does not cause kidney failure or other symptoms. Usually a child inherits two copies of each gene, one copy from the mother and one copy from the father. If the mother and father are both carriers for autosomal recessive Alport Syndrome, COL4A4-Related, there is a 1 in 4, or 25%, chance in each pregnancy for both partners to pass on their COL4A4 gene mutations to the child, who will then have autosomal recessive Alport Syndrome, COL4A4-Related. Autosomal dominant Alport Syndrome, COL4A4-Related is inherited in a different manner. A person who has a mutation in just one copy of the COL4A4 gene is affected with Alport Syndrome and usually has one or more symptoms of Alport Syndrome. If one parent is affected with autosomal dominant Alport Syndrome, COL4A4-Related, they would have a 50% chance in each pregnancy of passing on the mutation to the child, who would then have this condition. It is sometimes, but not always, possible to determine whether a specific mutation causes the autosomal recessive or autosomal dominant form or Alport Syndrome, COL4A4-Related. As people with autosomal dominant Alport Syndrome, COL4A4-Related often develop kidney disease and hearing loss in adulthood and carriers of the autosomal recessive form may show some mild symptoms, such as blood in the urine, we encourage you to share your results and this information with your health care provider. Individuals found to carry more than one mutation for Alport Syndrome, COL4A4-Related should discuss their risk for having an affected child, and any potential risks to their own health, with their health care provider.

What can I do next?

You may wish to speak with a local genetic counselor about your carrier test results. A genetic counselor in your area can be located on the National Society of Genetic Counselors website (www.nsgc.org). Your siblings and other relatives are at increased risk to also have this mutation. You are encouraged to inform your family members of your test results as they may wish to consider being tested themselves. If you are pregnant, your partner can have carrier screening for Alport Syndrome, COL4A4-Related ordered by a health care professional. If your partner is not found to be a carrier for Alport Syndrome, COL4A4-Related, your risk of having a child with the autosomal recessive form of Alport Syndrome, COL4A4-Related is greatly reduced. If you are affected with autosomal dominant Alport Syndrome, COL4A4-Related, you would have a 50% chance in each pregnancy to have a child with this disorder. Couples at risk of having a child with Alport Syndrome, COL4A4-Related can opt to have prenatal diagnostic testing done through chorionic villus sampling (CVS) or amniocentesis during pregnancy or can choose to have the baby tested after birth for this condition. If you are not yet pregnant, your partner can have carrier screening for Alport Syndrome, COL4A4-Related ordered by a health care professional. If your partner is found to be a carrier for autosomal recessive Alport Syndrome, COL4A4-Related, or if you have the autosomal dominant form of this condition, you have several reproductive options to consider:

- Natural pregnancy with or without prenatal diagnostic testing of the fetus or testing the baby after birth for Alport Syndrome, COL4A4-Related
- Preimplantation genetic diagnosis (PGD) with in vitro fertilization (IVF) to test embryos for Alport Syndrome, COL4A4-Related
- Adoption or use of a sperm or egg donor who is not a carrier for Alport Syndrome, COL4A4-Related

- Genetics Home Reference: http://ghr.nlm.nih.gov/condition/alport-syndrome
- Alport Syndrome Foundation: http://alportsyndrome.org/alport-syndrome
- Prenatal diagnosis by CVS: http://www.marchofdimes.org/chorionic-villus-sampling.aspx
- Prenatal diagnosis by amniocentesis: http://www.marchofdimes.org/amniocentesis.aspx
- PGD with IVF: http://www.natera.com/spectrum

Patient Information Patient Name:		
Date Of Birth:	Ī	

Test Information	
Ordering Physician:	
Clinic Information:	

ERCC6-RELATED DISORDERS

Case File ID:

Report Date:

Understanding Your Horizon Carrier Screen Results

What is ERCC6-Related Disorders?

ERCC6-Related Disorders are a group of related inherited disorders that cause extreme sensitivity to ultraviolet (UV) rays from sunlight. For affected individuals, even a short time in the sun can cause sunburn which can include blisters and peeling skin as well. The more severe of the ERCC6-Related Disorders is called Cockayne Syndrome, Type B. Symptoms vary from person to person and can range from severe symptoms that start before birth to milder symptoms that don't occur until later childhood. Along with the sensitivity to sunlight, children with early-onset Cockayne Syndrome, Type B often have a small head and brain (microcephaly), slow growth, very short stature, developmental delays, and intellectual disability that tends to worsen over time. Some affected children also have large numbers of cavities and other teeth problems, bone changes, coordination and balance problems (ataxia), stiff muscles (spasticity), numbness and pain in the limbs (peripheral neuropathy), kidney problems, and vision and/or hearing loss. Individuals with Cockayne Syndrome, Type B may develop liver failure if they take a specific antibiotic called Metronidazole, so this medication should be avoided. Children with early-onset severe symptoms often have shortened life spans. The most severe form of Cockayne Syndrome, Type B is sometimes called Cerebro-oculo-facio-skeletal (COFS) Syndrome 1 and has signs and symptoms that start before birth. Symptoms of COFS Syndrome 1 include very low birth weight and length, small head and brain (microcephaly), severe developmental delays and intellectual disability, cataracts and other eye abnormalities. Symptoms that develop after birth include lack of growth, joint abnormalities (contractures and arthrogryposis) and curvature of the spine (scoliosis and kyphosis). These problems worsen with time and death often occurs before age 5. Children with symptoms that start after the age of 2 tend to have fewer symptoms that are typically less severe. Symptoms of this later-onset form of Cockayne Syndrome, Type B often include sensitivity to sunlight, short stature, ataxia that worsens with time, peripheral neuropathy, and mild cognitive disabilities that worsen over time. Another ERCC6-Related Disorder, called UV-Sensitive Syndrome 1, is less common. UV-Sensitive Syndrome 1 causes sensitivity to the UV rays in sunlight, with the same risks of severe sunburn with limited sun exposure, but does not have the other symptoms seen in Cockayne Syndrome, Type B. Individuals with UV-Sensitive Syndrome 1 may have dry skin and freckles and other patchy color changes on the skin after sun exposure. Some also have groupings of blood vessels that show through the skin (telangiectasia) which occur most often on the cheeks and nose. Currently there is no cure for ERCC6-Related Disorders and treatment is based on symptoms. All affected individuals should avoid sunlight and never take the medication Metronidazole. Clinical trials involving potential new treatments for this condition may be available (see www.clinicaltrials.gov).

What causes ERCC6-Related Disorders?

ERCC6-Related Disorders are caused by a change, or mutation, in both copies of the ERCC6 gene pair. These mutations cause the genes to not work properly or not work at all. When both copies of the ERCC6 gene do not work correctly, it leads to the symptoms of one of the related disorders described above. It is sometimes, but not always, possible to determine whether a specific mutation in the ERCC6 gene will cause one of the various forms of Cockayne Syndrome, Type B or UV-Sensitive Syndrome 1. ERCC6-Related Disorders are inherited in an autosomal recessive manner. This means that, in most cases, both parents must be carriers of a mutation in one copy of the ERCC6 gene pair to have a child with one of the ERCC6-Related Disorders. People who are carriers for ERCC6-Related Disorders are usually healthy and do not have these disorders themselves. Usually a child inherits two copies of each gene, one copy from the mother and one copy from the father. If the mother and father are both carriers for ERCC6-Related Disorders there is a 1 in 4, or 25%, chance in each pregnancy for both partners to pass on their ERCC6 gene mutations to the child, who will then have one of the ERCC6-Related Disorders. Individuals found to carry more than one mutation for ERCC6-Related Disorders should discuss their risk for having an affected child, and any potential risks to their own health, with their health care provider. There are other forms of Cockayne Syndrome, COFS Syndrome, and UV-Sensitive Syndrome 1, each caused by mutations in different genes. Carriers for ERCC6-Related Disorders are not likely to be at increased risk of having a child with the other forms of these disorders.

What can I do next?

You may wish to speak with a local genetic counselor about your carrier test results. A genetic counselor in your area can be located on the National Society of Genetic Counselors website (www.nsgc.org). Your siblings and other relatives are at increased risk to also have this mutation. You are encouraged to inform your family members of your test results as they may wish to consider being tested themselves. If you are pregnant, your partner can have carrier screening for ERCC6-Related Disorders ordered by a health care professional. If your partner is not found to be a carrier for ERCC6-Related Disorders, your risk of having an affected child is greatly reduced. Couples at risk of having a baby with ERCC6-Related Disorders can opt to have prenatal diagnosis done through chorionic villus sampling (CVS) or amniocentesis during pregnancy or can choose to have the baby tested after birth. If you are not yet pregnant, your partner can have carrier screening for ERCC6-Related Disorders ordered by a health care professional. If your partner is found to be a carrier for ERCC6-Related Disorders, you have several reproductive options to consider:

- Natural pregnancy with or without prenatal diagnosis of the fetus or testing the baby after birth for ERCC6-Related Disorders
- Preimplantation genetic diagnosis (PGD) with in vitro fertilization (IVF) to test embryos for ERCC6-Related Disorders
- Adoption or use of a sperm or egg donor who is not a carrier for ERCC6-Related Disorders

- Genetics Home Reference: https://ghr.nlm.nih.gov/condition/cockayne-syndrome
- GeneReviews: https://www.ncbi.nlm.nih.gov/books/NBK1342/
- Prenatal diagnosis done through CVS: http://www.marchofdimes.org/chorionic-villus-sampling.aspx
- Prenatal diagnosis done through Amniocentesis: http://www.marchofdimes.org/amniocentesis.aspx PGD with IVF: http://www.natera.com/spectrum

Patient	Information
Patient	Name:

rest illiorillation
Ordering Physician:

Date Of Birth:

Case File ID:

Clinic Information:

Report Date:

MITOCHONDRIAL COMPLEX 1 DEFICIENCY, NDUFAF5-RELATED

Understanding Your Horizon Carrier Screen Results

What is Mitochondrial Complex 1 Deficiency, NDUFAF5-Related?

Mitochondrial Complex 1 Deficiency, NDUFAF5-Related is an inherited disorder that causes abnormal function of the mitochondria, the energy-producing structures found in the cells of the body. Symptoms can start in infancy, childhood, or not until later in adulthood. Common symptoms include larger than normal head size, progressive loss of the white matter of the brain, delayed development, seizures, enlarged heart, vision loss, liver disease, kidney disease, muscle disease, and abnormal movements. Infants who show symptoms early in life usually have more severe disease and may have a shortened lifespan. Clinical trials involving potential new treatments for this condition may be available (see www.clinicaltrials.gov).

What causes Mitochondrial Complex 1 Deficiency, NDUFAF5-Related?

Mitochondrial Complex 1 Deficiency (MT-C1D), NDUFAF5-Related is caused by a change, or mutation, in both copies of the NDUFAF5 gene pair. These mutations cause the genes to not work properly or not work at all. When both copies of this gene do not work correctly, it leads to the symptoms described above. MT-C1D, NDUFAF5-Related is inherited in an autosomal recessive manner. This means that, in most cases, both parents must be carriers of a mutation in one copy of the NDUFAF5 gene to have a child with MT-C1D, NDUFAF5-Related. People who are carriers for MT-C1D, NDUFAF5-Related, are usually healthy and do not have symptoms nor do they have MT-C1D, NDUFAF5-Related, themselves. Usually a child inherits two copies of each gene, one copy from the mother and one copy from the father. If the mother and father are both carriers for MT-C1D, NDUFAF5-Related, there is a 1 in 4, or 25%, chance in each pregnancy for both partners to pass on their NDUFAF5 gene mutations to the child, who will then have this condition. Individuals found to carry more than one mutation for MT-C1D, NDUFAF5-Related should discuss any potential risks to their own health and their risk for having an affected child with their health care provider. There are a number of other forms of Mitochondrial Complex Deficiency, each caused by mutations in different genes. People who are carriers of an NDUFAF5 gene mutation are not likely to be at increased risk for having children with these other forms.

What can I do next?

You may wish to speak with a local genetic counselor about your carrier test results. A genetic counselor in your area can be located on the National Society of Genetic Counselors website (www.nsgc.org). Your siblings and other relatives are at increased risk to also have this mutation. You are encouraged to inform your family members of your test results as they may wish to consider being tested themselves. If you are pregnant, your partner can have carrier screening for Mitochondrial Complex 1 Deficiency (MT-C1D), NDUFAF5-Related ordered by a health care professional. If your partner is not found to be a carrier for MT-C1D, NDUFAF5-Related, your risk of having a child with this condition is greatly reduced. Couples at risk of having a baby with MT-C1D, NDUFAF5-Related can opt to have prenatal diagnosis done through chorionic villus sampling (CVS) or amniocentesis during pregnancy or can choose to have the baby tested after birth for this condition. If you are not yet pregnant, your partner can have carrier screening for Mitochondrial Complex 1 Deficiency (MT-C1D), NDUFAF5-Related ordered by a health care professional. If your partner is found to be a carrier for MT-C1D, NDUFAF5-Related, you have several reproductive options to consider:

- Natural pregnancy with or without prenatal diagnosis of the fetus or testing the baby after birth for MT-C1D, NDUFAF5-Related
- Preimplantation genetic diagnosis (PGD) with in vitro fertilization (IVF) to test embryos for MT-C1D, NDUFAF5-Related
- Adoption or use of a sperm or egg donor who is not a carrier for MT-C1D, NDUFAF5-Related

- United Mitochondrial Disease Foundation: http://www.umdf.org/types/
- Prenatal diagnosis done through CVS: http://www.marchofdimes.org/chorionic-villus-sampling.aspx
- Prenatal diagnosis done through Amniocentesis: http://www.marchofdimes.org/amniocentesis.aspx
- PGD with IVF: http://www.natera.com/spectrum

Patient Information Patient Name:	Test Information Ordering Physician:
	Clinic Information:
Date Of Birth:	
Case File ID:	
	Report Date:

RETINITIS PIGMENTOSA 26

Understanding Your Horizon Carrier Screen Results

What is Retinitis Pigmentosa 26?

Retinitis Pigmentosa 26 is one of a group of inherited eye disorders in which the retina, the area at the back of the eye that allows you to see, gradually stops working. Retinitis Pigmentosa 26 causes progressive vision loss. The age at which symptoms begin and the severity of the condition varies from person to person. The first symptom is usually loss of night vision. Over time, loss of peripheral vision (tunnel vision) develops. Then, loss of central vision occurs. Retinitis Pigmentosa 26 affects only the vision. Currently there is no cure or specific treatment to prevent the vision loss. Clinical trials involving potential new treatments for this condition may be available (see www.clinicaltrials.gov).

What causes Retinitis Pigmentosa 26?

Retinitis Pigmentosa can be caused by mutations in one of a number of different genes with different inheritance patterns. Retinitis Pigmentosa 26 is caused by a gene change, or mutation, in both copies of the CERKL gene pair. These mutations cause the genes to not work properly or not work at all. When both copies of this gene do not work correctly, it results in the progressive vision loss described above. Retinitis Pigmentosa 26 is inherited in an autosomal recessive manner. This means that, in most cases, both parents must be carriers of a mutation in one copy of the CERKL gene to have a child with Retinitis Pigmentosa 26. People who are carriers for Retinitis Pigmentosa 26 are usually healthy and do not have symptoms nor do they have Retinitis Pigmentosa themselves. Usually a child inherits two copies of each gene, one copy from the mother and one copy from the father. If the mother and father are both carriers for Retinitis Pigmentosa 26, there is a 1 in 4, or 25%, chance in each pregnancy for both partners to pass on their CERKL gene mutations to the child, who will then have this condition. Individuals found to carry more than one mutation for Retinitis Pigmentosa 26 should discuss any potential effects to their own vision and their risk for having an affected child with their health care provider.

What can I do next?

You may wish to speak with a local genetic counselor about your carrier test results. A genetic counselor in your area can be located on the National Society of Genetic Counselors website (www.nsgc.org). Your siblings and other relatives are at increased risk to also have this mutation. You are encouraged to inform your family members of your test results as they may wish to consider being tested themselves. If you are pregnant, your partner can have carrier screening for Retinitis Pigmentosa 26 ordered by a health care professional. If your partner is not found to be a carrier for Retinitis Pigmentosa 26, your risk of having a child with Retinitis Pigmentosa 26 is greatly reduced. Couples at risk of having a baby with Retinitis Pigmentosa 26 can opt to have prenatal diagnostic testing done through chorionic villus sampling (CVS) or amniocentesis during pregnancy or can choose to have the baby tested after birth for this condition. If you are not yet pregnant, your partner can have carrier screening for Retinitis Pigmentosa 26 ordered by a health care professional. If your partner is found to be a carrier for Retinitis Pigmentosa 26, you have several reproductive options to consider:

- Natural pregnancy with or without prenatal diagnosis of the fetus or testing the baby after birth for Retinitis Pigmentosa 26
- Preimplantation genetic diagnosis (PGD) with in vitro fertilization (IVF) to test embryos for Retinitis Pigmentosa 26
- Adoption or use of a sperm or egg donor who is not a carrier for Retinitis Pigmentosa 26

- Genetics Home Reference: http://ghr.nlm.nih.gov/condition/retinitis-pigmentosa
- Prenatal diagnosis done through CVS: http://www.marchofdimes.org/chorionic-villus-sampling.aspx
- Prenatal diagnosis done through Amniocentesis: http://www.marchofdimes.org/amniocentesis.aspx
- PGD with IVF: http://www.natera.com/spectrum

Patient Information
Patient Name:

Test Information	
Ordering Physician:	

Date Of Birth:

Case File ID:

Report Date:

Clinic Information:

VARIANT DETAILS

CERKL, c.847C>T (p.R283*), pathogenic

- The c.847C>T (p.R283*) variant in the CERKL gene has been observed at a frequency of 0.0332% in the gnomAD v2.1.1 dataset.
- This variant has been reported in a homozygous state or in conjunction with another variant in individual(s) with retinitis pigmentosa 26 (PMID: 14681825, 29068140).
- This premature termination variant is predicted to cause nonsense-mediated decay (NMD) in a gene where loss-of-function is a known mechanism of disease.
- This variant has been reported in ClinVar [ID: 2364].

COL4A4, c.3734G>A (p.G1245D), likely pathogenic

- The c.3734G>A (p.G1245D) variant in the COL4A4 gene has not been observed in the gnomAD v2.1.1 dataset.
- This missense variant affects the glycine of the "Gly-X-Y" repeat motif of the gene, potentially disrupting normal protein function.
- This variant has not been described in ClinVar.

ERCC6, c.207dup (p.P70Afs*17), likely pathogenic

- The c.207dup (p.P70Afs*17) variant in the ERCC6 gene has not been observed in the gnomAD v2.1.1 dataset.
- This premature termination variant is predicted to cause nonsense-mediated decay (NMD) in a gene where loss-of-function is a known mechanism of disease.
- This variant has been reported in ClinVar [ID: 556870].

NDUFAF5, c.327G>C (p.K109N), likely pathogenic

- The c.327G>C (p.K109N) variant in the NDUFAF5 gene has been observed at a frequency of 0.0428% in the gnomAD v2.1.1 dataset.
- This variant has been reported in a homozygous state or in conjunction with another variant in individual(s) with mitochondrial complex I deficiency, nuclear type 16 (PMID: 30473481).
- This variant has been reported in ClinVar [ID: 265061].

Patient Name:

Test Information

Ordering Physician:

Date Of Birth:

Case File ID:

Report Date:

DISEASES SCREENED

Below is a list of all diseases screened and the result. Certain conditions have unique patient-specific numerical values, therefore, results for those conditions are formatted differently.

Autosomal Recessive

17-BETA HYDROXYSTEROID DEHYDROGENASE 3 DEFICIENCY (HSD17B3) negative

3-BETA-HYDROXYSTEROID DEHYDROGENASE TYPE II DEFICIENCY (HSD3B2) negative 3-HYDROXY-3-METHYLGLUTARYL-COENZYME A LYASE DEFICIENCY (HMGCL) negative 3-HYDROXYACYL-COA DEHYDROGENASE DEFICIENCY (HADH) negative 3-METHYLCROTONYL-CoA CARBOXYLASE 2 DEFICIENCY (MCCC2) negative 3-PHOSPHOGLYCERATE DEHYDROGENASE DEFICIENCY (PHGDH) negative

5-ALPHA-REDUCTASE DEFICIENCY (SRD5A2) negative

6-PYRUVOYL-TETRAHYDROPTERIN SYNTHASE (PTPS) DEFICIENCY (PTS) negative

ABCA4-RELATED CONDITIONS (ABCA4) negative ABETALIPOPROTEINEMIA (MTTP) negative ACHONDROGENESIS, TYPE 1B (SLC26A2) negative ACHROMATOPSIA, CNGB3-RELATED (CNGB3) negative
ACRODERMATITIS ENTEROPATHICA (SLC39A4) negative
ACTION MYOCLONUS-RENAL FAILURE (AMRF) SYNDROME (SCARB2) negative ACUTE INFANTILE LIVER FAILURE, TRMU-RELATED (TRMU) negative ACYL-COA OXIDASE I DEFICIENCY (ACOX1) negative AICARDI-GOUTIÈRES SYNDROME (SAMHD1) negative AICARDI-GOUTIERES SYNDROME, RNASEH2A-RELATED (RNASEH2A) negative

AICARDI-GOUTIERES SYNDROME, RNASEH/2B-RELATED (RNASEH/2B) negative AICARDI-GOUTIERES SYNDROME, RNASEH/2C-RELATED (RNASEH/2C) negative AICARDI-GOUTIÈRES SYNDROME, TREX1-RELATED (TREX1) negative ALPHA-MANNOSIDOSIS (MAN2B1) negative

ALPHA-THALASSEMIA (HBA1/HBA2) negative ALPORT SYNDROME, COL4A3-RELATED (COL4A3) negative ALPORT SYNDROME, COL4A4-RELATED (COL4A4) see first page

ALSTROM SYNDROME (ALMS1) negative
AMISH INFANTILE EPILEPSY SYNDROME (573GAL5) negative
ANDERMANN SYNDROME (SLC12A6) negative

ARGININE:GLYCINE AMIDINOTRANSFERASE DEFICIENCY (AGAT DEFICIENCY)

(GATM) negative
ARGININEMIA (ARG1) negative
ARGININOSUCCINATE LYASE DEFICIENCY (ASL) negative

ARGINIOSOCCINATE L'IASE DEFICIENCY (ASL) negative AROMATASE DEFICIENCY (CYP19A1) negative ASPARAGINE SYNTHETASE DEFICIENCY (ASNS) negative ASPARTYLGLYCOSAMINURIA (AGA) negative ATAXIA WITH VITAMIN E DEFICIENCY (TTPA) negative

ATAXIA-TELANGIECTASIA (ATM) negative
ATAXIA-TELANGIECTASIA-LIKE DISORDER 1 (MRE11) negative

ATRANSFERRINEMIA (TF) negative

AUTISM SPECTRUM, EPILEPSY AND ARTHROGRYPOSIS (SLC35A3) negative AUTOIMMUNE POLYGLANDULAR SYNDROME, TYPE 1 (AIRE) negative AUTOSOMAL RECESSIVE CONGENITAL ICHTHYOSIS (ARCI), SLC27A4-RELATED

(SLC27A4) negative

AUTOSOMAL RECESSIVE SPASTIC ATAXIA OF CHARLEVOIX-SAGUENAY (SACS) negative

BARDET-BIEDL SYNDROME, ARL6-RELATED (ARL6) negative BARDET-BIEDL SYNDROME, BBS10-RELATED (BBS10) negative BARDET-BIEDL SYNDROME, BBS12-RELATED (BBS12) negative BARDET-BIEDL SYNDROME, BBS1-RELATED (BBS1) negative BARDET-BIEDL SYNDROME, BBS2-RELATED (BBS2) negative BARDET-BIEDL SYNDROME, BBS4-RELATED (BBS4) negative BARDET-BIEDL SYNDROME, BBS5-RELATED (BBS5) negative BARDET-BIEDL SYNDROME, BBS7-RELATED (BBS7) negative BARDET-BIEDL SYNDROME, BBS9-RELATED (BBS9) negative BARDET-BIEDL SYNDROME, TTC8-RELATED (TTC8) negative BART LYMPHOCYTE SYNDROME, CIITA-RELATED (CIITA) negative BARTTER SYNDROME, BSND-RELATED (BSND) negative BARTTER SYNDROME, KCNJ1-RELATED (KCNJ1) negative BARTTER SYNDROME, SLC12A1-RELATED (SLC12A1) negative BATTEN DISEASE, CLN3-RELATED (CLN3) negative BETA-HEMOGLOBINOPATHIES (HBB) negative BETA-KETOTHIOLASE DEFICIENCY (ACAT1) negative BETA-MANNOSIDOSIS (MANBA) negative
BETA-UREIDOPROPIONASE DEFICIENCY (UPB1) negative
BILATERAL FRONTOPARIETAL POLYMICROGYRIA (GPR56) negative BIOTINIDASE DEFICIENCY (BTD) negative BIOTIN-THIAMINE-RESPONSIVE BASAL GANGLIA DISEASE (BTBGD) (SLC19A3) negative BLOOM SYNDROME (BLM) negative BRITTLE CORNEA SYNDROME 1 (ZNF469) negative BRITTLE CORNEA SYNDROME 2 (PRDM5) negative

CANAVAN DISEASE (ASPA) negative CARBAMOYL PHOSPHATE SYNTHETASE I DEFICIENCY (CPS1) negative CARNITINE DEFICIENCY (SLC22A5) negative

CARNITINE PALMITOYLTRANSFERASE IA DEFICIENCY (CPT1A) negative CARNITINE PALMITOYLTRANSFERASE II DEFICIENCY (CPT2) negative CARNITINE-ACYLCARNITINE TRANSLOCASE DEFICIENCY (SLC25A20) negative

CARPENTER SYNDROME (RAB23) negative
CARTILAGE-HAIR HYPOPLASIA (RMRP) negative
CATECHOLAMINERGIC POLYMORPHIC VENTRICULAR TACHYCARDIA (CASQ2) negative CD59-MEDIATED HEMOLYTIC ANEMIA (CD59) negative

CEP152-RELATED MICROCEPHALY (CEP152) negative CEREBRAL DYSGENESIS, NEUROPATHY, ICHTHYOSIS, AND PALMOPLANTAR KERATODERMA (CEDNIK) SYNDROME (SNAP29) negative

CEREBROTENDINOUS XANTHOMATOSIS (CYP27A1) negative CHARCOT-MARIE-TOOTH DISEASE, RECESSIVE INTERMEDIATE C (PLEKHG5) negative CHARCOT-MARIE-TOOTH-DISEASE, TYPE 4D (NDRG1) negative

CHEDIAK-HIGASHI SYNDROME (LYST) negative

CHOREOACANTHOCYTOSIS (VP513A) negative CHRONIC GRANULOMATOUS DISEASE, CYBA-RELATED (CYBA) negative CHRONIC GRANULOMATOUS DISEASE, NCF2-RELATED (NCF2) negative

CILIOPATHIES, RPGRIP1L-RELATED (RPGRIP1L) negative CITRIN DEFICIENCY (SLC25A13) negative CITRULLINEMIA, TYPE 1 (ASS1) negative

CLN10 DISEASE (CTSD) negative

COHEN SYNDROME (VPS13B) negative COL11A2-RELATED CONDITIONS (COL11A2) negative COMBINED MALONIC AND METHYLMALONIC ACIDURIA (ACSF3) negative COMBINED OXIDATIVE PHOSPHORYLATION DEFICIENCY 1 (GFM1) negative COMBINED OXIDATIVE PHOSPHORYLATION DEFICIENCY 3 (TSFM) negative COMBINED PITUITARY HORMONE DEFICIENCY 1 (POU1F1) negative

COMBINED PITUITARY HORMONE DEFICIENCY-2 (PROP1) negative

CONGENITAL ADRENAL HYPERPLASIA, 11-BETA-HYDROXYLASE DEFICIENCY

CONGENITAL ADRENAL HYPERPLASIA, 17-ALPHA-HYDROXYLASE DEFICIENCY (CYP17A1) negative
CONGENITAL ADRENAL HYPERPLASIA, 21-HYDROXYLASE DEFICIENCY

(CYP21A2) negative

CONGENITAL ADRENAL INSUFFICIENCY, CYP11A1-RELATED (CYP11A1) negative CONGENITAL AMEGAKARYOCYTIC THROMBOCYTOPENIA (MPL) negative
CONGENITAL CHRONIC DIARRHEA (DGAT1) negative
CONGENITAL DISORDER OF GLYCOSYLATION TYPE 1, ALG1-RELATED (ALG1) negative

CONGENITAL DISORDER OF GLYCOSYLATION, TYPE 1A, PMM2-Related (PMM2) negative CONGENITAL DISORDER OF GLYCOSYLATION, TYPE 1B (MPI) negative CONGENITAL DISORDER OF GLYCOSYLATION, TYPE 1C (ALG6) negative

CONGENITAL DYSERYTHROPOIETIC ANEMIA TYPE 2 (SEC23B) negative

CONGENITAL FINNISH NEPHROSIS (NPHS1) negative
CONGENITAL HYDROCEPHALUS 1 (CCDC88C) negative
CONGENITAL HYPERINSULINISM, KCNJ11-Related (KCNJ11) negative

CONGENITAL HYPERINSULINISM, RCNJ11-Related (RCNJ11) negative CONGENITAL INSENSITIVITY TO PAIN WITH ANHIDROSIS (CIPA) (NTRK1) negative CONGENITAL MYASTHENIC SYNDROME, CHAT-RELATED (CHAT) negative CONGENITAL MYASTHENIC SYNDROME, CHRNE-RELATED (CHRNE) negative CONGENITAL MYASTHENIC SYNDROME, COLQ-RELATED (COLQ) negative CONGENITAL MYASTHENIC SYNDROME, DOK7-RELATED (DOK7) negative CONGENITAL MYASTHENIC SYNDROME, RAPSN-RELATED (RAPSN) negative

CONGENITAL NEPHROTIC SYNDROME, PLCE1-RELATED (PLCE1) negative

CONGENITAL NEUTROPENIA, G6PC3-RELATED (G6PC3) negative CONGENITAL NEUTROPENIA, HAX1-RELATED (HAX1) negative CONGENITAL NEUTROPENIA, VPS45-RELATED (VPS45) negative

CONGENITAL SECRETORY CHLORIDE DIARRHEA 1 (SLC26A3) negative

CORNEAL DYSTROPHY AND PERCEPTIVE DEAFNESS (SLC4A11) negative CORTICOSTERONE METHYLOXIDASE DEFICIENCY (CYP11B2) negative

COSTEFF SYNDROME (3-METHYLGLUTACONIC ACIDURIA, TYPE 3) (OPA3) negative

CRB1-RELATED RETINAL DYSTROPHIES (CRB1) negative

CYSTIC FIBROSIS (CFTR) negative

CYSTINOSIS (CTNS) negative

CYTOCHROME C OXIDASE DEFICIENCY, PET100-RELATED (PET100) negative CYTOCHROME P450 OXIDOREDUCTASE DEFICIENCY (POR) negative

D-BIFUNCTIONAL PROTEIN DEFICIENCY (HSD17B4) negative

Patient Name:

Test Information

Ordering Physician:

Clinic Information:

Date Of Birth: Case File ID:

Report Date:

DEAFNESS, AUTOSOMAL RECESSIVE 77 (LOXHD1) negative DIHYDROPTERIDINE REDUCTASE (DHPR) DEFICIENCY (QDPR) negative DONNAI-BARROW SYNDROME (LRP2) negative DUBIN-JOHNSON SYNDROME (ABCC2) negative DYSKERATOSIS CONGENITA SPECTRUM DISORDERS (TERT) negative DYSKERATOSIS CONGENITA, RTEL1-RELATED (RTEL1) negative DYSTROPHIC EPIDERMOLYSIS BULLOSA, COL7A1-Related (COL7A1) negative

EARLY INFANTILE EPILEPTIC ENCEPHALOPATHY, CAD-RELATED (CAD) negative EHLERS-DANLOS SYNDROME TYPE VI (PLOD1) negative EHLERS-DANLOS SYNDROME, CLASSIC-LIKE, TNXB-RELATED (TNXB) negative EHLERS-DANLOS SYNDROME, CLASSIC-LIKE, TNXB-RELATED (TNXB) negative EHLERS-DANLOS SYNDROME, TYPE VII C (ADAMTS2) negative ELLIS-VAN CREVELD SYNDROME, EVC2-RELATED (EVC2) negative ELLIS-VAN CREVELD SYNDROME, EVC-RELATED (EVC) negative ENHANCED S-CONE SYNDROME (NR2E3) negative EPIMERASE DEFICIENCY (GALACTOSEMIA TYPE III) (GALE) negative EPIPHYSEAL DYSPLASIA, MULTIPLE, 7/DESBUQUOIS DYSPLASIA 1 (CANT1) negative ERCC6-RELATED DISORDERS (ERCC6) see first page ERCC8-RELATED DISORDERS (ERCC8) negative ETHYLMALONIC ENCEPHALOPATHY (ETHE1) negative

FACTOR XI DEFICIENCY (F11) negative
FAMILIAL DYSAUTONOMIA (IKBKAP) negative
FAMILIAL HEMOPHAGOCYTIC LYMPHOHISTIOCYTOSIS, PRF1-RELATED (PRF1) negative
FAMILIAL HEMOPHAGOCYTIC LYMPHOHISTIOCYTOSIS, STX11-RELATED (STX11) negative
FAMILIAL HEMOPHAGOCYTIC LYMPHOHISTIOCYTOSIS, STXBP2-RELATED
(STXBP2) negative FAMILIAL HEMOPHAGOCYTIC LYMPHOHISTIOCYTOSIS, UNC13D-RELATED FAMILIAL HEMOPHAGOCYTIC LYMPHOHISTIOCYTOSIS, UNC13D-RELATED (UNC13D) negative FAMILIAL HYPERCHOLESTEROLEMIA, LDLRAP1-RELATED (LDLRAP1) negative FAMILIAL HYPERCHOLESTEROLEMIA, LDLR-RELATED (LDLR) negative FAMILIAL HYPERINSULINISM, ABCC8-RELATED (ABCC8) negative FAMILIAL NEPHROGENIC DIABETES INSIPIDUS, AQP2-RELATED (AQP2) negative FANCONI ANEMIA, GROUP A (FANCA) negative FANCONI ANEMIA, GROUP C (FANCC) negative FANCONI ANEMIA, GROUP D2 (FANCD2) negative FANCONI ANEMIA, GROUP E (FANCE) negative FANCONI ANEMIA, GROUP F (FANCF) negative FANCONI ANEMIA, GROUP F (FANCF) negative FANCONI ANEMIA, GROUP I (FANCG) negative FANCONI ANEMIA, GROUP J (BRIP1) negative FANCONI ANEMIA, GROUP L (FANCL) negative FANCONI ANEMIA, GROUP L (FANCL) negative FARBER LIPOGRANULOMATOSIS (ASAH1) negative FOVEAL HYPOPLASIA (SLC38A8) negative FRASER SYNDROME 3, GRIP1-RELATED (GRIP1) negative FRASER SYNDROME, FRAS1-RELATED (FRAS1) negative

FRASER SYNDROME, FREM2-RELATED (FREM2) negative FRIEDREICH ATAXIA (FXN) negative FRUCTOSE-1,6-BISPHOSPHATASE DEFICIENCY (FBP1) negative

FUCOSIDOSIS, FUCA1-RELATED (FUCA1) negative FUMARASE DEFICIENCY (FH) negative

GABA-TRANSAMINASE DEFICIENCY (ABAT) negative GALACTOKINASE DEFICIENCY (GALACTOSEMIA, TYPE II) (GALK1) negative GALACTOSEMIA (GALT) negative GALACTOSIALIDOSIS (CTSA) negative GAUCHER DISEASE (GBA) negative GCH1-RELATED CONDITIONS (GCH1) negative GDF5-RELATED CONDITIONS (GDF5) negative GERODERMA OSTEODYSPLASTICA (GORAB) negative GITELMAN SYNDROME (SLC12A3) negative GLANZMANN THROMBASTHENIA (ITGB3) negative GLANZMANN THROMBASTHENIA (ITGB3) negative
GLUTARIC ACIDEMIA, TYPE 1 (GCDH) negative
GLUTARIC ACIDEMIA, TYPE 2A (ETFA) negative
GLUTARIC ACIDEMIA, TYPE 2B (ETFB) negative
GLUTARIC ACIDEMIA, TYPE 2C (ETFDH) negative
GLUTARIC ACIDEMIA, TYPE 2C (ETFDH) negative
GLUTATHIONE SYNTHETASE DEFICIENCY (GSS) negative
GLYCINE ENCEPHALOPATHY, AMT-RELATED (AMT) negative
GLYCINE ENCEPHALOPATHY, GLDC-RELATED (GLDC) negative
GLYCOGEN STORAGE DISEASE TYPE 5 (McArdle Disease) (PYGM) negative
GLYCOGEN STORAGE DISEASE TYPE IXE (PHKB) negative
GLYCOGEN STORAGE DISEASE TYPE IXC (PHKG2) negative
GLYCOGEN STORAGE DISEASE TYPE IXC (PHKG2) negative GLYCOGEN STORAGE DISEASE, TYPE 1a (G6PC) negative GLYCOGEN STORAGE DISEASE, TYPE 1b (SLC37A4) negative GLYCOGEN STORAGE DISEASE, TYPE 2 (POMPE DISEASE) (GAA) negative GLYCOGEN STORAGE DISEASE, TYPE 3 (AGL) negative GLYCOGEN STORAGE DISEASE, TYPE 4 (GBE1) negative GLYCOGEN STORAGE DISEASE, TYPE 7 (PFKM) negative

GRACILE SYNDROME (BCS1L) negative GUANIDINOACETATE METHYLTRANSFERASE DEFICIENCY (GAMT) negative

HARLEQUIN ICHTHYOSIS (ABCA12) negative
HEME OXYGENASE 1 DEFICIENCY (HMOX1) negative

HEMOCHROMATOSIS TYPE 2A (HFE2) negative HEMOCHROMATOSIS, TYPE 3, TFR2-Related (TFR2) negative
HEPATOCEREBRAL MITOCHONDRIAL DNA DEPLETION SYNDROME, MPV17-RELATED (MPV17) negative HEREDITARY FRUCTOSE INTOLERANCE (ALDOB) negative HEREDITARY HEMOCHROMATOSIS TYPE 2B (HAMP) negative HEREDITARY SPASTIC PARAPARESIS, TYPE 49 (TECPR2) negative HEREDITARY SPASTIC PARAPARESIS, 17PE 49 (TECPK2) negative HEREDITARY SPASTIC PARAPLEGIA, CYP7B1-RELATED (CYP7B1) negative HERMANSKY-PUDLAK SYNDROME, AP3B1-RELATED (BLOC1S3) negative HERMANSKY-PUDLAK SYNDROME, BLOC1S3-RELATED (BLOC1S3) negative HERMANSKY-PUDLAK SYNDROME, BLOC1S6-RELATED (BLOC1S6) negative

HERMANSKY-PUDLAK SYNDROME, HPS1-RELATED (HPS1) negative HERMANSKY-PUDLAK SYNDROME, HPS3-RELATED (HPS3) negative HERMANSKY-PUDLAK SYNDROME, HPS4-RELATED (HPS4) negative

HERMANSKY-PUDLAK SYNDROME, HPS4-RELATED (HPS4) negative HERMANSKY-PUDLAK SYNDROME, HPS5-RELATED (HPS5) negative HERMANSKY-PUDLAK SYNDROME, HPS6-RELATED (HPS6) negative HOLOCARBOXYLASE SYNTHETASE DEFICIENCY (HLCS) negative HOMOCYSTINURIA AND MEGALOBLASTIC ANEMIA TYPE CBLG (MTR) negative

HOMOCYSTINURIA AND MEGALOBLASTIC ANEMIA TYPE CBLG (MTR)
HOMOCYSTINURIA DUE TO DEFICIENCY OF MTHFR (MTHFR) negative
HOMOCYSTINURIA, CBS-RELATED (CBS) negative
HOMOCYSTINURIA, Type cblE (MTRR) negative
HYDROLETHALUS SYNDROME (HYLS1) negative HYPER-IGM IMMUNODEFICIENCY (CD40) negative
HYPERORNITHINEMIA-HYPERAMMONEMIA-HOMOCITRULLINURIA (HHH SYNDROME)

(SLC25A15) negative

HYPERPHOSPHATEMIC FAMILIAL TUMORAL CALCINOSIS, GALNT3-RELATED

(GALNT3) negative HYPOMYELINATING LEUKODYSTROPHY 12 (VPS11) negative

HYPOPHOSPHATASIA, ALPL-RELATED (ALPL) negative

IMERSLUND-GRÄSBECK SYNDROME 2 (AMN) negative IMMUNODEFICIENCY-CENTROMERIC INSTABILITY-FACIAL ANOMALIES (ICF) SYNDROME, DNMT3B-RELATED (DNMT3B) negative IMMUNODEFICIENCY-CENTROMERIC INSTABILITY-FACIAL ANOMALIES (ICF) SYNDROME, ZBTB24-RELATED (ZBTB24) negative
INCLUSION BODY MYOPATHY 2 (GNE) negative
INFANTILE CEREBRAL AND CEREBELLAR ATROPHY (MED17) negative INFANTILE NEPHRONOPHTHISIS (INVS) negative INFANTILE NEUROAXONAL DYSTROPHY (PLA2G6) negative ISOLATED ECTOPIA LENTIS (ADAMTSL4) negative ISOLATED SULFITE OXIDASE DEFICIENCY (SUOX) negative ISOLATED THYROID-STIMULATING HORMONE DEFICIENCY (TSHB) negative

ISOVALERIC ACIDEMIA (IVD) negative

JOHANSON-BLIZZARD SYNDROME (*UBR1*) negative JOUBERT SYNDROME 2 / MECKEL SYNDROME 2 (*TMEM216*) negative JOUBERT SYNDROME AND RELATED DISORDERS (JSRD), TMEM67-RELATED (TMEM67) negative

JOUBERT SYNDROME, AHI1-RELATED (AHI1) negative JOUBERT SYNDROME, ARL13B-RELATED (ARL13B) negative JOUBERT SYNDROME, B9D1-RELATED (B9D1) negative JOUBERT SYNDROME, B9D2-RELATED (B9D2) negative JOUBERT SYNDROME, C2CD3-RELATED/OROFACIODIGITAL SYNDROME 14 (C2CD3) negative

JOUBERT SYNDROME, CC2D2A-RELATED/COACH SYNDROME (CC2D2A) negative

JOUBERT SYNDROME, CEP104-RELATED (CEP104) negative
JOUBERT SYNDROME, CEP120-RELATED/SHORT-RIB THORACIC DYSPLASIA 13 WITH OR

WITHOUT POLYDACTYLY (CEP120) negative

JOUBERT SYNDROME, CEP41-RELATED (CEP41) negative JOUBERT SYNDROME, CPLANE1-RELATED / OROFACIODIGITAL SYNDROME 6

(CPLANE1) negative

JOUBERT SYNDROME, CSPP1-RELATED (CSPP1) negative
JOUBERT SYNDROME, INPP5E-RELATED (INPP5E) negative
JUNCTIONAL EPIDERMOLYSIS BULLOSA, COL17A1-RELATED (COL17A1) negative

JUNCTIONAL EPIDERMOLYSIS BULLOSA, ITGA6-RELATED (ITGA6) negative JUNCTIONAL EPIDERMOLYSIS BULLOSA, ITGAG-RELATED (ITGAG) negative
JUNCTIONAL EPIDERMOLYSIS BULLOSA, ITGB4-RELATED (ITGB4) negative
JUNCTIONAL EPIDERMOLYSIS BULLOSA, LAMB3-RELATED (LAMB3) negative
JUNCTIONAL EPIDERMOLYSIS BULLOSA, LAMC2-RELATED (LAMC2) negative
JUNCTIONAL EPIDERMOLYSIS BULLOSA/LARYNGOONYCHOCUTANEOUS SYNDROME,

LAMA3-RELATED (LAMA3) negative

KRABBE DISEASE (GALC) negative

LAMELLAR ICHTHYOSIS, TYPE 1 (TGM1) negative

Patient Name:

Test Information

Ordering Physician:

Clinic Information:

Date Of Birth: Case File ID:

Report Date:

LARON SYNDROME (GHR) negative LEBER CONGENITAL AMAUROSIS 2 (RPE65) negative LEBER CONGENITAL AMAUROSIS TYPE AIPL1 (AIPL1) negative LEBER CONGENITAL AMAUROSIS TYPE GUCY2D (GUCY2D) negative
LEBER CONGENITAL AMAUROSIS TYPE TULP1 (TULP1) negative
LEBER CONGENITAL AMAUROSIS, IQCB1-RELATED/SENIOR-LOKEN SYNDROME 5

(IQCB1) negative

LEBER CONGENITAL AMAUROSIS, TYPE CEP290 (CEP290) negative LEBER CONGENITAL AMAUROSIS, TYPE LCA5 (LCA5) negative LEBER CONGENITAL AMAUROSIS, TYPE RDH12 (RDH12) negative LEIGH SYNDROME, FRENCH-CANADIAN TYPE (LRPPRC) negative LETHAL CONGENITAL CONTRACTURE SYNDROME 1 (GLE1) negative LEUKOENCEPHALOPATHY WITH VANISHING WHITE MATTER (EIF2B5) negative

LEUKOENCEPHALOPATHY WITH VANISHING WHITE MATTER, EIF2B1-RELATED (EIF2B1) negative LEUKOENCEPHALOPATHY WITH VANISHING WHITE MATTER, EIF2B2-RELATED

(EIF2B2) negative LEUKOENCEPHALOPATHY WITH VANISHING WHITE MATTER, EIF2B3-RELATED (EIF2B3) negative

LEUKOENCEPHALOPATHY WITH VANISHING WHITE MATTER, EIF2B4-RELATED

(EIF2B4) negative LIG4 SYNDROME (LIG4) negative

LIMB-GIRDLE MUSCULAR DYSTROPHY TYPE 8 (TRIM32) negative LIMB-GIRDLE MUSCULAR DYSTROPHY, TYPE 2A (CAPN3) negative

LIMB-GIRDLE MUSCULAR DYSTROPHY, TYPE 2A (CAPN3) negative LIMB-GIRDLE MUSCULAR DYSTROPHY, TYPE 2B (DYSF) negative LIMB-GIRDLE MUSCULAR DYSTROPHY, TYPE 2C (SGCG) negative LIMB-GIRDLE MUSCULAR DYSTROPHY, TYPE 2D (SGCA) negative LIMB-GIRDLE MUSCULAR DYSTROPHY, TYPE 2E (SGCB) negative LIMB-GIRDLE MUSCULAR DYSTROPHY, TYPE 2F (SGCD) negative LIMB-GIRDLE MUSCULAR DYSTROPHY, TYPE 2F (SGCD) negative LIMB-GIRDLE DELIVERAGE AND ASSESSED ASSESSED AND ASSESSED A

LIPOAMIDE DEHYDROGENASE DEFICIENCY (DIHYDROLIPOAMIDE DEHYDROGENASE DEFICIENCY) (DLD) negative LIPOID ADRENAL HYPERPLASIA (STAR) negative

LIPOPROTEIN LIPASE DEFICIENCY (LPL) negative

LONG CHAIN 3-HYDROXYACYL-COA DEHYDROGENASE DEFICIENCY (HADHA) negative LRAT-RELATED CONDITIONS (LRAT) negative LUNG DISEASE, IMMUNODEFICIENCY, AND CHROMOSOME BREAKAGE SYNDROME

(LICS) (NSMCE3) negative
LYSINURIC PROTEIN INTOLERANCE (SLC7A7) negative

MALONYL-COA DECARBOXYLASE DEFICIENCY (MLYCD) negative MAPLE SYRUP URINE DISEASE, TYPE 1A (BCKDHA) negative MAPLE SYRUP URINE DISEASE, TYPE 1B (BCKDHB) negative MAPLE STRUP URINE DISEASE, TYPE 2 (DBT) negative MAPLE SYRUP URINE DISEASE, TYPE 2 (DBT) negative MCKUSICK-KAUFMAN SYNDROME (MKKS) negative MECKEL SYNDROME 7/NEPHRONOPHTHISIS 3 (NPHP3) negative MECKEL-GRUBER SYNDROME, TYPE 1 (MK51) negative MECR-RELATED NEUROLOGIC DISORDER (MECR) negative MEDIUM CHAIN ACYL-CoA DEHYDROGENASE DEFICIENCY (ACADM) negative MEDNIK SYNDROME (AP1S1) negative MEGALENCEPHALIC LEUKOENCEPHALOPATHY WITH SUBCORTICAL CYSTS

(MLC1) negative MEROSIN-DEFICIENT MUSCULAR DYSTROPHY (LAMA2) negative METABOLIC ENCEPHALOPATHY AND ARRHYTHMIAS, TANGO2-RELATED

(TANGO2) negative METACHROMATIC LEUKODYSTROPHY, ARSA-RELATED (ARSA) negative METACHROMATIC LEUKODYSTROPHY, PSAP-RELATED (PSAP) negative

METHYLMALONIC ACIDEMIA AND HOMOCYSTINURIA TYPE CBLF (LMBRD1) negative METHYLMALONIC ACIDEMIA, MCEE-RELATED (MCEE) negative METHYLMALONIC ACIDURIA AND HOMOCYSTINURIA, TYPE CBLC (MMACHC) negative METHYLMALONIC ACIDURIA AND HOMOCYSTINURIA, TYPE CBLC (MMADHC) negative METHYLMALONIC ACIDURIA AND HOMOCYSTINURIA, TYPE CBID (MMADHC) negative

METHYLMALONIC ACIDURIA, MMAA-RELATED (MMAA) negative METHYLMALONIC ACIDURIA, MMAB-RELATED (MMAB) negative METHYLMALONIC ACIDURIA, TYPE MUT(0) (MUT) negative

MEVALONIC KINASE DEFICIENCY (MVK) negative
MICROCEPHALIC OSTEODYSPLASTIC PRIMORDIAL DWARFISM TYPE II (PCNT) negative
MICROPHTHALMIA / ANOPHTHALMIA, VSX2-RELATED (VSX2) negative

MITOCHONDRIAL COMPLEX 1 DEFICIENCY, ACAD9-RELATED (ACAD9) negative MITOCHONDRIAL COMPLEX 1 DEFICIENCY, NDUFAF5-RELATED (NDUFAF5) see first page MITOCHONDRIAL COMPLEX 1 DEFICIENCY, NDUFS6-RELATED (NDUFS6) negative

MITOCHONDRIAL COMPLEX I DEFICIENCY, NUCLEAR TYPE 1 (NDUFS4) negative MITOCHONDRIAL COMPLEX I DEFICIENCY, NUCLEAR TYPE 10 (NDUFAF2) negative MITOCHONDRIAL COMPLEX I DEFICIENCY, NUCLEAR TYPE 17 (NDUFAF6) negative MITOCHONDRIAL COMPLEX I DEFICIENCY, NUCLEAR TYPE 19 (FOXRED1) negative

MITOCHONDRIAL COMPLEX I DEFICIENCY, NUCLEAR TYPE 3 (NDUFST) negative MITOCHONDRIAL COMPLEX I DEFICIENCY, NUCLEAR TYPE 4 (NDUFV1) negative MITOCHONDRIAL COMPLEX IV DEFICIENCY, NUCLEAR TYPE 2, SCO2-RELATED

(SCO2) negative MITOCHONDRIAL COMPLEX IV DEFICIENCY, NUCLEAR TYPE 6 (COX15) negative MITOCHONDRIAL DNA DEPLETION SYNDROME 2 (TK2) negative MITOCHONDRIAL DNA DEPLETION SYNDROME 3 (DGUOK) negative MITOCHONDRIAL MYOPATHY AND SIDEROBLASTIC ANEMIA (MLASA1) (PUS1) negative MITOCHONDRIAL TRIFUNCTIONAL PROTEIN DEFICIENCY, HADHB-RELATED (HADHB) negative

MOLYBDENUM COFACTOR DEFICIENCY TYPE B (MOCS2) negative MOLYBDENUM COFACTOR DEFICIENCY, TYPE A (MOCS1) negative

MUCOLIPIDOSIS II/III A (GNPTAB) negative MUCOLIPIDOSIS III GAMMA (GNPTG) negative
MUCOLIPIDOSIS, TYPE IV (MCOLN1) negative
MUCOPOLYSACCHARIDOSIS, TYPE I (HURLER SYNDROME) (IDUA) negative

MUCOPOLYSACCHARIDOSIS, TYPE II A (SANFILIPPO A) (SGSH) negative MUCOPOLYSACCHARIDOSIS, TYPE III A (SANFILIPPO B) (NAGLU) negative MUCOPOLYSACCHARIDOSIS, TYPE III B (SANFILIPPO B) (NAGLU) negative MUCOPOLYSACCHARIDOSIS, TYPE III C (SANFILIPPO C) (HGSNAT) negative MUCOPOLYSACCHARIDOSIS, TYPE III D (SANFILIPPO D) (GNS) negative MUCOPOLYSACCHARIDOSIS, TYPE IV A (MORQUIO SYNDROME) (GALNS) negative MUCOPOLYSACCHARIDOSIS, TYPE IV B/GM1 GANGLIOSIDOSIS (GLB1) negative MUCOPOLYSACCHARIDOSIS, TYPE IV (HYAL1) negative

MUCOPOLYSACCHARIDOSIS, TYPE VI (MAROTEAUX-LAMY) (ARSB) negative MUCOPOLYSACCHARIDOSIS, TYPE VI (MAROTEAUX-LAMY) (ARSB) negative MUCOPOLYSACCHARIDOSIS, TYPE VII (GUSB) negative MULIBREY NANISM (TRIM37) negative MULIBREY PRENGLIM SYNDROME, CHRNG-RELATED/ESCOBAR SYNDROME

(CHRNG) negative
MULTIPLE SULFATASE DEFICIENCY (SUMF1) negative

MUSCLE-EYE-BRAIN DISEASE, POMGNT1-RELATED (POMGNT1) negative MUSCULAR DYSTROPHY-DYSTROGLYCANOPATHY (RXYLT1) negative

MUSK-RELATED CONGENITAL MYASTHENIC SYNDROME (MUSK) negative MYONEUROGASTROINTESTINAL ENCEPHALOPATHY (MNGIE) (TYMP) negative MYOTONIA CONGENITA (CLCN1) negative

N-ACETYLGLUTAMATE SYNTHASE DEFICIENCY (NAGS) negative

N-ACETYLGLOTAMATE SYNTHASE DEFICIENCY (NAGS) negative
NEMALINE MYOPATHY, NEB-RELATED (NEB) negative
NEPHRONOPHTHISIS 1 (NPHP1) negative
NEURONAL CEROID LIPOFUSCINOSIS, CLN5-RELATED (CLN5) negative
NEURONAL CEROID LIPOFUSCINOSIS, CLN6-RELATED (CLN6) negative NEURONAL CEROID LIPOFUSCINOSIS, CLNS-RELATED (CLN8) negative NEURONAL CEROID LIPOFUSCINOSIS, MFSD8-RELATED (MFSD8) negative NEURONAL CEROID LIPOFUSCINOSIS, PPT1-RELATED (PPT1) negative

NEURONAL CEROID LIPOFUSCINOSIS, PP11-RELATED (PP11) negative NEURONAL CEROID LIPOFUSCINOSIS, TPP1-RELATED (TPP1) negative NGLY1-CONGENITAL DISORDER OF GLYCOSYLATION (NGLY1) negative NIEMANN-PICK DISEASE, TYPE C1 / D (NPC1) negative NIEMANN-PICK DISEASE, TYPE C2 (NPC2) negative NIEMANN-PICK DISEASE, TYPES A / B (SMPD1) negative NIMEGEN BREAKAGE SYNDROME (NBN) negative NON-SYNDROMIC HEARING LOSS, GJB2-RELATED (GJB2) negative NON-SYNDROMIC HEARING LOSS, MYO15A-RELATED (MYO15A) negative NONSYNDROMIC HEARING LOSS, OTOA-RELATED (OTOA) negative NONSYNDROMIC HEARING LOSS, OTOF-RELATED (OTOF) negative NONSYNDROMIC HEARING LOSS, PJVK-RELATED (PJVK) negative NONSYNDROMIC HEARING LOSS, SYNE4-RELATED (SYNE4) negative NONSYNDROMIC HEARING LOSS, TMC1-RELATED (TMC1) negative NONSYNDROMIC HEARING LOSS, TMPRSS3-RELATED (TMPRSS3) negative

NONSYNDROMIC INTELLECTUAL DISABILITY (CC2D1A) negative NORMOPHOSPHATEMIC TUMORAL CALCINOSIS (SAMD9) negative

OCULOCUTANEOUS ALBINISM TYPE III (TYRP1) negative OCULOCUTANEOUS ALBINISM TYPE IV (SLC45A2) negative OCULOCUTANEOUS ALBINISM, OCA2-RELATED (OCA2) negative OCULOCUTANEOUS ALBINISM, TYPES 1A AND 1B (TYR) negative ODONTO-ONYCHO-DERMAL DYSPLASIA / SCHOPF-SCHULZ-PASSARGE SYNDROME (WNT10A) negative

OMENN SYNDROME, RAG2-RELATED (RAG2) negative ORNITHINE AMINOTRANSFERASE DEFICIENCY (OAT) negative OSTEOGENESIS IMPERFECTA TYPE VII (CRTAP) negative OSTEOGENESIS IMPERFECTA TYPE VIII (P3H1) negative OSTEOGENESIS IMPERFECTA TYPE XI (FKBP10) negative
OSTEOGENESIS IMPERFECTA TYPE XIII (BMP1) negative
OSTEOPETROSIS, INFANTILE MALIGNANT, TCIRG1-RELATED (TCIRG1) negative OSTEOPETROSIS, OSTM1-RELATED (OSTM1) negative

PANTOTHENATE KINASE-ASSOCIATED NEURODEGENERATION (PANK2) negative PAPILLON LEFÈVRE SYNDROME (CTSC) negative PARKINSON DISEASE 15 (FBXO7) negative PENDRED SYNDROME (SLC26A4) negative PENDRED SYNDROME (SLCZOA4) negative
PERLMAN SYNDROME (DIS3L2) negative
PGM3-CONGENITAL DISORDER OF GLYCOSYLATION (PGM3) negative
PHENYLKETONURIA (PAH) negative
PIGN-CONGENITAL DISORDER OF GLYCOSYLATION (PIGN) negative PITUITARY HORMONE DEFICIENCY, COMBINED 3 (LHX3) negative POLG-RELATED DISORDERS (POLG) negative

Patient Name:

Test Information

Ordering Physician:

Date Of Birth:

Case File ID:

Clinic Information:

Report Date:

POLYCYSTIC KIDNEY DISEASE, AUTOSOMAL RECESSIVE (PKHD1) negative PONTOCEREBELLAR HYPOPLASIA, EXOSC3-RELATED (EXOSC3) negative PONTOCEREBELLAR HYPOPLASIA, RARS2-RELATED (RARS2) negative PONTOCEREBELLAR HYPOPLASIA, TSEN2-RELATED (TSEN2) negative PONTOCEREBELLAR HYPOPLASIA, TSEN54-RELATED (TSEN54) negative PONTOCEREBELLAR HYPOPLASIA, TYPE 1A (VRK1) negative PONTOCEREBELLAR HYPOPLASIA, TYPE 1A (WAT) Hegative PONTOCEREBELLAR HYPOPLASIA, TYPE 2D (SEPSECS) negative PONTOCEREBELLAR HYPOPLASIA, VP553-RELATED (VP553) negative PRIMARY CILIARY DYSKINESIA, CCDC103-RELATED (CCDC103) negative PRIMARY CILIARY DYSKINESIA, CCDC39-RELATED (CCDC39) negative PRIMARY CILIARY DYSKINESIA, DNAH11-RELATED (DNAH11) negative PRIMARY CILIARY DYSKINESIA, DNAH5-RELATED (DNAH5) negative PRIMARY CILIARY DYSKINESIA, DNAI1-RELATED (DNAI1) negative PRIMARY CILIARY DYSKINESIA, DNAI2-RELATED (DNAI2) negative PRIMARY CONGENITAL GLAUCOMA/PETERS ANOMALY (CYP1B1) negative PRIMARY HYPEROXALURIA, TYPE 1 (AGXT) negative

PRIMARY HYPEROXALURIA, TYPE 2 (GRIPR) negative
PRIMARY HYPEROXALURIA, TYPE 3 (HOGA1) negative
PRIMARY MICROCEPHALY 1, AUTOSOMAL RECESSIVE (MCPH1) negative

PROGRESSIVE EARLY-ONSET ENCEPHALOPATHY WITH BRAIN ATROPHY AND THIN

CORPUS CALLOSUM (TBCD) negative
PROGRESSIVE FAMILIAL INTRAHEPATIC CHOLESTASIS, ABCB4-RELATED (ABCB4) negative PROGRESSIVE FAMILIAL INTRAHEPATIC CHOLESTASIS, TYPE 1 (PFIC1) (ATP8B1) negative PROGRESSIVE FAMILIAL INTRAHEPATIC CHOLESTASIS, TYPE 2 (ABCB11) negative PROGRESSIVE FAMILIAL INTRAHEPATIC CHOLESTASIS, TYPE 4 (PFIC4) (TJP2) negative PROGRESSIVE PSEUDORHEUMATOID DYSPLASIA (CCN6) negative

PROGRESSIVE PSEUDORHEUMATOID DYSPLASIA (CCN6) negative
PROLIDASE DEFICIENCY (PEPD) negative
PROPIONIC ACIDEMIA, PCCA-RELATED (PCCA) negative
PROPIONIC ACIDEMIA, PCCB-RELATED (PCCB) negative
PSEUDOXANTHOMA ELASTICUM (ABCC6) negative
PSEUDOXANTHOMA ELASTICUM (ABCC6) negative
PTERIN-4 ALPHA-CARBINOLAMINE DEHYDRATASE (PCD) DEFICIENCY (PCBD1) negative
PYCNODYSOSTOSIS (CTSK) negative
PYRIDOXAL 5-PHOSPHATE-DEPENDENT EPILEPSY (PNPO) negative

PYRIDOXINE-DEPENDENT EPILEPSY (ALDH7A1) negative

PYRUVATE CARBOXYLASE DEFICIENCY (PC) negative PYRUVATE DEHYDROGENASE DEFICIENCY, PDHB-RELATED (PDHB) negative

REFSUM DISEASE, PHYH-RELATED (PHYH) negative RENAL TUBULAR ACIDOSIS AND DEAFNESS, ATP6V1B1-RELATED (ATP6V1B1) negative RENAL TUBULAR ACIDOSIS, PROXIMAL, WITH OCULAR ABNORMALITIES AND MENTAL

RETARDATION (SLC4A4) negative RETINITIS PIGMENTOSA 25 (EYS) negative RETINITIS PIGMENTOSA 26 (CERKL) see first page RETINITIS PIGMENTOSA 28 (FAM161A) negative RETINITIS PIGMENTOSA 36 (PRCD) negative RETINITIS PIGMENTOSA 59 (DHDDS) negative RETINITIS PIGMENTOSA 62 (MAK) negative

RHIZOMELIC CHONDRODYSPLASIA PUNCTATA, TYPE 1 (PEX7) negative RHIZOMELIC CHONDRODYSPLASIA PUNCTATA, TYPE 2 (GNPAT) negative RHIZOMELIC CHONDRODYSPLASIA PUNCTATA, TYPE 3 (AGPS) negative

RLBP1-RELATED RETINOPATHY (RLBP1) negative ROBERTS SYNDROME (ESCO2) negative RYR1-RELATED CONDITIONS (RYR1) negative

SALLA DISEASE (SLC17A5) negative SANDHOFF DISEASE (HEXB) negative

SCHIMKE IMMUNOOSSEOUS DYSPLASIA (SMARCAL1) negative

SCHINDLER DISEASE (NAGA) negative SEGAWA SYNDROME, TH-RELATED (TH) negative

SENIOR-LOKEN SYNDROME 4/NEPHRONOPHTHISIS 4 (NPHP4) negative

SEPIAPTERIN REDUCTASE DEFICIENCY (SPR) negative
SEVERE COMBINED IMMUNODEFICIENCY (SCID), CD3D-RELATED (CD3D) negative
SEVERE COMBINED IMMUNODEFICIENCY (SCID), CD3E-RELATED (CD3E) negative

SEVERE COMBINED IMMUNODEFICIENCY (SCID), FOXN1-RELATED (FOXN1) negative SEVERE COMBINED IMMUNODEFICIENCY (SCID), IKBKB-RELATED (IKBKB) negative SEVERE COMBINED IMMUNODEFICIENCY (SCID), IL7R-RELATED (IL7R) negative

SEVERE COMBINED IMMUNODEFICIENCY (SCID), JAK3-RELATED (JAK3) negative SEVERE COMBINED IMMUNODEFICIENCY (SCID), PTPRC-RELATED (PTPRC) negative SEVERE COMBINED IMMUNODEFICIENCY (SCID), RAG1-RELATED (RAG1) negative

SEVERE COMBINED IMMUNODEFICIENCY, ADA-Related (ADA) negative

SEVERE COMBINED IMMUNODEFICIENCY, TYPE ATHABASKAN (DCLRE1C) negative SHORT-RIB THORACIC DYSPLASIA 3 WITH OR WITHOUT POLYDACTYLY (DYNC2H1) negative

SHWACHMAN-DIAMOND SYNDROME, SBDS-RELATED (SBDS) negative

SIALIDOSIS (NEU1) negative SJÖGREN-LARSSON SYNDROME (ALDH3A2) negative SMITH-LEMLI-OPITZ SYNDROME (DHCR7) negative

SPASTIC PARAPLEGIA, TYPE 15 (ZFYVE26) negative

SPASTIC TETRAPLEGIA, THIN CORPUS CALLOSUM, AND PROGRESSIVE MICROCEPHALY (SPATCCM) (SLC1A4) negative SPG11-RELATED CONDITIONS (SPG11) negative

SPINAL MUSCULAR ATROPHY (SMN1) negative SMN1: >/= 3 copies; g.27134T>G: absent; the g.27134T>G variant does not modify carrier risk in individuals who carry 3 or more copies of

SPINAL MUSCULAR ATROPHY WITH RESPIRATORY DISTRESS TYPE 1 (IGHMBP2) negative SPINOCEREBELLAR ATAXIA, AUTOSOMAL RECESSIVE 10 (ANO10) negative SPINOCEREBELLAR ATAXIA, AUTOSOMAL RECESSIVE 12 (WWOX) negative SPONDYLOCOSTAL DYSOSTOSIS 1 (DLL3) negative SPONDYLOTHORACIC DYSOSTOSIS, MESP2-Related (MESP2) negative

STEEL SYNDROME (COL27A1) negative STEROID-RESISTANT NEPHROTIC SYNDROME (NPHS2) negative

STUVE-WIEDEMANN SYNDROME (LIFR) negative

SURF1-RELATED CONDITIONS (SURF1) negative SURFACTANT DYSFUNCTION, ABCA3-RELATED (ABCA3) negative

TAY-SACHS DISEASE (HEXA) negative
TBCE-RELATED CONDITIONS (TBCE) negative

THIAMINE-RESPONSIVE MEGALOBLASTIC ANEMIA SYNDROME (SLC19A2) negative

THYROID DYSHORMONOGENESIS 1 (SLC5A5) negative THYROID DYSHORMONOGENESIS 2A (TPO) negative THYROID DYSHORMONOGENESIS 3 (TG) negative

THYROID DYSHORMONOGENESIS 3 (16) negative THYROID DYSHORMONOGENESIS 6 (DUOX2) negative TRANSCOBALAMIN II DEFICIENCY (TCN2) negative TRICHOHEPATOENTERIC SYNDROME, SKIC2-RELATED (SKIC2) negative TRICHOHEPATOENTERIC SYNDROME, TTC37-RELATED (TTC37) negative

TRICHOTHIODYSTROPHY 1/XERODERMA PIGMENTOSUM, GROUP D (ERCC2) negative TRIMETHYLAMINURIA (FMO3) negative TRIPLE A SYNDROME (AAAS) negative

TSHR-RELATED CONDITIONS (TSHR) negative TYROSINEMIA TYPE III (HPD) negative TYROSINEMIA, TYPE 1 (FAH) negative TYROSINEMIA, TYPE 2 (TAT) negative

USHER SYNDROME, TYPE 1B (MYO7A) negative USHER SYNDROME, TYPE 1C (USH1C) negative USHER SYNDROME, TYPE 1D (CDH23) negative USHER SYNDROME, TYPE 1F (PCDH15) negative USHER SYNDROME, TYPE 1J/DEAFNESS, AUTOSOMAL RECESSIVE, 48 (CIB2) negative

USHER SYNDROME, TYPE 2A (USH2A) negative USHER SYNDROME, TYPE 2C (ADGRV1) negative USHER SYNDROME, TYPE 3 (CLRN1) negative

VERY LONG-CHAIN ACYL-CoA DEHYDROGENASE DEFICIENCY (ACADVL) negative VICI SYNDROME (EPG5) negative

VITAMIN D-DEPENDENT RICKETS, TYPE 1A (CYP27B1) negative VITAMIN D-RESISTANT RICKETS TYPE 2A (VDR) negative VLDLR-ASSOCIATED CEREBELLAR HYPOPLASIA (VLDLR) negative

WALKER-WARBURG SYNDROME, CRPPA-RELATED (CRPPA) negative WALKER-WARBURG SYNDROME, FKTN-RELATED (FKTN) negative WALKER-WARBURG SYNDROME, LARGE1-RELATED (LARGE1) negative WALKER-WARBURG SYNDROME, POMT1-RELATED (POMT1) negative WALKER-WARBURG SYNDROME, POMT2-RELATED (POMT2) negative WARSAW BREAKAGE SYNDROME (DDX11) negative WERNER SYNDROME (WRN) negative WILSON DISEASE (ATP7B) negative

WOLCOTT-RALLISON SYNDROME (EIF2AK3) negative WOLMAN DISEASE (LIPA) negative WOODHOUSE-SAKATI SYNDROME (DCAF17) negative

XERODERMA PIGMENTOSUM VARIANT TYPE (POLH) negative XERODERMA PIGMENTOSUM, GROUP A (XPA) negative XERODERMA PIGMENTOSUM, GROUP C (XPC) negative

ZELLWEGER SPECTRUM DISORDER, PEX13-RELATED (PEX13) negative ZELLWEGER SPECTRUM DISORDER, PEX16-RELATED (PEX16) negative ZELLWEGER SPECTRUM DISORDER, PEX5-RELATED (PEX5) negative ZELLWEGER SPECTRUM DISORDERS, PEX10-RELATED (PEX10) negative ZELLWEGER SPECTRUM DISORDERS, PEX12-RELATED (PEX12) negative ZELLWEGER SPECTRUM DISORDERS, PEX1-RELATED (PEX1) negative ZELLWEGER SPECTRUM DISORDERS, PEX26-RELATED (PEX26) negative ZELLWEGER SPECTRUM DISORDERS, PEX2-RELATED (PEX2) negative

Patient Name:

Test Information
Ordering Physician:

Date Of Birth:

Case File ID:

Report Date:

Clinic Information:

 ${\bf Z}$ ZELLWEGER SPECTRUM DISORDERS, PEX6-RELATED (PEX6) $\,$ negative

Patient	Information
D 11 1	N.I.

Patient Name:

Test InformationOrdering Physician:

Clinic Information:

Date Of Birth: Case File ID:

Report Date:

Testing Methodology, Limitations, and Comments:

Next-generation sequencing (NGS)

Sequencing library prepared from genomic DNA isolated from a patient sample is enriched for targets of interest using standard hybridization capture protocols and PCR amplification (for targets specified below). NGS is then performed to achieve the standards of quality control metrics, including a minimum coverage of 99% of targeted regions at 20X sequencing depth. Sequencing data is aligned to human reference sequence, followed by deduplication, metric collection and variant calling (coding region +/- 20bp). Variants are then classified according to ACMGG/AMP standards of interpretation using publicly available databases including but not limited to ENSEMBL, HGMD Pro, ClinGen, ClinVar, 1000G, ESP and gnomAD. Variants predicted to be pathogenic or likely pathogenic for the specified diseases are reported. It should be noted that the data interpretation is based on our current understanding of the genes and variants at the time of reporting. Putative positive sequencing variants that do not meet internal quality standards or are within highly homologous regions are confirmed by Sanger sequencing or gene-specific long-range PCR as needed prior to reporting.

Copy Number Variant (CNV) analysis is limited to deletions involving two or more exons for all genes on the panel, in addition to specific known recurrent single-exon deletions. CNVs of small size may have reduced detection rate. This method does not detect gene inversions, single-exonic and sub-exonic deletions (unless otherwise specified), and duplications of all sizes (unless otherwise specified). Additionally, this method does not define the exact breakpoints of detected CNV events. Confirmation testing for copy number variation is performed by specific PCR, Multiplex Ligation-dependent Probe Amplification (MLPA), next generation sequencing, or other methodology.

This test may not detect certain variants due to local sequence characteristics, high/low genomic complexity, homologous sequence, or allele dropout (PCR-based assays). Variants within noncoding regions (promoter, 5'UTR, 3'UTR, deep intronic regions, unless otherwise specified), small deletions or insertions larger than 25bp, low-level mosaic variants, structural variants such as inversions, and/or balanced translocations may not be detected with this technology.

SPECIAL NOTES

For ABCC6, sequencing variants in exons 1-7 are not detected due to the presence of regions of high homology.

For CFTR, when the CFTR R117H variant is detected, reflex analysis of the polythymidine variations (5T, 7T and 9T) at the intron 9 branch/acceptor site of the CFTR gene will be performed. Multi-exon duplication analysis is included.

For CYP21A2, targets were enriched using long-range PCR amplification, followed by next generation sequencing. Duplication analysis will only be performed and reported when c.955C>T (p.Q319*) is detected. Sequencing and CNV analysis may have reduced sensitivity, if variants result from complex rearrangements, in trans with a gene deletion, or CYP21A2 gene duplication on one chromosome and deletion on the other chromosome. This analysis cannot detect sequencing variants located on the CYP21A2 duplicated copy.

For DDX11, sequencing variants in exons 7-11 and CNV for the entire gene are not analyzed due to high sequence homology.

For GJB2, CNV analysis of upstream deletions of GJB6-D13S1830 (309kb deletion) and GJB6-D13S1854 (232kb deletion) is included.

For HBA1/HBA2, CNV analysis is offered to detect common deletions of -alpha3.7, -alpha4.2, --MED, --SEA, --FIL, --THAI, --alpha20.5, and/or HS-40.

For OTOA, sequencing variants in exons 25-29 and CNV in exons 21-29 are not analyzed due to high sequence homology.

For RPGRIP1L, variants in exon 23 are not detected due to assay limitation.

For SAMD9, only p.K1495E variant will be analyzed and reported.

Friedreich Ataxia (FXN)

The GAA repeat region of the FXN gene is assessed by trinucleotide PCR assay and capillary electrophoresis. Variances of +/-1 repeat for normal alleles and up to +/-3 repeats for premutation alleles may occur. For fully penetrant expanded alleles, the precise repeat size cannot be determined, therefore the approximate allele size is reported. Sequencing and copy number variants are analyzed by next-generation sequencing analysis.

Friedreich Ataxia Repeat Categories

Categories	GAA Repeat Sizes
Normal	<34
Premutation	34 - 65
Full	>65

Patient Information	Test Information
Patient Name:	Ordering Physician:
	Clinic Information:
Date Of Birth:	
Case File ID:	
	Report Date:

Spinal Muscular Atrophy (SMN1)

The total combined copy number of SMN1 and SMN2 exon 7 is quantified based on NGS read depth. The ratio of SMN1 to SMN2 is calculated based on the read depth of a single nucleotide that distinguishes these two genes in exon 7. In addition to copy number analysis, testing for the presence or absence of a single nucleotide polymorphism (g.27134T>G in intron 7 of SMN1) associated with the presence of a SMN1 duplication allele is performed using NGS.

Ethnicity Two SMN1 copies carrier risk before g.27134T>G testing Carrier risk after g.27134T>G testing g.27134T>G ABSENT g.27134T>G PRESENT Caucasian 1 in 632 1 in 769 1 in 29 Ashkenazi Jewish 1 in 350 1 in 580 LIKELY CARRIER 1 in 628 1 in 702 LIKELY CARRIER African-American 1 in 121 1 in 396 1 in 34 Hispanic 1 in 1061 1 in 1762 1 in 140

Variant Classification

Only pathogenic or likely pathogenic variants are reported. Other variants including benign variants, likely benign variants, variants of uncertain significance, or inconclusive variants identified during this analysis may be reported in certain circumstances. Our laboratory's variant classification criteria are based on the ACMG and internal guidelines and our current understanding of the specific genes. This interpretation may change over time as more information about a gene and/or variant becomes available. Natera and its lab partner(s) may reclassify variants at certain intervals but may not release updated reports without a specific request made to Natera by the ordering provider. Natera may disclose incidental findings if deemed clinically pertinent to the test performed.

Negative Results

A negative carrier screening result reduces the risk for a patient to be a carrier of a specific disease but does not completely rule out carrier status. Please visit https://www.natera.com/panel-option/h-all/ for a table of carrier rates, detection rates, residual risks and promised variants/exons per gene. Carrier rates before and after testing vary by ethnicity and assume a negative family history for each disease screened and the absence of clinical symptoms in the patient. Any patient with a family history for a specific genetic disease will have a higher carrier risk prior to testing and, if the disease-causing mutation in their family is not included on the test, their carrier risk would remain unchanged. Genetic counselling is recommended for patients with a family history of genetic disease so that risk figures based on actual family history can be determined and discussed along with potential implications for reproduction. Horizon carrier screening has been developed to identify the reproductive risks for monogenic inherited conditions. Even when one or both members of a couple screen negative for pathogenic variants in a specific gene, the disease risk for their offspring is not zero. There is still a low risk for the condition in their offspring due to a number of different mechanisms that are not detected by Horizon including, but not limited to, pathogenic variant(s) in the tested gene or in a different gene not included on Horizon, pathogenic variant(s) in an upstream regulator, uniparental disomy, de novo mutation(s), or digenic or polygenic inheritance.

Additional Comments

These analyses generally provide highly accurate information regarding the patient's carrier status. Despite this high level of accuracy, it should be kept in mind that there are many potential sources of diagnostic error, including misidentification of samples, polymorphisms, or other rare genetic variants that interfere with analysis. Families should understand that rare diagnostic errors may occur for these reasons.

