

SPERM DONOR GENETIC TESTING SUMMARY Donor # 7726

Fairfax Cryobank recommends reviewing this genetic testing summary with your healthcare provider to determine suitability.

Last Updated: 7/10/2025

Donor Reported Ancestry: Mexican Jewish Ancestry: No

Genetic Test*	Result	Comments Donor's Residual Risk**
Chromosome analysis (karyotype)	Normal male karyotype	No evidence of clinically significant chromosome abnormalities
Hemoglobin evaluation	Normal hemoglobin fractionation and MCV/MCH results	Reduced risk to be a carrier for sickle cell anemia, beta thalassemia, alpha thalassemia trait (aa/ and a-/a-) and other hemoglobinopathies
Expanded Genetic Disease Carrier Screening Panel attached - 549 diseases by gene sequencing and del/dup analysis.	Carrier: ABCA4 - Related Conditions (ABCA4) Carrier: Congenital Finnish Nephrosis (NPHS1) Carrier: Maple Syrup Urine Disease, Type 2 (DBT) Increased Carrier Risk: Spinal Muscular Atrophy (SMN1) Negative for other genes tested.	Partner testing is recommended before using this donor.

^{*}No single test can screen for all genetic disorders. A negative screening result significantly reduces, but cannot eliminate, the risk for these conditions in a pregnancy.

^{**}Donor residual risk is the chance the donor is still a carrier after testing negative.

Patient Name: Donor 7726

Date Of Birth:

Gender: Male

Ethnicity: Hispanic/Latin American

Patient ID: N/A

Medical Record #: Collection Kit:

Accession ID: N/A

Case File ID:

Test Information

Ordering Physician:

Clinic Information: Fairfax Cryobank

Phone:

Report Date: Sample Collected: Sample Received:

Sample Type:

11/08/2024 10/24/2024 10/25/2024

Blood

CARRIER SCREENING REPORT

ABOUT THIS SCREEN: Horizon™ is a carrier screen for specific autosomal recessive and X-linked diseases. This information can help patients learn their risk of having a child with specific genetic conditions.

ORDER SELECTED: The Horizon Custom panel was ordered for this patient. Males are not

screened for X-linked diseases

FINAL RESULTS SUMMARY:

CARRIER for ABCA4-Related Conditions

Positive for the pathogenic variant c.2588G>C (p.G863A) in the ABCA4 gene. This variant has been reported in a homozygous state or in conjunction with another variant in individual(s) with ABCA4-related disorders (PMID: 28044389, 25082885). The carrier frequency is higher than would be expected for a pathogenic variant, suggesting this variant may have reduced penetrance. If this individual's partner is a carrier for ABCA4-RELATED CONDITIONS, their chance to have a child with this condition is 1 in 4 (25%). Carrier screening for this individual's partner is suggested.

CARRIER for Congenital Finnish Nephrosis

Positive for the likely pathogenic variant c.2227C>T (p.R743C) in the NPHS1 gene. If this individual's partner is a carrier for CONGENITAL FINNISH NEPHROSIS, their chance to have a child with this condition may be as high as 1 in 4 (25%). Carrier screening for this individual's partner is suggested.

CARRIER for Maple Syrup Urine Disease, Type 2

Positive for the pathogenic variant c.827T>G (p.F276C) in the DBT gene. If this individual's partner is a carrier for MAPLE SYRUP URINE DISEASE, TYPE 2, their chance to have a child with this condition is 1 in 4 (25%). Carrier screening for this individual's partner is suggested.

INCREASED CARRIER RISK for Spinal Muscular Atrophy

Two copies of the SMN1 gene detected. Positive for the g.27134T>G variant. Based on this individual's reported ethnicity, the individual has a 1 in 140 risk to be a silent (2+0) carrier for SMA. If this individual's partner is a carrier for Spinal Muscular Atrophy, they may be at increased risk to have a child with this condition. Carrier screening for this individual's partner is suggested.

Negative for 545 out of 549 diseases

No other pathogenic variants were detected in the genes that were screened. The patient's remaining carrier risk after the negative screening results is listed for each disease/gene on the Horizon website at https://www.natera.com/panel-option/h-all/. Please see the following pages of this report for a comprehensive list of all conditions included on this individual's screen.

Carrier screening is not diagnostic and may not detect all possible pathogenic variants in a given gene.

RECOMMENDATIONS

Individuals who would like to review their Horizon report with a Natera Laboratory Genetic Counselor may schedule a telephone genetic information session by calling 650-249-9090 or visiting naterasession.com. Clinicians with questions may contact Natera at 650-249-9090 or email support@natera.com. Individuals with positive results may wish to discuss these results with family members to allow them the option to be screened. Comprehensive genetic counseling to discuss the implications of these test results and possible associated reproductive risk is recommended.

Christine M. Eng, M.D.
Medical Director, Baylor Genetics

Linyan Meng, Ph.D.

Yang Wang, Ph.D., FACMG

J. Dianne Keen-Kim, Ph.D., FACMGG

Patient Name: Donor 7726

Test Information

Ordering Physician:

Clinic Information: Fairfax Cryobank

Date Of Birth:

Case File ID:

Report Date: 11/08/2024

CONGENITAL FINNISH NEPHROSIS

Understanding Your Horizon Carrier Screen Results

What is Congenital Finnish Nephrosis?

Congenital Finnish Nephrosis, also known as Congenital Nephrotic Syndrome or Nephrotic Syndrome Type 1, is an inherited disorder that affects the kidneys. Symptoms often begin before birth and may include a large placenta and premature birth. Affected children often have swelling of the body (edema), high cholesterol, anemia, and repeated infections. The kidneys become more damaged over time which leads to blood and/or too much protein being lost in the urine. In most cases the kidney disease progresses to complete renal failure within the first 10 years of life. Without a kidney transplant affected individuals often die in childhood or early adulthood. Clinical trials involving potential new treatments for this condition may be available (see www.clinicaltrials.gov).

What causes Congenital Finnish Nephrosis?

Congenital Finnish Nephrosis is caused by a gene change, or mutation in both copies of the NPHS1 gene pair. These mutations cause the genes to not work properly or not work at all. When both copies of the NPHS1 gene do not work correctly, it leads to the kidney damage and symptoms described above. Congenital Finnish Nephrosis is inherited in an autosomal recessive manner. This means that, in most cases, both parents must be carriers of a mutation in one copy of the NPHS1 gene to have a child with the condition. People who are carriers for Congenital Finnish Nephrosis are usually healthy and do not have symptoms nor do they have Congenital Finnish Nephrosis themselves. Usually a child inherits two copies of each gene, one copy from the mother and one copy from the father. If the mother and father are both carriers for Congenital Finnish Nephrosis there is a 1 in 4, or 25%, chance in each pregnancy for both partners to pass on their NPHS1 gene mutations to the child, who will then have the condition. Individuals found to carry more than one mutation for Congenital Finnish Nephrosis should discuss their risk for having an affected child with their health care provider. There are other forms of Congenital Nephrotic Syndrome, each caused by mutations in different genes. A person who is a carrier for a mutation in the NPHS1 gene is not likely to have an increased risk to have children with these other forms of Congenital Nephrotic Syndrome.

What can I do next?

You may wish to speak with a local genetic counselor about your carrier test results. A genetic counselor in your area can be located on the National Society of Genetic Counselors website (www.nsgc.org). Your siblings and other relatives are at increased risk to also have this mutation. You are encouraged to inform your family members of your test results as they may wish to consider being tested themselves. If you are pregnant, your partner can have carrier screening for Congenital Finnish Nephrosis ordered by a health care professional. If your partner is not found to be a carrier for Congenital Finnish Nephrosis your risk of having a child with Congenital Finnish Nephrosis is greatly reduced. Couples at risk of having a baby with Congenital Finnish Nephrosis can opt to have prenatal diagnosis done through chorionic villus sampling (CVS) or amniocentesis during pregnancy or can choose to have the baby tested after birth for this condition. If you are not yet pregnant, your partner can have carrier screening for Congenital Finnish Nephrosis ordered by a health care professional. If your partner is found to be a carrier for Congenital Finnish Nephrosis, you have several reproductive options to consider:

- · Natural pregnancy with or without prenatal diagnosis of the fetus or testing the baby after birth for Congenital Finnish Nephrosis
- · Preimplantation genetic diagnosis (PGD) with in vitro fertilization (IVF) to test embryos for Congenital Finnish Nephrosis
- Adoption or use of a sperm or egg donor who is not a carrier for Congenital Finnish Nephrosis

What resources are available?

- Genetics Home Reference: https://ghr.nlm.nih.gov/condition/congenital-nephrotic-syndrome
- Prenatal diagnosis done through CVS: http://www.marchofdimes.org/chorionic-villus-sampling.aspx
- Prenatal diagnosis done through Amniocentesis: http://www.marchofdimes.org/amniocentesis.aspx
- PGD with IVF: http://www.natera.com/spectrum

Patient Information
Patient Name:

Test Information	
Ordering Physician:	

Date Of Birth: Case File ID:

Report Date:

Clinic Information:

MAPLE SYRUP URINE DISEASE, TYPE 2

Understanding Your Horizon Carrier Screen Results

What is Maple Syrup Urine Disease, Type 2?

Maple Syrup Urine Disease, Type 2 (also known as MSUD, Type 2, or MSUD2) is an inherited disorder in which the body is unable to break down certain building blocks of protein, called amino acids, from food. MSUD gets its name from the maple syrup odor of the urine in babies with the disease. Signs and symptoms usually begin in infancy and include poor feeding, vomiting, lack of energy, failure to grow at the normal rate, and developmental delay. Symptoms may worsen after going a long time without food or with illness and can be life-threatening. Lifelong dietary treatment is needed. If untreated, MSUD, Type 2 can lead to intellectual disability, seizures, coma, and sometimes death. Even with treatment, affected children may still have some symptoms of MSUD, Type 2. Some children have a milder form of MSUD Type 2 with fewer symptoms. Clinical trials involving potential new treatments for this condition may be available (see www.clinicaltrials.gov).

What causes MSUD, Type 2?

MSUD, Type 2 is caused by a change, or mutation, in both copies of the DBT gene pair. These mutations cause the genes to not work properly or not work at all. The normal function of the DBT genes is to help breakdown certain amino acids in food. When both copies of the gene do not work correctly toxic buildup of specific amino acids occurs, causing damage to the brain and other organs. MSUD, Type 2 is inherited in an autosomal recessive manner. This means that, in most cases, both parents must be carriers of a mutation in one copy of the DBT gene to have a child with MSUD, Type 2. People who are carriers for MSUD, Type 2 are usually healthy and do not have symptoms of MSUD, Type 2 nor do they have the disorder themselves. Usually a child inherits two copies of each gene, one copy from the mother and one copy from the father. If the mother and father are both carriers for MSUD, Type 2, there is a 1 in 4, or 25%, chance in each pregnancy for both partners to pass on their DBT gene mutations to the child, who will then have this condition. Individuals found to carry more than one mutation for MSUD, Type 2 should discuss their risk for having an affected child, and any risks to their own health, with their health care provider. There are a number of other forms of Maple Syrup Urine Disease (MSUD), each caused by mutations in different genes. People who are carriers of a DBT gene mutation are not likely to be at increased risk for having children with these other forms of MSUD.

What can I do next?

You may wish to speak with a local genetic counselor about your carrier test results. A genetic counselor in your area can be located on the National Society of Genetic Counselors website (www.nsgc.org). Your siblings and other relatives are at increased risk to also have this mutation. You are encouraged to inform your family members of your test results as they may wish to consider being tested themselves. If you are pregnant, your partner can have carrier screening for MSUD, Type 2 ordered by a health care professional. If your partner is not found to be a carrier for MSUD, Type 2, your risk of having an affected child is greatly reduced. Couples at risk of having a baby with MSUD, Type 2 can opt to have prenatal diagnosis done through chorionic villus sampling (CVS) or amniocentesis during pregnancy or can choose to have the baby tested after birth for this condition. Although MSUD is screened for as part of the newborn screening program in all states, babies at 25% risk for this condition may need diagnostic testing in addition to newborn screening. If you are not yet pregnant, your partner can have carrier screening for MSUD, Type 2 ordered by a health care professional. If your partner is found to be a carrier for MSUD, Type 2, you have several reproductive options to consider:

- Natural pregnancy with or without prenatal diagnostic testing of the fetus or testing the baby after birth for MSUD, Type 2
- Preimplantation genetic diagnosis (PGD) with in vitro fertilization (IVF) to test embryos for MSUD, Type 2
- Adoption or use of a sperm or egg donor who is not a carrier for MSUD, Type 2

What resources are available?

- Baby's First Test: http://www.babysfirsttest.org/newborn-screening/conditions/maple-syrup-urine-disease-msud
- Genetics Home Reference: http://ghr.nlm.nih.gov/condition/maple-syrup-urine-disease
- Prenatal diagnosis by CVS: http://www.marchofdimes.org/chorionic-villus-sampling.aspx
- Prenatal diagnosis by amniocentesis: http://www.marchofdimes.org/amniocentesis.aspx
- PGD with IVF:
- http://www.natera.com/spectrum

Patient Information Patient Name:	Test Information Ordering Physician:
Date Of Birth:	Clinic Information:
Case File ID:	Report Date:

SPINAL MUSCULAR ATROPHY

Understanding Your Horizon Carrier Screen Results

What is Spinal Muscular Atrophy?

Spinal Muscular Atrophy (SMA) is a serious inherited disorder that typically begins in infancy or childhood and causes worsening muscle weakness, decreased ability to breathe, and loss of motor skills. Most children with SMA have one of the early-onset forms with symptoms that begin in infancy. Without treatment, death often occurs before the age of two. Some children have juvenile-onset SMA and develop muscle weakness and other symptoms later in childhood and typically have a normal lifespan. In rare cases symptoms do not begin until early adulthood, are less severe, and do not affect lifespan. Currently there is no cure for SMA, although some affected individuals may benefit from new medications that can lessen or stop the progression of symptoms, especially when treatment is started early. Clinical trials involving potential new treatments for this condition may be available (see www.clinicaltrials.gov).

What causes Spinal Muscular Atrophy?

SMA is caused by a change, or mutation, in both copies the SMN1 gene pair. These mutations, which often delete part or all of the gene, cause the genes to work improperly or not work at all. When both copies of the SMN1 gene are missing or do not work correctly, it leads to the symptoms described above.

SMA is inherited in an autosomal recessive manner. This means that, in most cases, both parents must be carriers of a mutation in one copy of the SMN1 gene to have a child with SMA. People who are carriers are usually healthy and do not have symptoms nor do they have SMA themselves. Usually a child inherits two copies of each gene, one from their mother and one from their father. If the mother and father are found to be SMA carriers, there is a 1 in 4, or 25%, chance in each pregnancy for both partners to pass on their SMN1 gene mutations to the child, who would then have SMA. With further testing (not offered through Natera), It is sometimes, but not always, possible to determine whether a given carrier couple is at risk to have a child with a severe, early-onset form of SMA, the juvenile form, or the later-onset form.

What is Enhanced SMA testing?

Enhanced SMA testing gives more information to people who have two copies of the SMN1 gene found on their carrier screen. Most people who have two copies of SMN1 are not carriers for SMA. However, a small number of people with two copies of SMN1 are carriers because both SMN1 genes are on the same chromosome and there are no copies of SMN1 on their other chromosome. This is known as being a "silent 2+0" carrier for SMA. Enhanced SMA testing can be done to check for a certain genetic marker called a single nucleotide polymorphism (SNP) that is found more often when a person is a silent 2+0 carrier for SMA.

Two copies of SMN1 were identified with your Horizon test and Enhanced SMA testing shows that you have the genetic marker, or SNP, that is found more often when there are two copies of SMN1 on the same chromosome. This means you have a higher chance to be a silent 2+0 carrier for SMA.

- If you are of Ashkenazi Jewish or Asian background It is almost certain you are a silent 2+0 carrier for SMA.
- If you are of any other ethnic background You have an increased chance to be a silent 2+0 carrier for SMA.

A couple can be at risk to have a child with SMA if:

- Both partners have only one copy of SMN1
- One partner is a carrier (one copy of SMN1) and the other is a silent 2+0 carrier
- Both partners are silent 2+0 carriers

What can I do next?

You may wish to speak with a local genetic counselor about your positive SMA results. A genetic counselor in your region can be located on the National Society of Genetic Counselors website (www.nsgc.org).

Your siblings and other relatives are at increased risk to also have this genetic marker. You are encouraged to inform your family members of your test results as they may wish to consider being tested for SMA carrier status themselves.

If you are pregnant, your partner can have carrier screening for SMA ordered by a health care professional. Partner screening may include SMN1 testing and possibly Enhanced SMA testing. Enhanced SMA testing can provide information on the chance to still be a carrier even after a normal (negative) SMA carrier screen. Your doctor or a local genetic counselor can help decide which carrier test is best for your partner. If your partner is not found to be a carrier of SMA, your risk of having a child with SMA is greatly reduced. Couples at risk of having a baby with SMA can opt to have prenatal diagnosis done through chorionic villus sampling or amniocentesis during pregnancy or can choose to have the baby tested after birth for SMA.

If you are not yet pregnant, your partner can have carrier testing for SMA ordered by a health care professional. Partner testing may include SMN1 testing and possibly Enhanced SMA testing. Enhanced SMA testing can provide information on the chance to still be a carrier even after a normal (negative) SMA carrier screen. Your doctor or a genetic counselor can help decide which carrier test is best for your partner. If your partner is found to be a carrier for SMA, you have several reproductive options to consider:

- Natural pregnancy with or without prenatal diagnostic testing of the fetus or testing the baby after birth for SMA
- Preimplantation genetic diagnosis (PGD) with in vitro fertilization (IVF) to test embryos for SMA
- Adoption or use of a sperm or egg donor who is not a carrier for SMA

What resources are available?

- Families of SMA: www.curesma.org
- GeneReviews: https://www.ncbi.nlm.nih.gov/books/NBK1352/
- Prenatal diagnosis done by CVS: http://www.marchofdimes.org/chorionic-villus-sampling.aspx

Patient Info	ormation
--------------	----------

Test Information Patient Name: Ordering Physician:

Date Of Birth: Case File ID:

Clinic Information:

Report Date:

- Prenatal diagnosis done by amniocentesis: http://www.marchofdimes.org/amniocentesis.aspx
 PGD with IVF: http://natera.com/spectrum

Patient Information Patient Name:	Test Information Ordering Physician:	₽ h
Data Of Birth	Clinic Information:	no

Report Date:

VARIANT DETAILS

Case File ID:

ABCA4, c.2588G>C (p.G863A), pathogenic

- The c.2588G>C (p.G863A) variant in the ABCA4 gene has been observed at a frequency of 0.4295% in the gnomAD v2.1.1 dataset.
- This variant has been reported in a homozygous state or in conjunction with another variant in individual(s) with ABCA4-related disorders (PMID: 28044389, 25082885). The carrier frequency is higher than would be expected for a pathogenic variant, suggesting this variant may have reduced penetrance.
- This variant has been reported in ClinVar [ID: 7879].

DBT, c.827T>G (p.F276C), pathogenic

- The c.827T>G (p.F276C) variant in the DBT gene has been observed at a frequency of 0.0106% in the gnomAD v2.1.1 dataset.
- This variant has been reported in a homozygous state or in conjunction with another variant in individual(s) with maple syrup urine disease, type 2 (PMID: 1847055, 16786533, 24772966).
- This variant has been reported in ClinVar [ID: 11943].

NPHS1, c.2227C>T (p.R743C), likely pathogenic

- The c.2227C>T (p.R743C) variant in the NPHS1 gene has been observed at a frequency of 0.0035% in the gnomAD v2.1.1 dataset.
- This variant has been reported in a homozygous state or in conjunction with another variant in individual(s) with steroid resistant nephrotic syndrome, type 1 (PMID: 20172850, 24742477, 11854170).
- Functional studies demonstrated that this variant causes impaired protein function (PMID: 24303155).
- This variant has been reported in ClinVar [ID: 56469].

Patient Name:

Test Information

Ordering Physician:

Clinic Information:

Date Of Birth: Case File ID:

Report Date:

DISEASES SCREENED

Below is a list of all diseases screened and the result. Certain conditions have unique patient-specific numerical values, therefore, results for those conditions are formatted differently.

Autosomal Recessive

17-BETA HYDROXYSTEROID DEHYDROGENASE 3 DEFICIENCY (HSD17B3) negative

3-BETA-HYDROXYSTEROID DEHYDROGENASE TYPE II DEFICIENCY (HSD3B2) negative 3-HYDROXY-3-METHYLGLUTARYL-COENZYME A LYASE DEFICIENCY (HMGCL) negative 3-HYDROXYACYL-COA DEHYDROGENASE DEFICIENCY (HADH) negative 3-METHYLCROTONYL-CoA CARBOXYLASE 2 DEFICIENCY (MCCC2) negative 3-PHOSPHOGLYCERATE DEHYDROGENASE DEFICIENCY (PHGDH) negative

5-ALPHA-REDUCTASE DEFICIENCY (SRD5A2) negative

6-PYRUVOYL-TETRAHYDROPTERIN SYNTHASE (PTPS) DEFICIENCY (PTS) negative

ABCA4-RELATED CONDITIONS (ABCA4) see first page ABETALIPOPROTEINEMIA (MTTP) negative ACHONDROGENESIS, TYPE 1B (SLC26A2) negative ACHROMATOPSIA, CNGB3-RELATED (CNGB3) negative
ACRODERMATITIS ENTEROPATHICA (SLC39A4) negative
ACTION MYOCLONUS-RENAL FAILURE (AMRF) SYNDROME (SCARB2) negative ACUTE INFANTILE LIVER FAILURE, TRMU-RELATED (TRMU) negative ACYL-COA OXIDASE I DEFICIENCY (ACOX1) negative AICARDI-GOUTIÈRES SYNDROME (SAMHD1) negative

AICARDI-GOUTIERES SYNDROME, RNASEH2A-RELATED (RNASEH2A) negative AICARDI-GOUTIERES SYNDROME, RNASEH/2B-RELATED (RNASEH/2B) negative AICARDI-GOUTIERES SYNDROME, RNASEH/2C-RELATED (RNASEH/2C) negative AICARDI-GOUTIÈRES SYNDROME, TREX1-RELATED (TREX1) negative

ALPHA-MANNOSIDOSIS (MAN2B1) negative ALPHA-THALASSEMIA (HBA1/HBA2) negative ALPORT SYNDROME, COL4A3-RELATED (COL4A3) negative ALPORT SYNDROME, COL4A4-RELATED (COL4A4) negative

ALSTROM SYNDROME (ALMS1) negative
AMISH INFANTILE EPILEPSY SYNDROME (573GAL5) negative
ANDERMANN SYNDROME (SLC12A6) negative

ARGININE:GLYCINE AMIDINOTRANSFERASE DEFICIENCY (AGAT DEFICIENCY)

(GATM) negative
ARGININEMIA (ARG1) negative
ARGININOSUCCINATE LYASE DEFICIENCY (ASL) negative

ARGINIOSOCCINATE L'IASE DEFICIENCY (ASL) negative AROMATASE DEFICIENCY (CYP19A1) negative ASPARAGINE SYNTHETASE DEFICIENCY (ASNS) negative ASPARTYLGLYCOSAMINURIA (AGA) negative ATAXIA WITH VITAMIN E DEFICIENCY (TTPA) negative

ATAXIA-TELANGIECTASIA (ATM) negative
ATAXIA-TELANGIECTASIA-LIKE DISORDER 1 (MRE11) negative ATRANSFERRINEMIA (TF) negative

AUTISM SPECTRUM, EPILEPSY AND ARTHROGRYPOSIS (SLC35A3) negative AUTOIMMUNE POLYGLANDULAR SYNDROME, TYPE 1 (AIRE) negative AUTOSOMAL RECESSIVE CONGENITAL ICHTHYOSIS (ARCI), SLC27A4-RELATED (SLC27A4) negative

AUTOSOMAL RECESSIVE SPASTIC ATAXIA OF CHARLEVOIX-SAGUENAY (SACS) negative

BARDET-BIEDL SYNDROME, ARL6-RELATED (ARL6) negative BARDET-BIEDL SYNDROME, BBS10-RELATED (BBS10) negative BARDET-BIEDL SYNDROME, BBS12-RELATED (BBS12) negative BARDET-BIEDL SYNDROME, BBS1-RELATED (BBS1) negative BARDET-BIEDL SYNDROME, BBS2-RELATED (BBS2) negative BARDET-BIEDL SYNDROME, BBS4-RELATED (BBS4) negative BARDET-BIEDL SYNDROME, BBS5-RELATED (BBS5) negative BARDET-BIEDL SYNDROME, BBS7-RELATED (BBS7) negative BARDET-BIEDL SYNDROME, BBS9-RELATED (BBS9) negative BARDET-BIEDL SYNDROME, TTC8-RELATED (TTC8) negative BART LYMPHOCYTE SYNDROME, CIITA-RELATED (CITA) negative BARTTER SYNDROME, BSND-RELATED (BSND) negative BARTTER SYNDROME, KCNJ1-RELATED (KCNJ1) negative BARTTER SYNDROME, SLC12A1-RELATED (SLC12A1) negative BATTEN DISEASE, CLN3-RELATED (CLN3) negative BETA-HEMOGLOBINOPATHIES (HBB) negative BETA-KETOTHIOLASE DEFICIENCY (ACAT1) negative BETA-MANNOSIDOSIS (MANBA) negative
BETA-UREIDOPROPIONASE DEFICIENCY (UPB1) negative
BILATERAL FRONTOPARIETAL POLYMICROGYRIA (GPR56) negative BIOTINIDASE DEFICIENCY (BTD) negative BIOTIN-THIAMINE-RESPONSIVE BASAL GANGLIA DISEASE (BTBGD) (SLC19A3) negative BLOOM SYNDROME (BLM) negative BRITTLE CORNEA SYNDROME 1 (ZNF469) negative BRITTLE CORNEA SYNDROME 2 (PRDM5) negative

CANAVAN DISEASE (ASPA) negative CARBAMOYL PHOSPHATE SYNTHETASE I DEFICIENCY (CPS1) negative CARNITINE DEFICIENCY (SLC22A5) negative

CARNITINE PALMITOYLTRANSFERASE IA DEFICIENCY (CPT1A) negative CARNITINE PALMITOYLTRANSFERASE II DEFICIENCY (CPT2) negative CARNITINE-ACYLCARNITINE TRANSLOCASE DEFICIENCY (SLC25A20) negative

CARPENTER SYNDROME (RAB23) negative
CARTILAGE-HAIR HYPOPLASIA (RMRP) negative
CATECHOLAMINERGIC POLYMORPHIC VENTRICULAR TACHYCARDIA (CASQ2) negative

CD59-MEDIATED HEMOLYTIC ANEMIA (CD59) negative

CEP152-RELATED MICROCEPHALY (CEP152) negative CEREBRAL DYSGENESIS, NEUROPATHY, ICHTHYOSIS, AND PALMOPLANTAR KERATODERMA (CEDNIK) SYNDROME (SNAP29) negative

CEREBROTENDINOUS XANTHOMATOSIS (CYP27A1) negative CHARCOT-MARIE-TOOTH DISEASE, RECESSIVE INTERMEDIATE C (PLEKHG5) negative CHARCOT-MARIE-TOOTH-DISEASE, TYPE 4D (NDRG1) negative

CHEDIAK-HIGASHI SYNDROME (LYST) negative

CHOREOACANTHOCYTOSIS (VP513A) negative CHRONIC GRANULOMATOUS DISEASE, CYBA-RELATED (CYBA) negative CHRONIC GRANULOMATOUS DISEASE, NCF2-RELATED (NCF2) negative

CILIOPATHIES, RPGRIP1L-RELATED (RPGRIP1L) negative CITRIN DEFICIENCY (SLC25A13) negative CITRULLINEMIA, TYPE 1 (ASS1) negative

CLN10 DISEASE (CTSD) negative

COHEN SYNDROME (VPS13B) negative COL11A2-RELATED CONDITIONS (COL11A2) negative COMBINED MALONIC AND METHYLMALONIC ACIDURIA (ACSF3) negative

COMBINED OXIDATIVE PHOSPHORYLATION DEFICIENCY 1 (GFM1) negative COMBINED OXIDATIVE PHOSPHORYLATION DEFICIENCY 3 (TSFM) negative COMBINED PITUITARY HORMONE DEFICIENCY 1 (POU1F1) negative

COMBINED PITUITARY HORMONE DEFICIENCY-2 (PROP1) negative

CONGENITAL ADRENAL HYPERPLASIA, 11-BETA-HYDROXYLASE DEFICIENCY

CONGENITAL ADRENAL HYPERPLASIA, 17-ALPHA-HYDROXYLASE DEFICIENCY (CYP17A1) negative
CONGENITAL ADRENAL HYPERPLASIA, 21-HYDROXYLASE DEFICIENCY

(CYP21A2) negative

CONGENITAL ADRENAL INSUFFICIENCY, CYP11A1-RELATED (CYP11A1) negative

CONGENITAL AMEGAKARYOCYTIC THROMBOCYTOPENIA (MPL) negative
CONGENITAL CHRONIC DIARRHEA (DGAT1) negative
CONGENITAL DISORDER OF GLYCOSYLATION TYPE 1, ALG1-RELATED (ALG1) negative

CONGENITAL DISORDER OF GLYCOSYLATION, TYPE 1A, PMM2-Related (PMM2) negative CONGENITAL DISORDER OF GLYCOSYLATION, TYPE 1B (MPI) negative CONGENITAL DISORDER OF GLYCOSYLATION, TYPE 1C (ALG6) negative

CONGENITAL DYSERYTHROPOIETIC ANEMIA TYPE 2 (SEC23B) negative

CONGENITAL FINNISH NEPHROSIS (NPHS1) see first page
CONGENITAL HYDROCEPHALUS 1 (CCDC88C) negative
CONGENITAL HYPERINSULINISM, KCNJ11-Related (KCNJ11) negative

CONGENITAL HYPERINSULINISM, RCNJ11-Related (RCNJ11) negative CONGENITAL INSENSITIVITY TO PAIN WITH ANHIDROSIS (CIPA) (NTRK1) negative CONGENITAL MYASTHENIC SYNDROME, CHAT-RELATED (CHAT) negative CONGENITAL MYASTHENIC SYNDROME, CHRNE-RELATED (CHRNE) negative CONGENITAL MYASTHENIC SYNDROME, COLQ-RELATED (COLQ) negative CONGENITAL MYASTHENIC SYNDROME, DOK7-RELATED (DOK7) negative CONGENITAL MYASTHENIC SYNDROME, RAPSN-RELATED (RAPSN) negative

CONGENITAL NEPHROTIC SYNDROME, PLCE1-RELATED (PLCE1) negative

CONGENITAL NEUTROPENIA, G6PC3-RELATED (G6PC3) negative CONGENITAL NEUTROPENIA, HAX1-RELATED (HAX1) negative CONGENITAL NEUTROPENIA, VPS45-RELATED (VPS45) negative

CONGENITAL SECRETORY CHLORIDE DIARRHEA 1 (SLC26A3) negative

CORNEAL DYSTROPHY AND PERCEPTIVE DEAFNESS (SLC4A11) negative CORTICOSTERONE METHYLOXIDASE DEFICIENCY (CYP11B2) negative

COSTEFF SYNDROME (3-METHYLGLUTACONIC ACIDURIA, TYPE 3) (OPA3) negative

CRB1-RELATED RETINAL DYSTROPHIES (CRB1) negative

CYSTIC FIBROSIS (CFTR) negative

CYSTINOSIS (CTNS) negative

CYTOCHROME C OXIDASE DEFICIENCY, PET100-RELATED (PET100) negative CYTOCHROME P450 OXIDOREDUCTASE DEFICIENCY (POR) negative

D-BIFUNCTIONAL PROTEIN DEFICIENCY (HSD17B4) negative

Patient Name:

Test Information

Ordering Physician:

Clinic Information:

Date Of Birth: Case File ID:

Report Date:

DEAFNESS, AUTOSOMAL RECESSIVE 77 (LOXHD1) negative DIHYDROPTERIDINE REDUCTASE (DHPR) DEFICIENCY (QDPR) negative DONNAI-BARROW SYNDROME (LRP2) negative DUBIN-JOHNSON SYNDROME (ABCC2) negative DYSKERATOSIS CONGENITA SPECTRUM DISORDERS (TERT) negative DYSKERATOSIS CONGENITA, RTEL1-RELATED (RTEL1) negative DYSTROPHIC EPIDERMOLYSIS BULLOSA, COL7A1-Related (COL7A1) negative

EARLY INFANTILE EPILEPTIC ENCEPHALOPATHY, CAD-RELATED (CAD) negative EHLERS-DANLOS SYNDROME TYPE VI (PLOD1) negative EHLERS-DANLOS SYNDROME, CLASSIC-LIKE, TNXB-RELATED (TNXB) negative EHLERS-DANLOS SYNDROME, CLASSIC-LIKE, TNXB-RELATED (TNXB) negative EHLERS-DANLOS SYNDROME, TYPE VII C (ADAMTS2) negative ELLIS-VAN CREVELD SYNDROME, EVC2-RELATED (EVC2) negative ELLIS-VAN CREVELD SYNDROME, EVC-RELATED (EVC) negative ENHANCED S-CONE SYNDROME (NR2E3) negative EPIMERASE DEFICIENCY (GALACTOSEMIA TYPE III) (GALE) negative EPIPHYSEAL DYSPLASIA, MULTIPLE, 7/DESBUQUOIS DYSPLASIA 1 (CANT1) negative ERCC6-RELATED DISORDERS (ERCC6) negative ERCC8-RELATED DISORDERS (ERCC8) negative ETHYLMALONIC ENCEPHALOPATHY (ETHE1) negative

FACTOR XI DEFICIENCY (F11) negative
FAMILIAL DYSAUTONOMIA (IKBKAP) negative
FAMILIAL HEMOPHAGOCYTIC LYMPHOHISTIOCYTOSIS, PRF1-RELATED (PRF1) negative
FAMILIAL HEMOPHAGOCYTIC LYMPHOHISTIOCYTOSIS, STX11-RELATED (STX11) negative
FAMILIAL HEMOPHAGOCYTIC LYMPHOHISTIOCYTOSIS, STXBP2-RELATED
(STXBP2) negative FAMILIAL HEMOPHAGOCYTIC LYMPHOHISTIOCYTOSIS, UNC13D-RELATED FAMILIAL HEMOPHAGOCYTIC LYMPHOHISTIOCYTOSIS, UNC13D-RELATED (UNC13D) negative FAMILIAL HYPERCHOLESTEROLEMIA, LDLRAP1-RELATED (LDLRAP1) negative FAMILIAL HYPERCHOLESTEROLEMIA, LDLR-RELATED (LDLR) negative FAMILIAL HYPERINSULINISM, ABCC8-RELATED (ABCC8) negative FAMILIAL NEPHROGENIC DIABETES INSIPIDUS, AQP2-RELATED (AQP2) negative FANCONI ANEMIA, GROUP A (FANCA) negative FANCONI ANEMIA, GROUP C (FANCC) negative FANCONI ANEMIA, GROUP D2 (FANCD2) negative FANCONI ANEMIA, GROUP E (FANCE) negative FANCONI ANEMIA, GROUP F (FANCF) negative FANCONI ANEMIA, GROUP F (FANCF) negative FANCONI ANEMIA, GROUP I (FANCG) negative FANCONI ANEMIA, GROUP J (BRIP1) negative FANCONI ANEMIA, GROUP L (FANCL) negative FANCONI ANEMIA, GROUP L (FANCL) negative

FARBER LIPOGRANULOMATOSIS (ASAH1) negative FOVEAL HYPOPLASIA (SLC38A8) negative FRASER SYNDROME 3, GRIP1-RELATED (GRIP1) negative FRASER SYNDROME, FRAS1-RELATED (FRAS1) negative

FRASER SYNDROME, FREM2-RELATED (FREM2) negative FRIEDREICH ATAXIA (FXN) negative FRUCTOSE-1,6-BISPHOSPHATASE DEFICIENCY (FBP1) negative

FUCOSIDOSIS, FUCA1-RELATED (FUCA1) negative FUMARASE DEFICIENCY (FH) negative

GABA-TRANSAMINASE DEFICIENCY (ABAT) negative GALACTOKINASE DEFICIENCY (GALACTOSEMIA, TYPE II) (GALK1) negative GALACTOSEMIA (GALT) negative GALACTOSIALIDOSIS (CTSA) negative GAUCHER DISEASE (GBA) negative GCH1-RELATED CONDITIONS (GCH1) negative GDF5-RELATED CONDITIONS (GDF5) negative GERODERMA OSTEODYSPLASTICA (GORAB) negative GITELMAN SYNDROME (SLC12A3) negative GLANZMANN THROMBASTHENIA (ITGB3) negative GLANZMANN THROMBASTHENIA (ITGB3) negative
GLUTARIC ACIDEMIA, TYPE 1 (GCDH) negative
GLUTARIC ACIDEMIA, TYPE 2A (ETFA) negative
GLUTARIC ACIDEMIA, TYPE 2B (ETFB) negative
GLUTARIC ACIDEMIA, TYPE 2C (ETFDH) negative
GLUTARIC ACIDEMIA, TYPE 2C (ETFDH) negative
GLUTATHIONE SYNTHETASE DEFICIENCY (GSS) negative
GLYCINE ENCEPHALOPATHY, AMT-RELATED (AMT) negative
GLYCINE ENCEPHALOPATHY, GLDC-RELATED (GLDC) negative
GLYCOGEN STORAGE DISEASE TYPE 5 (McArdle Disease) (PYGM) negative
GLYCOGEN STORAGE DISEASE TYPE IXE (PHKB) negative
GLYCOGEN STORAGE DISEASE TYPE IXC (PHKG2) negative
GLYCOGEN STORAGE DISEASE TYPE IXC (PHKG2) negative GLYCOGEN STORAGE DISEASE, TYPE 1a (G6PC) negative GLYCOGEN STORAGE DISEASE, TYPE 1b (SLC37A4) negative GLYCOGEN STORAGE DISEASE, TYPE 2 (POMPE DISEASE) (GAA) negative GLYCOGEN STORAGE DISEASE, TYPE 3 (AGL) negative GLYCOGEN STORAGE DISEASE, TYPE 4 (GBE1) negative GLYCOGEN STORAGE DISEASE, TYPE 7 (PFKM) negative

GRACILE SYNDROME (BCS1L) negative GUANIDINOACETATE METHYLTRANSFERASE DEFICIENCY (GAMT) negative

HARLEQUIN ICHTHYOSIS (ABCA12) negative
HEME OXYGENASE 1 DEFICIENCY (HMOX1) negative

HEMOCHROMATOSIS TYPE 2A (HFE2) negative HEMOCHROMATOSIS, TYPE 3, TFR2-Related (TFR2) negative HEPATOCEREBRAL MITOCHONDRIAL DNA DEPLETION SYNDROME, MPV17-RELATED (MPV17) negative HEREDITARY FRUCTOSE INTOLERANCE (ALDOB) negative HEREDITARY HEMOCHROMATOSIS TYPE 2B (HAMP) negative HEREDITARY SPASTIC PARAPARESIS, TYPE 49 (TECPR2) negative HEREDITARY SPASTIC PARAPARESIS, 17PE 49 (TECPK2) negative HEREDITARY SPASTIC PARAPLEGIA, CYP7B1-RELATED (CYP7B1) negative HERMANSKY-PUDLAK SYNDROME, AP3B1-RELATED (BLOC1S3) negative HERMANSKY-PUDLAK SYNDROME, BLOC1S3-RELATED (BLOC1S3) negative HERMANSKY-PUDLAK SYNDROME, BLOC1S6-RELATED (BLOC1S6) negative

HERMANSKY-PUDLAK SYNDROME, HPS1-RELATED (HPS1) negative HERMANSKY-PUDLAK SYNDROME, HPS3-RELATED (HPS3) negative HERMANSKY-PUDLAK SYNDROME, HPS4-RELATED (HPS4) negative

HERMANSKY-PUDLAK SYNDROME, HPS4-RELATED (HPS4) negative HERMANSKY-PUDLAK SYNDROME, HPS5-RELATED (HPS5) negative HERMANSKY-PUDLAK SYNDROME, HPS6-RELATED (HPS6) negative HOLOCARBOXYLASE SYNTHETASE DEFICIENCY (HLCS) negative HOMOCYSTINURIA AND MEGALOBLASTIC ANEMIA TYPE CBLG (MTR) negative

HOMOCYSTINURIA AND MEGALOBLASTIC ANEMIA TYPE CBLG (MTR)
HOMOCYSTINURIA DUE TO DEFICIENCY OF MTHFR (MTHFR) negative
HOMOCYSTINURIA, CBS-RELATED (CBS) negative
HOMOCYSTINURIA, Type cblE (MTRR) negative
HYDROLETHALUS SYNDROME (HYLS1) negative

HYPER-IGM IMMUNODEFICIENCY (CD40) negative
HYPERORNITHINEMIA-HYPERAMMONEMIA-HOMOCITRULLINURIA (HHH SYNDROME)

(SLC25A15) negative

HYPERPHOSPHATEMIC FAMILIAL TUMORAL CALCINOSIS, GALNT3-RELATED

(GALNT3) negative HYPOMYELINATING LEUKODYSTROPHY 12 (VPS11) negative

HYPOPHOSPHATASIA, ALPL-RELATED (ALPL) negative

IMERSLUND-GRÄSBECK SYNDROME 2 (AMN) negative IMMUNODEFICIENCY-CENTROMERIC INSTABILITY-FACIAL ANOMALIES (ICF) SYNDROME, DNMT3B-RELATED (DNMT3B) negative IMMUNODEFICIENCY-CENTROMERIC INSTABILITY-FACIAL ANOMALIES (ICF) SYNDROME, ZBTB24-RELATED (ZBTB24) negative
INCLUSION BODY MYOPATHY 2 (GNE) negative
INFANTILE CEREBRAL AND CEREBELLAR ATROPHY (MED17) negative INFANTILE NEPHRONOPHTHISIS (INVS) negative INFANTILE NEUROAXONAL DYSTROPHY (PLA2G6) negative ISOLATED ECTOPIA LENTIS (ADAMTSL4) negative ISOLATED SULFITE OXIDASE DEFICIENCY (SUOX) negative ISOLATED THYROID-STIMULATING HORMONE DEFICIENCY (TSHB) negative

ISOVALERIC ACIDEMIA (IVD) negative

JOHANSON-BLIZZARD SYNDROME (*UBR1*) negative
JOUBERT SYNDROME 2 / MECKEL SYNDROME 2 (*TMEM216*) negative
JOUBERT SYNDROME AND RELATED DISORDERS (JSRD), TMEM67-RELATED (TMEM67) negative

JOUBERT SYNDROME, AHI1-RELATED (AHI1) negative JOUBERT SYNDROME, ARL13B-RELATED (ARL13B) negative JOUBERT SYNDROME, B9D1-RELATED (B9D1) negative JOUBERT SYNDROME, B9D2-RELATED (B9D2) negative JOUBERT SYNDROME, C2CD3-RELATED/OROFACIODIGITAL SYNDROME 14 (C2CD3) negative

JOUBERT SYNDROME, CC2D2A-RELATED/COACH SYNDROME (CC2D2A) negative

JOUBERT SYNDROME, CEP104-RELATED (CEP104) negative
JOUBERT SYNDROME, CEP120-RELATED/SHORT-RIB THORACIC DYSPLASIA 13 WITH OR

WITHOUT POLYDACTYLY (CEP120) negative

JOUBERT SYNDROME, CEP41-RELATED (CEP41) negative JOUBERT SYNDROME, CPLANE1-RELATED / OROFACIODIGITAL SYNDROME 6

(CPLANE1) negative

JOUBERT SYNDROME, CSPP1-RELATED (CSPP1) negative
JOUBERT SYNDROME, INPP5E-RELATED (INPP5E) negative
JUNCTIONAL EPIDERMOLYSIS BULLOSA, COL17A1-RELATED (COL17A1) negative

JUNCTIONAL EPIDERMOLYSIS BULLOSA, ITGA6-RELATED (ITGA6) negative JUNCTIONAL EPIDERMOLYSIS BULLOSA, ITGAG-RELATED (ITGAG) negative
JUNCTIONAL EPIDERMOLYSIS BULLOSA, ITGB4-RELATED (ITGB4) negative
JUNCTIONAL EPIDERMOLYSIS BULLOSA, LAMB3-RELATED (LAMB3) negative
JUNCTIONAL EPIDERMOLYSIS BULLOSA, LAMC2-RELATED (LAMC2) negative
JUNCTIONAL EPIDERMOLYSIS BULLOSA/LARYNGOONYCHOCUTANEOUS SYNDROME,

LAMA3-RELATED (LAMA3) negative

KRABBE DISEASE (GALC) negative

LAMELLAR ICHTHYOSIS, TYPE 1 (TGM1) negative

Patient Name:

Test Information

Ordering Physician:

Clinic Information:

Date Of Birth: Case File ID:

Report Date:

LARON SYNDROME (GHR) negative LEBER CONGENITAL AMAUROSIS 2 (RPE65) negative

LEBER CONGENITAL AMAUROSIS TYPE AIPL1 (AIPL1) negative

LEBER CONGENITAL AMAUROSIS TYPE GUCY2D (GUCY2D) negative
LEBER CONGENITAL AMAUROSIS TYPE TULP1 (TULP1) negative
LEBER CONGENITAL AMAUROSIS, IQCB1-RELATED/SENIOR-LOKEN SYNDROME 5

(IQCB1) negative

LEBER CONGENITAL AMAUROSIS, TYPE CEP290 (CEP290) negative LEBER CONGENITAL AMAUROSIS, TYPE LCA5 (LCA5) negative

LEBER CONGENITAL AMAUROSIS, TYPE RDH12 (RDH12) negative

LEIGH SYNDROME, FRENCH-CANADIAN TYPE (LRPPRC) negative LETHAL CONGENITAL CONTRACTURE SYNDROME 1 (GLE1) negative

LEUKOENCEPHALOPATHY WITH VANISHING WHITE MATTER (EIF2B5) negative LEUKOENCEPHALOPATHY WITH VANISHING WHITE MATTER, EIF2B1-RELATED (EIF2B1) negative

LEUKOENCEPHALOPATHY WITH VANISHING WHITE MATTER, EIF2B2-RELATED (EIF2B2) negative LEUKOENCEPHALOPATHY WITH VANISHING WHITE MATTER, EIF2B3-RELATED

(EIF2B3) negative

LEUKOENCEPHALOPATHY WITH VANISHING WHITE MATTER, EIF2B4-RELATED (EIF2B4) negative LIG4 SYNDROME (LIG4) negative

LIMB-GIRDLE MUSCULAR DYSTROPHY TYPE 8 (TRIM32) negative

LIMB-GIRDLE MUSCULAR DYSTROPHY, TYPE 2A (CAPN3) negative

LIMB-GIRDLE MUSCULAR DYSTROPHY, TYPE 2A (CAPN3) negative LIMB-GIRDLE MUSCULAR DYSTROPHY, TYPE 2B (DYSF) negative LIMB-GIRDLE MUSCULAR DYSTROPHY, TYPE 2C (SGCG) negative LIMB-GIRDLE MUSCULAR DYSTROPHY, TYPE 2D (SGCA) negative LIMB-GIRDLE MUSCULAR DYSTROPHY, TYPE 2E (SGCB) negative LIMB-GIRDLE MUSCULAR DYSTROPHY, TYPE 2F (SGCD) negative LIMB-GIRDLE MUSCULAR DYSTROPHY, TYPE 2I (FKRP) negative LIMB-GIRDLE DELIVERAGE AND ASSESSED AND ASSESSED ASSESSED ASSESSED AND ASSESSED ASSESSE

LIPOAMIDE DEHYDROGENASE DEFICIENCY (DIHYDROLIPOAMIDE DEHYDROGENASE

DEFICIENCY) (DLD) negative LIPOID ADRENAL HYPERPLASIA (STAR) negative

LIPOPROTEIN LIPASE DEFICIENCY (LPL) negative

LONG CHAIN 3-HYDROXYACYL-COA DEHYDROGENASE DEFICIENCY (HADHA) negative LRAT-RELATED CONDITIONS (LRAT) negative LUNG DISEASE, IMMUNODEFICIENCY, AND CHROMOSOME BREAKAGE SYNDROME

(LICS) (NSMCE3) negative LYSINURIC PROTEIN INTOLERANCE (SLC7A7) negative

MALONYL-COA DECARBOXYLASE DEFICIENCY (MLYCD) negative MAPLE SYRUP URINE DISEASE, TYPE 1A (BCKDHA) negative MAPLE SYRUP URINE DISEASE, TYPE 1B (BCKDHB) negative

MAPLE STRUP URINE DISEASE, TYPE 2 (DBT) see first page MCKUSICK-KAUFMAN SYNDROME (MKKS) negative MECKEL SYNDROME 7/NEPHRONOPHTHISIS 3 (NPHP3) negative MECKEL-GRUBER SYNDROME, TYPE 1 (MK51) negative

MECR-RELATED NEUROLOGIC DISORDER (MECR) negative MEDIUM CHAIN ACYL-CoA DEHYDROGENASE DEFICIENCY (ACADM) negative

MEDNIK SYNDROME (AP1S1) negative

MEGALENCEPHALIC LEUKOENCEPHALOPATHY WITH SUBCORTICAL CYSTS

(MLC1) negative MEROSIN-DEFICIENT MUSCULAR DYSTROPHY (LAMA2) negative

METABOLIC ENCEPHALOPATHY AND ARRHYTHMIAS, TANGO2-RELATED

(TANGO2) negative METACHROMATIC LEUKODYSTROPHY, ARSA-RELATED (ARSA) negative METACHROMATIC LEUKODYSTROPHY, PSAP-RELATED (PSAP) negative

METHYLMALONIC ACIDEMIA AND HOMOCYSTINURIA TYPE CBLF (LMBRD1) negative METHYLMALONIC ACIDEMIA, MCEE-RELATED (MCEE) negative METHYLMALONIC ACIDURIA AND HOMOCYSTINURIA, TYPE CBLC (MMACHC) negative METHYLMALONIC ACIDURIA AND HOMOCYSTINURIA, TYPE CBLC (MMADHC) negative METHYLMALONIC ACIDURIA AND HOMOCYSTINURIA, TYPE CBID (MMADHC) negative

METHYLMALONIC ACIDURIA, MMAA-RELATED (MMAA) negative METHYLMALONIC ACIDURIA, MMAB-RELATED (MMAB) negative

METHYLMALONIC ACIDURIA, TYPE MUT(0) (MUT) negative

MEVALONIC KINASE DEFICIENCY (MVK) negative
MICROCEPHALIC OSTEODYSPLASTIC PRIMORDIAL DWARFISM TYPE II (PCNT) negative
MICROPHTHALMIA / ANOPHTHALMIA, VSX2-RELATED (VSX2) negative

MITOCHONDRIAL COMPLEX 1 DEFICIENCY, ACAD9-RELATED (ACAD9) negative

MITOCHONDRIAL COMPLEX 1 DEFICIENCY, NDUFAF5-RELATED (NDUFAF5) negative MITOCHONDRIAL COMPLEX 1 DEFICIENCY, NDUFS6-RELATED (NDUFS6) negative

MITOCHONDRIAL COMPLEX I DEFICIENCY, NUCLEAR TYPE 1 (NDUFS4) negative

MITOCHONDRIAL COMPLEX I DEFICIENCY, NUCLEAR TYPE 10 (NDUFAF2) negative MITOCHONDRIAL COMPLEX I DEFICIENCY, NUCLEAR TYPE 17 (NDUFAF6) negative MITOCHONDRIAL COMPLEX I DEFICIENCY, NUCLEAR TYPE 19 (FOXRED1) negative

MITOCHONDRIAL COMPLEX I DEFICIENCY, NUCLEAR TYPE 3 (NDUFST) negative MITOCHONDRIAL COMPLEX I DEFICIENCY, NUCLEAR TYPE 4 (NDUFV1) negative MITOCHONDRIAL COMPLEX IV DEFICIENCY, NUCLEAR TYPE 2, SCO2-RELATED

(SCO2) negative

MITOCHONDRIAL COMPLEX IV DEFICIENCY, NUCLEAR TYPE 6 (COX15) negative MITOCHONDRIAL DNA DEPLETION SYNDROME 2 (TK2) negative

MITOCHONDRIAL DNA DEPLETION SYNDROME 3 (DGUOK) negative MITOCHONDRIAL MYOPATHY AND SIDEROBLASTIC ANEMIA (MLASA1) (PUS1) negative MITOCHONDRIAL TRIFUNCTIONAL PROTEIN DEFICIENCY, HADHB-RELATED (HADHB) negative

MOLYBDENUM COFACTOR DEFICIENCY TYPE B (MOCS2) negative MOLYBDENUM COFACTOR DEFICIENCY, TYPE A (MOCS1) negative

MUCOLIPIDOSIS II/III A (GNPTAB) negative

MUCOLIPIDOSIS III GAMMA (GNPTG) negative
MUCOLIPIDOSIS, TYPE IV (MCOLN1) negative
MUCOPOLYSACCHARIDOSIS, TYPE I (HURLER SYNDROME) (IDUA) negative MUCOPOLYSACCHARIDOSIS, TYPE II A (SANFILIPPO A) (SGSH) negative MUCOPOLYSACCHARIDOSIS, TYPE III A (SANFILIPPO B) (NAGLU) negative MUCOPOLYSACCHARIDOSIS, TYPE III B (SANFILIPPO B) (NAGLU) negative MUCOPOLYSACCHARIDOSIS, TYPE III C (SANFILIPPO C) (HGSNAT) negative MUCOPOLYSACCHARIDOSIS, TYPE III D (SANFILIPPO D) (GNS) negative MUCOPOLYSACCHARIDOSIS, TYPE IV A (MORQUIO SYNDROME) (GALNS) negative MUCOPOLYSACCHARIDOSIS, TYPE IV B/GM1 GANGLIOSIDOSIS (GLB1) negative MUCOPOLYSACCHARIDOSIS, TYPE IV (HYAL1) negative

MUCOPOLYSACCHARIDOSIS, TYPE VI (MAROTEAUX-LAMY) (ARSB) negative MUCOPOLYSACCHARIDOSIS, TYPE VI (MAROTEAUX-LAMY) (ARSB) negative MUCOPOLYSACCHARIDOSIS, TYPE VII (GUSB) negative MULIBREY NANISM (TRIM37) negative MULIBREY PRENGLIM SYNDROME, CHRNG-RELATED/ESCOBAR SYNDROME

(CHRNG) negative
MULTIPLE SULFATASE DEFICIENCY (SUMF1) negative

MUSCLE-EYE-BRAIN DISEASE, POMGNT1-RELATED (POMGNT1) negative MUSCULAR DYSTROPHY-DYSTROGLYCANOPATHY (RXYLT1) negative MUSK-RELATED CONGENITAL MYASTHENIC SYNDROME (MUSK) negative MYONEUROGASTROINTESTINAL ENCEPHALOPATHY (MNGIE) (TYMP) negative

MYOTONIA CONGENITA (CLCN1) negative

N-ACETYLGLUTAMATE SYNTHASE DEFICIENCY (NAGS) negative

N-ACETYLGLOTAMATE SYNTHASE DEFICIENCY (NAGS) negative
NEMALINE MYOPATHY, NEB-RELATED (NEB) negative
NEPHRONOPHTHISIS 1 (NPHP1) negative
NEURONAL CEROID LIPOFUSCINOSIS, CLN5-RELATED (CLN5) negative
NEURONAL CEROID LIPOFUSCINOSIS, CLN6-RELATED (CLN6) negative

NEURONAL CEROID LIPOFUSCINOSIS, CLNS-RELATED (CLN8) negative NEURONAL CEROID LIPOFUSCINOSIS, MFSD8-RELATED (MFSD8) negative NEURONAL CEROID LIPOFUSCINOSIS, PPT1-RELATED (PPT1) negative

NEURONAL CEROID LIPOFUSCINOSIS, PP11-RELATED (PP11) negative NEURONAL CEROID LIPOFUSCINOSIS, TPP1-RELATED (TPP1) negative NGLY1-CONGENITAL DISORDER OF GLYCOSYLATION (NGLY1) negative NIEMANN-PICK DISEASE, TYPE C1 / D (NPC1) negative NIEMANN-PICK DISEASE, TYPE C2 (NPC2) negative NIEMANN-PICK DISEASE, TYPES A / B (SMPD1) negative NIMEGEN BREAKAGE SYNDROME (NBN) negative NON-SYNDROMIC HEARING LOSS, GJB2-RELATED (GJB2) negative

NON-SYNDROMIC HEARING LOSS, MYO15A-RELATED (MYO15A) negative NONSYNDROMIC HEARING LOSS, OTOA-RELATED (OTOA) negative NONSYNDROMIC HEARING LOSS, OTOF-RELATED (OTOF) negative

NONSYNDROMIC HEARING LOSS, PJVK-RELATED (PJVK) negative

NONSYNDROMIC HEARING LOSS, SYNE4-RELATED (SYNE4) negative NONSYNDROMIC HEARING LOSS, TMC1-RELATED (TMC1) negative

NONSYNDROMIC HEARING LOSS, TMPRSS3-RELATED (TMPRSS3) negative

NONSYNDROMIC INTELLECTUAL DISABILITY (CC2D1A) negative NORMOPHOSPHATEMIC TUMORAL CALCINOSIS (SAMD9) negative

OCULOCUTANEOUS ALBINISM TYPE III (TYRP1) negative OCULOCUTANEOUS ALBINISM TYPE IV (SLC45A2) negative

OCULOCUTANEOUS ALBINISM, OCA2-RELATED (OCA2) negative OCULOCUTANEOUS ALBINISM, TYPES 1A AND 1B (TYR) negative

ODONTO-ONYCHO-DERMAL DYSPLASIA / SCHOPF-SCHULZ-PASSARGE SYNDROME

(WNT10A) negative OMENN SYNDROME, RAG2-RELATED (RAG2) negative

ORNITHINE AMINOTRANSFERASE DEFICIENCY (OAT) negative OSTEOGENESIS IMPERFECTA TYPE VII (CRTAP) negative

OSTEOGENESIS IMPERFECTA TYPE VIII (P3H1) negative

OSTEOGENESIS IMPERFECTA TYPE XI (FKBP10) negative
OSTEOGENESIS IMPERFECTA TYPE XIII (BMP1) negative
OSTEOPETROSIS, INFANTILE MALIGNANT, TCIRG1-RELATED (TCIRG1) negative

OSTEOPETROSIS, OSTM1-RELATED (OSTM1) negative

PANTOTHENATE KINASE-ASSOCIATED NEURODEGENERATION (PANK2) negative

PAPILLON LEFÈVRE SYNDROME (CTSC) negative PARKINSON DISEASE 15 (FBXO7) negative PENDRED SYNDROME (SLC26A4) negative

PENDRED SYNDROME (SLCZOA4) negative
PERLMAN SYNDROME (DIS3L2) negative
PGM3-CONGENITAL DISORDER OF GLYCOSYLATION (PGM3) negative
PHENYLKETONURIA (PAH) negative
PIGN-CONGENITAL DISORDER OF GLYCOSYLATION (PIGN) negative

PITUITARY HORMONE DEFICIENCY, COMBINED 3 (LHX3) negative POLG-RELATED DISORDERS (POLG) negative

Patient Name:

Test Information

Ordering Physician:

Clinic Information:

Date Of Birth: Case File ID:

Report Date:

POLYCYSTIC KIDNEY DISEASE, AUTOSOMAL RECESSIVE (PKHD1) negative PONTOCEREBELLAR HYPOPLASIA, EXOSC3-RELATED (EXOSC3) negative PONTOCEREBELLAR HYPOPLASIA, RARS2-RELATED (RARS2) negative PONTOCEREBELLAR HYPOPLASIA, TSEN2-RELATED (TSEN2) negative PONTOCEREBELLAR HYPOPLASIA, TSEN54-RELATED (TSEN54) negative PONTOCEREBELLAR HYPOPLASIA, TYPE 1A (VRK1) negative PONTOCEREBELLAR HYPOPLASIA, TYPE 1A (WAT) Hegative PONTOCEREBELLAR HYPOPLASIA, TYPE 2D (SEPSECS) negative PONTOCEREBELLAR HYPOPLASIA, VP553-RELATED (VP553) negative PRIMARY CILIARY DYSKINESIA, CCDC103-RELATED (CCDC103) negative PRIMARY CILIARY DYSKINESIA, CCDC39-RELATED (CCDC39) negative PRIMARY CILIARY DYSKINESIA, DNAH11-RELATED (DNAH11) negative PRIMARY CILIARY DYSKINESIA, DNAH5-RELATED (DNAH5) negative PRIMARY CILIARY DYSKINESIA, DNAI1-RELATED (DNAI1) negative PRIMARY CILIARY DYSKINESIA, DNAI2-RELATED (DNAI2) negative PRIMARY CONGENITAL GLAUCOMA/PETERS ANOMALY (CYP1B1) negative PRIMARY HYPEROXALURIA, TYPE 1 (AGXT) negative

PRIMARY HYPEROXALURIA, TYPE 2 (GRIPR) negative
PRIMARY HYPEROXALURIA, TYPE 3 (HOGA1) negative
PRIMARY MICROCEPHALY 1, AUTOSOMAL RECESSIVE (MCPH1) negative

PROGRESSIVE EARLY-ONSET ENCEPAHLOPATHY WITH BRAIN ATROPHY AND THIN

CORPUS CALLOSUM (TBCD) negative
PROGRESSIVE FAMILIAL INTRAHEPATIC CHOLESTASIS, ABCB4-RELATED (ABCB4) negative PROGRESSIVE FAMILIAL INTRAHEPATIC CHOLESTASIS, TYPE 1 (PFIC1) (ATP8B1) negative

PROGRESSIVE FAMILIAL INTRAHEPATIC CHOLESTASIS, TYPE 2 (ABCB11) negative PROGRESSIVE FAMILIAL INTRAHEPATIC CHOLESTASIS, TYPE 4 (PFIC4) (TJP2) negative PROGRESSIVE PSEUDORHEUMATOID DYSPLASIA (CCN6) negative

PROGRESSIVE PSEUDORHEUMATOID DYSPLASIA (CCN6) negative
PROLIDASE DEFICIENCY (PEPD) negative
PROPIONIC ACIDEMIA, PCCA-RELATED (PCCA) negative
PROPIONIC ACIDEMIA, PCCB-RELATED (PCCB) negative
PSEUDOXANTHOMA ELASTICUM (ABCC6) negative
PSEUDOXANTHOMA ELASTICUM (ABCC6) negative
PTERIN-4 ALPHA-CARBINOLAMINE DEHYDRATASE (PCD) DEFICIENCY (PCBD1) negative
PYCNODYSOSTOSIS (CTSK) negative
PYRIDOXAL 5-PHOSPHATE-DEPENDENT EPILEPSY (PNPO) negative

PYRIDOXINE-DEPENDENT EPILEPSY (ALDH7A1) negative

PYRUVATE CARBOXYLASE DEFICIENCY (PC) negative PYRUVATE DEHYDROGENASE DEFICIENCY, PDHB-RELATED (PDHB) negative

REFSUM DISEASE, PHYH-RELATED (PHYH) negative RENAL TUBULAR ACIDOSIS AND DEAFNESS, ATP6V1B1-RELATED (ATP6V1B1) negative RENAL TUBULAR ACIDOSIS, PROXIMAL, WITH OCULAR ABNORMALITIES AND MENTAL

RETARDATION (SLC4A4) negative RETINITIS PIGMENTOSA 25 (EYS) negative RETINITIS PIGMENTOSA 26 (CERKL) negative

RETINITIS PIGMENTOSA 28 (FAM161A) negative RETINITIS PIGMENTOSA 36 (PRCD) negative RETINITIS PIGMENTOSA 59 (DHDDS) negative

RETINITIS PIGMENTOSA 62 (MAK) negative

RHIZOMELIC CHONDRODYSPLASIA PUNCTATA, TYPE 1 (PEX7) negative RHIZOMELIC CHONDRODYSPLASIA PUNCTATA, TYPE 2 (GNPAT) negative RHIZOMELIC CHONDRODYSPLASIA PUNCTATA, TYPE 3 (AGPS) negative

RLBP1-RELATED RETINOPATHY (RLBP1) negative ROBERTS SYNDROME (ESCO2) negative RYR1-RELATED CONDITIONS (RYR1) negative

SALLA DISEASE (SLC17A5) negative SANDHOFF DISEASE (HEXB) negative

SCHIMKE IMMUNOOSSEOUS DYSPLASIA (SMARCAL1) negative

SCHINDLER DISEASE (NAGA) negative SEGAWA SYNDROME, TH-RELATED (TH) negative

SENIOR-LOKEN SYNDROME 4/NEPHRONOPHTHISIS 4 (NPHP4) negative

SEPIAPTERIN REDUCTASE DEFICIENCY (SPR) negative
SEVERE COMBINED IMMUNODEFICIENCY (SCID), CD3D-RELATED (CD3D) negative
SEVERE COMBINED IMMUNODEFICIENCY (SCID), CD3E-RELATED (CD3E) negative

SEVERE COMBINED IMMUNODEFICIENCY (SCID), FOXN1-RELATED (FOXN1) negative SEVERE COMBINED IMMUNODEFICIENCY (SCID), IKBKB-RELATED (IKBKB) negative SEVERE COMBINED IMMUNODEFICIENCY (SCID), IL7R-RELATED (IL7R) negative

SEVERE COMBINED IMMUNODEFICIENCY (SCID), JAK3-RELATED (JAK3) negative SEVERE COMBINED IMMUNODEFICIENCY (SCID), PTPRC-RELATED (PTPRC) negative SEVERE COMBINED IMMUNODEFICIENCY (SCID), RAG1-RELATED (RAG1) negative

SEVERE COMBINED IMMUNODEFICIENCY, ADA-Related (ADA) negative

SEVERE COMBINED IMMUNODEFICIENCY, TYPE ATHABASKAN (DCLRE1C) negative SHORT-RIB THORACIC DYSPLASIA 3 WITH OR WITHOUT POLYDACTYLY

(DYNC2H1) negative

SHWACHMAN-DIAMOND SYNDROME, SBDS-RELATED (SBDS) negative

SIALIDOSIS (NEU1) negative SJÖGREN-LARSSON SYNDROME (ALDH3A2) negative SMITH-LEMLI-OPITZ SYNDROME (DHCR7) negative

SPASTIC PARAPLEGIA, TYPE 15 (ZFYVE26) negative

SPASTIC TETRAPLEGIA, THIN CORPUS CALLOSUM, AND PROGRESSIVE MICROCEPHALY (SPATCCM) (SLC1A4) negative SPG11-RELATED CONDITIONS (SPG11) negative

SPINAL MUSCULAR ATROPHY (SMM1) see first page
SPINAL MUSCULAR ATROPHY WITH RESPIRATORY DISTRESS TYPE 1 (IGHMBP2) negative
SPINOCEREBELLAR ATAXIA, AUTOSOMAL RECESSIVE 10 (ANO10) negative

SPINOCEREBELLAR ATAXIA, AUTOSOMAL RECESSIVE 12 (WWOX) negative

SPONDYLOCOSTAL DYSOSTOSIS 1 (DLL3) negative SPONDYLOTHORACIC DYSOSTOSIS, MESP2-Related (MESP2) negative STEEL SYNDROME (COL27A1) negative

STEROID-RESISTANT NEPHROTIC SYNDROME (NPHS2) negative

STUVE-WIEDEMANN SYNDROME (LIFR) negative SURF1-RELATED CONDITIONS (SURF1) negative

SURFACTANT DYSFUNCTION, ABCA3-RELATED (ABCA3) negative

TAY-SACHS DISEASE (HEXA) negative
TBCE-RELATED CONDITIONS (TBCE) negative
THIAMINE-RESPONSIVE MEGALOBLASTIC ANEMIA SYNDROME (SLC19A2) negative
THYROID DYSHORMONOGENESIS 1 (SLC5A5) negative

THYROID DYSHORMONOGENESIS 2A (TPO) negative

THYROID DYSHORMONOGENESIS 3 (TG) negative THYROID DYSHORMONOGENESIS 6 (DUOX2) negative TRANSCOBALAMIN II DEFICIENCY (TCN2) negative

TRICHOHEPATOENTERIC SYNDROME, SKIC2-RELATED (SKIC2) negative
TRICHOHEPATOENTERIC SYNDROME, TTC37-RELATED (TTC37) negative
TRICHOHEPATOENTERIC SYNDROME, TTC37-RELATED (TTC37) negative
TRICHOTHIODYSTROPHY 1/XERODERMA PIGMENTOSUM, GROUP D (ERCC2) negative

TRIMETHYLAMINURIA (FMO3) negative

TRIPLE A SYNDROME (AAAS) negative TSHR-RELATED CONDITIONS (TSHR) negative

TYROSINEMIA TYPE III (HPD) negative

TYROSINEMIA, TYPE 1 (FAH) negative

TYROSINEMIA, TYPE 2 (TAT) negative

USHER SYNDROME, TYPE 1B (MYO7A) negative USHER SYNDROME, TYPE 1C (USH1C) negative USHER SYNDROME, TYPE 1D (CDH23) negative

USHER SYNDROME, TYPE 1F (PCDH15) negative

USHER SYNDROME, TYPE 11/DEAFNESS, AUTOSOMAL RECESSIVE, 48 (CIB2) negative USHER SYNDROME, TYPE 2A (USH2A) negative

USHER SYNDROME, TYPE 2C (ADGRV1) negative

USHER SYNDROME, TYPE 3 (CLRN1) negative

VERY LONG-CHAIN ACYL-CoA DEHYDROGENASE DEFICIENCY (ACADVL) negative

VICI SYNDROME (EPG5) negative VITAMIN D-DEPENDENT RICKETS, TYPE 1A (CYP27B1) negative VITAMIN D-RESISTANT RICKETS TYPE 2A (VDR) negative

VLDLR-ASSOCIATED CEREBELLAR HYPOPLASIA (VLDLR) negative

WALKER-WARBURG SYNDROME, CRPPA-RELATED (*CRPPA*) negative WALKER-WARBURG SYNDROME, FKTN-RELATED (*FKTN*) negative WALKER-WARBURG SYNDROME, LARGE1-RELATED (*LARGE1*) negative WALKER-WARBURG SYNDROME, POMT1-RELATED (POMT1) negative WALKER-WARBURG SYNDROME, POMT2-RELATED (POMT2) negative WARSAW BREAKAGE SYNDROME (DDX11) negative

WERNER SYNDROME (WRN) negative

WILSON DISEASE (ATP7B) negative
WOLCOTT-RALLISON SYNDROME (EIF2AK3) negative

WOLMAN DISEASE (LIPA) negative

WOODHOUSE-SAKATI SYNDROME (DCAF17) negative

XERODERMA PIGMENTOSUM VARIANT TYPE (POLH) negative XERODERMA PIGMENTOSUM, GROUP A (XPA) negative XERODERMA PIGMENTOSUM, GROUP C (XPC) negative

ZELLWEGER SPECTRUM DISORDER, PEX13-RELATED (PEX13) negative ZELLWEGER SPECTRUM DISORDER, PEX16-RELATED (PEX16) negative ZELLWEGER SPECTRUM DISORDER, PEX5-RELATED (PEX5) negative ZELLWEGER SPECTRUM DISORDERS, PEX10-RELATED (PEX10) negative ZELLWEGER SPECTRUM DISORDERS, PEX12-RELATED (PEX12) negative ZELLWEGER SPECTRUM DISORDERS, PEX1-RELATED (PEX1) negative ZELLWEGER SPECTRUM DISORDERS, PEX26-RELATED (PEX26) negative ZELLWEGER SPECTRUM DISORDERS, PEX2-RELATED (PEX2) negative ZELLWEGER SPECTRUM DISORDERS, PEX6-RELATED (PEX6) negative

Patient	Information
D 11 1	N.I.

Patient Name:

Date Of Birth: Case File ID:

Clinic Information:

Report Date:

Testing Methodology, Limitations, and Comments:

Next-generation sequencing (NGS)

Sequencing library prepared from genomic DNA isolated from a patient sample is enriched for targets of interest using standard hybridization capture protocols and PCR amplification (for targets specified below). NGS is then performed to achieve the standards of quality control metrics, including a minimum coverage of 99% of targeted regions at 20X sequencing depth. Sequencing data is aligned to human reference sequence, followed by deduplication, metric collection and variant calling (coding region +/- 20bp). Variants are then classified according to ACMGG/AMP standards of interpretation using publicly available databases including but not limited to ENSEMBL, HGMD Pro, ClinGen, ClinVar, 1000G, ESP and gnomAD. Variants predicted to be pathogenic or likely pathogenic for the specified diseases are reported. It should be noted that the data interpretation is based on our current understanding of the genes and variants at the time of reporting. Putative positive sequencing variants that do not meet internal quality standards or are within highly homologous regions are confirmed by Sanger sequencing or gene-specific long-range PCR as needed prior to reporting.

Copy Number Variant (CNV) analysis is limited to deletions involving two or more exons for all genes on the panel, in addition to specific known recurrent single-exon deletions. CNVs of small size may have reduced detection rate. This method does not detect gene inversions, single-exonic and sub-exonic deletions (unless otherwise specified), and duplications of all sizes (unless otherwise specified). Additionally, this method does not define the exact breakpoints of detected CNV events. Confirmation testing for copy number variation is performed by specific PCR, Multiplex Ligation-dependent Probe Amplification (MLPA), next generation sequencing, or other methodology.

This test may not detect certain variants due to local sequence characteristics, high/low genomic complexity, homologous sequence, or allele dropout (PCR-based assays). Variants within noncoding regions (promoter, 5'UTR, 3'UTR, deep intronic regions, unless otherwise specified), small deletions or insertions larger than 25bp, low-level mosaic variants, structural variants such as inversions, and/or balanced translocations may not be detected with this technology.

SPECIAL NOTES

For ABCC6, sequencing variants in exons 1-7 are not detected due to the presence of regions of high homology.

For CFTR, when the CFTR R117H variant is detected, reflex analysis of the polythymidine variations (5T, 7T and 9T) at the intron 9 branch/acceptor site of the CFTR gene will be performed. Multi-exon duplication analysis is included.

For CYP21A2, targets were enriched using long-range PCR amplification, followed by next generation sequencing. Duplication analysis will only be performed and reported when c.955C>T (p.Q319*) is detected. Sequencing and CNV analysis may have reduced sensitivity, if variants result from complex rearrangements, in trans with a gene deletion, or CYP21A2 gene duplication on one chromosome and deletion on the other chromosome. This analysis cannot detect sequencing variants located on the CYP21A2 duplicated copy.

For DDX11, sequencing variants in exons 7-11 and CNV for the entire gene are not analyzed due to high sequence homology.

For GJB2, CNV analysis of upstream deletions of GJB6-D13S1830 (309kb deletion) and GJB6-D13S1854 (232kb deletion) is included.

For HBA1/HBA2, CNV analysis is offered to detect common deletions of -alpha3.7, -alpha4.2, --MED, --SEA, --FIL, --THAI, --alpha20.5, and/or HS-40.

For OTOA, sequencing variants in exons 25-29 and CNV in exons 21-29 are not analyzed due to high sequence homology.

For RPGRIP1L, variants in exon 23 are not detected due to assay limitation.

For SAMD9, only p.K1495E variant will be analyzed and reported.

Friedreich Ataxia (FXN)

The GAA repeat region of the FXN gene is assessed by trinucleotide PCR assay and capillary electrophoresis. Variances of +/-1 repeat for normal alleles and up to +/-3 repeats for premutation alleles may occur. For fully penetrant expanded alleles, the precise repeat size cannot be determined, therefore the approximate allele size is reported. Sequencing and copy number variants are analyzed by next-generation sequencing analysis.

Friedreich Ataxia Repeat Categories

Categories	GAA Repeat Sizes
Normal	<34
Premutation	34 - 65
Full	>65

Patient Information Patient Name:	Test Information Ordering Physician:
Date Of Birth:	Clinic Information:
Case File ID:	Report Date:

Spinal Muscular Atrophy (SMN1)

The total combined copy number of SMN1 and SMN2 exon 7 is quantified based on NGS read depth. The ratio of SMN1 to SMN2 is calculated based on the read depth of a single nucleotide that distinguishes these two genes in exon 7. In addition to copy number analysis, testing for the presence or absence of a single nucleotide polymorphism (g.27134T>G in intron 7 of SMN1) associated with the presence of a SMN1 duplication allele is performed using NGS.

Ethnicity	Two SMN1 copies carrier risk before g.27134T>G testing	Carrier risk after g.27134T	Carrier risk after g.27134T>G testing	
		g.27134T>G ABSENT	g.27134T>G PRESENT	
Caucasian	1 in 632	1 in 769	1 in 29	
Ashkenazi Jewish	1 in 350	1 in 580	LIKELY CARRIER	
Asian	1 in 628	1 in 702	LIKELY CARRIER	
African-American	1 in 121	1 in 396	1 in 34	
Hispanic	1 in 1061	1 in 1762	1 in 140	

Variant Classification

Only pathogenic or likely pathogenic variants are reported. Other variants including benign variants, likely benign variants, variants of uncertain significance, or inconclusive variants identified during this analysis may be reported in certain circumstances. Our laboratory's variant classification criteria are based on the ACMG and internal guidelines and our current understanding of the specific genes. This interpretation may change over time as more information about a gene and/or variant becomes available. Natera and its lab partner(s) may reclassify variants at certain intervals but may not release updated reports without a specific request made to Natera by the ordering provider. Natera may disclose incidental findings if deemed clinically pertinent to the test performed.

Negative Results

A negative carrier screening result reduces the risk for a patient to be a carrier of a specific disease but does not completely rule out carrier status. Please visit https://www.natera.com/panel-option/h-all/ for a table of carrier rates, detection rates, residual risks and promised variants/exons per gene. Carrier rates before and after testing vary by ethnicity and assume a negative family history for each disease screened and the absence of clinical symptoms in the patient. Any patient with a family history for a specific genetic disease will have a higher carrier risk prior to testing and, if the disease-causing mutation in their family is not included on the test, their carrier risk would remain unchanged. Genetic counseling is recommended for patients with a family history of genetic disease so that risk figures based on actual family history can be determined and discussed along with potential implications for reproduction. Horizon carrier screening has been developed to identify the reproductive risks for monogenic inherited conditions. Even when one or both members of a couple screen negative for pathogenic variants in a specific gene, the disease risk for their offspring is not zero. There is still a low risk for the condition in their offspring due to a number of different mechanisms that are not detected by Horizon including, but not limited to, pathogenic variant(s) in the tested gene or in a different gene not included on Horizon, pathogenic variant(s) in an upstream regulator, uniparental disomy, de novo mutation(s), or digenic or polygenic inheritance.

Additional Comments

These analyses generally provide highly accurate information regarding the patient's carrier status. Despite this high level of accuracy, it should be kept in mind that there are many potential sources of diagnostic error, including misidentification of samples, polymorphisms, or other rare genetic variants that interfere with analysis. Families should understand that rare diagnostic errors may occur for these reasons.

