

SPERM DONOR GENETIC TESTING SUMMARY

Donor # 7660

Fairfax Cryobank recommends reviewing this genetic testing summary with your healthcare provider to determine suitability.

Last Updated: 12/15/2025

Donor Reported Ancestry: African American

Jewish Ancestry: No

Genetic Test*	Result	Comments Donor's Residual Risk**
Chromosome analysis (karyotype)	Normal male karyotype	No evidence of clinically significant chromosome abnormalities
Hemoglobin evaluation	Normal hemoglobin fractionation and MCV/MCH results	Reduced risk to be a carrier for sickle cell anemia, beta thalassemia, alpha thalassemia trait (aa/-- and a-/a-) and other hemoglobinopathies
Expanded Genetic Disease Carrier Screening Panel attached - 549 diseases by gene sequencing and del/dup analysis.	<p>Carrier: Familial Hyperinsulinism, ABCC8-Related (ABCC8)</p> <p>Carrier: Non-Syndromic Hearing Loss, GJB2-Related (GJB2)</p> <p>Carrier: Xeroderma Pigmentosum Variant Type (POLH)</p> <p>Negative for other genes tested.</p>	Partner testing is recommended before using this donor.

*No single test can screen for all genetic disorders. A negative screening result significantly reduces, but cannot eliminate, the risk for these conditions in a pregnancy.

**Donor residual risk is the chance the donor is still a carrier after testing negative.

Patient Information	
Patient Name:	Donor 7660
Date Of Birth:	[REDACTED]
Gender:	Male
Ethnicity:	African American/Black
Patient ID:	N/A
Medical Record #:	N/A
Collection Kit:	[REDACTED]
Accession ID:	N/A
Case File ID:	[REDACTED]

Test Information	
Ordering Physician:	[REDACTED]
Clinic Information:	Fairfax Cryobank
Phone:	[REDACTED]
Report Date:	05/24/2025
Sample Collected:	05/08/2025
Sample Received:	05/10/2025
Sample Type:	Blood

CARRIER SCREENING REPORT

ABOUT THIS SCREEN: Horizon™ is a carrier screen for specific autosomal recessive and X-linked diseases. This information can help patients learn their risk of having a child with specific genetic conditions.

ORDER SELECTED: The Horizon Custom panel was ordered for this patient. Males are not screened for X-linked diseases

FINAL RESULTS SUMMARY:

CARRIER for Familial Hyperinsulinism, ABCC8-Related

Positive for the likely pathogenic variant c.4178G>T (p.R1393L) in the ABCC8 gene. Although most variants in this gene are associated with an autosomal recessive form of FAMILIAL HYPERINSULINISM, ABCC8-RELATED, some ABCC8 variants may cause an autosomal dominant form of congenital hyperinsulinism and diabetes mellitus. To our knowledge, there is insufficient evidence that this variant causes an autosomal dominant form of this condition. If this individual's partner is a carrier for FAMILIAL HYPERINSULINISM, ABCC8-RELATED, their chance to have a child with this condition is likely 1 in 4 (25%). Carrier screening for this individual's partner is suggested.

CARRIER for Non-Syndromic Hearing Loss, GJB2-Related

Positive for the pathogenic variant c.35del (p.G12Vfs*2) in the GJB2 gene. Although most variants in this gene are associated with an autosomal recessive form of NON-SYNDROMIC HEARING LOSS, GJB2-RELATED, some rare GJB2 variants may cause an autosomal dominant form of the condition. To our knowledge, there is insufficient evidence that this variant causes an autosomal dominant form of this condition. If this individual's partner is a carrier for NON-SYNDROMIC HEARING LOSS, GJB2-RELATED, their chance to have a child with this condition is likely 1 in 4 (25%). Carrier screening for this individual's partner is suggested.

CARRIER for Xeroderma Pigmentosum Variant Type

Positive for the likely pathogenic variant c.1078dup (p.D360Gfs*32) in the POLH gene. If this individual's partner is a carrier for XERODERMA PIGMENTOSUM VARIANT TYPE, their chance to have a child with this condition may be as high as 1 in 4 (25%). Carrier screening for this individual's partner is suggested.

Negative for 546 out of 549 diseases

No other pathogenic variants were detected in the genes that were screened. The patient's remaining carrier risk after the negative screening results is listed for each disease/gene on the Horizon website at <https://www.natera.com/panel-option/h-all/>. Please see the following pages of this report for a comprehensive list of all conditions included on this individual's screen.

Carrier screening is not diagnostic and may not detect all possible pathogenic variants in a given gene.

RECOMMENDATIONS

Individuals who would like to review their Horizon report with a Natera Laboratory Genetic Counselor may schedule a telephone genetic information session by calling 650-249-9090 or visiting naterasession.com. Clinicians with questions may contact Natera at 650-249-9090 or email support@natera.com. Individuals with positive results may wish to discuss these results with family members to allow them the option to be screened. Comprehensive genetic counseling to discuss the implications of these test results and possible associated reproductive risk is recommended.

Christine M. Eng, M.D.
Medical Director, Baylor Genetics

J. Dianne Keen-Kim, Ph.D., FACMG
Senior Laboratory Director, Natera

Linyan Meng, Ph.D.

Laboratory Director, Baylor Genetics

Yang Wang, Ph.D., FACMG
Laboratory Director, Natera

Patient Information
Patient Name: Donor 7660

Date Of Birth: [REDACTED]
Case File ID: [REDACTED]

Test Information
Ordering Physician: [REDACTED]

Clinic Information: Fairfax Cryobank

Report Date: 05/24/2025

FAMILIAL HYPERINSULINISM, ABCC8-RELATED

Understanding Your Horizon Carrier Screen Results

What is Familial Hyperinsulinism, ABCC8-Related?

Familial Hyperinsulinism, ABCC8-Related is an inherited disorder that causes the insulin-making cells of the pancreas to release too much insulin. Insulin is a hormone that controls blood sugar. Too much insulin causes hypoglycemia (low blood sugar), even after eating. Symptoms of Familial Hyperinsulinism, ABCC8-Related typically begin in infancy or childhood and include tiredness, irritability, and poor appetite. If untreated, repeated episodes of low blood sugar can result in breathing problems, vision problems, seizures, brain damage, intellectual disability, and coma. The symptoms of Familial Hyperinsulinism, ABCC8-Related range from mild to severe, even among affected individuals within the same family. Early diagnosis and treatment can reduce and often prevent more serious health problems. Clinical trials involving potential new treatments for this condition may be available (see www.clinicaltrials.gov). Less commonly, mutations in the same gene may cause a different disorder, either Permanent Neonatal Diabetes Mellitus or Transient Neonatal Diabetes Mellitus. Babies with these conditions have low birth weight and high blood sugar (hyperglycemia), with dehydration and growth failure within the first 6 months of life. Transient Neonatal Diabetes Mellitus typically resolves before age 2 but the diabetes often returns again in the teens or early adulthood. Individuals with Permanent Neonatal Diabetes Mellitus need lifelong treatment and some also have developmental delay, seizures, or learning problems. It is sometimes, but not always, possible to tell whether a specific mutation in the ABCC8 gene will cause Familial Hyperinsulinism or Neonatal Diabetes Mellitus.

What causes Familial Hyperinsulinism, ABCC8-Related?

Familial Hyperinsulinism, ABCC8-Related is usually caused by changes, or mutations, in both copies of the ABCC8 gene pair. The ABCC8 genes control how much insulin is released from the pancreas. When both copies of this gene do not work correctly, too much insulin is released into the bloodstream, causing the symptoms described above. Familial Hyperinsulinism, ABCC8-Related is typically inherited in an autosomal recessive manner. This means that, in most cases, both parents must be carriers of a mutation in one copy of the ABCC8 gene to have a child with Familial Hyperinsulinism, ABCC8-Related. People who are carriers for Familial Hyperinsulinism, ABCC8-Related are usually healthy and usually don't have Familial Hyperinsulinism, ABCC8-Related themselves, although there are rare individuals who have just one mutation and do have symptoms of Familial Hyperinsulinism. Typically a child inherits two copies of each gene, one copy from the mother and one copy from the father. If the mother and father are both carriers for Familial Hyperinsulinism, ABCC8-Related there is a 1 in 4, or 25%, chance in each pregnancy to have a child with this condition. Occasionally, Familial Hyperinsulinism, ABCC8-Related is caused by a mutation in just one copy of the ABCC8 gene and is inherited in an autosomal dominant manner. People with autosomal dominant Familial Hyperinsulinism, ABCC8-Related are affected with the disorder and have a 1 in 2, or 50%, chance in each pregnancy to pass on the mutation to a child, who would then have the autosomal dominant form of Familial Hyperinsulinism, ABCC8-Related. Permanent and Transient Neonatal Diabetes Mellitus, the less common disorders caused by ABCC8 mutations, are usually inherited in an autosomal recessive manner as described above. However, in rare cases, these conditions can be inherited in an autosomal dominant manner. People who have a mutation in just one copy of the ABCC8 gene and had or have Neonatal Diabetes Mellitus themselves have an autosomal dominant form of the condition. These people have a 1 in 2, or 50%, chance in each pregnancy to pass on the mutation to a child, who would then have Neonatal Diabetes Mellitus. Individuals found to carry more than one mutation in the ABCC8 genes should discuss their risk for having an affected child and any potential effects to their own health with their health care provider. There are a number of other forms of Familial Hyperinsulinism and Neonatal Diabetes Mellitus, each caused by mutations in different genes. A person who is a carrier of a mutation in the ABCC8 gene is not likely to be at increased risk for having a child with other forms of these disorders.

What can I do next?

You may wish to speak with a local genetic counselor about your carrier test results. A genetic counselor in your area can be located on the National Society of Genetic Counselors website (www.nsgc.org). Your siblings and other relatives are at increased risk to also have this mutation. You are encouraged to inform your family members of your test results as they may wish to consider being tested themselves. If you are pregnant, your partner can have carrier screening for Familial Hyperinsulinism, ABCC8-Related ordered by a health care professional. If your partner is not found to be a carrier for Familial Hyperinsulinism, ABCC8-Related, and if you do not have symptoms of Familial Hyperinsulinism or Diabetes Mellitus yourself, your risk of having a child with these conditions is greatly reduced. Couples at risk for having a child with Familial Hyperinsulinism, ABCC8-Related or Neonatal Diabetes Mellitus can opt to have prenatal diagnosis done through chorionic villus sampling (CVS) or amniocentesis during pregnancy or can choose to have the baby tested after birth. If you are not yet pregnant, your partner can have carrier screening for Familial Hyperinsulinism, ABCC8-Related ordered by a health care professional. If your partner is found to be a carrier for Familial Hyperinsulinism, ABCC8-Related, or if you have symptoms of Familial Hyperinsulinism or Diabetes Mellitus yourself, you have several reproductive options to consider:

- Natural pregnancy with or without prenatal diagnosis of the fetus or testing the baby after birth for Familial Hyperinsulinism, ABCC8-Related or Neonatal Diabetes Mellitus
- Preimplantation genetic diagnosis (PGD) with in vitro fertilization (IVF) to test the embryos for Familial Hyperinsulinism, ABCC8-Related or Neonatal Diabetes Mellitus
- Adoption or use of a sperm or egg donor who is not a carrier for Familial Hyperinsulinism, ABCC8-Related or Neonatal Diabetes Mellitus

What resources are available?

- GeneReviews: <https://www.ncbi.nlm.nih.gov/books/NBK1375/>
- Prenatal diagnosis done through CVS: <http://www.marchofdimes.org/chorionic-villus-sampling.aspx>
- Prenatal diagnosis done through Amniocentesis: <http://www.marchofdimes.org/amniocentesis.aspx>
- Preimplantation genetic diagnosis (PGD) with IVF: <http://www.natera.com/spectrum>

Patient Information
Patient Name: Donor 7660

Date Of Birth: [REDACTED]
Case File ID: [REDACTED]

Test Information
Ordering Physician: [REDACTED]

Clinic Information: Fairfax Cryobank

Report Date: 05/24/2025

NON-SYNDROMIC HEARING LOSS, GJB2-RELATED

Understanding Your Horizon Carrier Screen Results

What is Non-Syndromic Hearing Loss, GJB2-Related?

Non-Syndromic Hearing Loss, GJB2-Related (also called DFNB1) is an inherited disorder that causes early-onset hearing loss. "Non-syndromic" means that no other parts of the body are affected, making hearing loss the only symptom of this condition. In Non-Syndromic Hearing Loss, GJB2-Related, hearing loss is typically present at birth (congenital). However, some children have normal hearing at birth and develop hearing loss during childhood. The severity varies from mild to profound sensorineural hearing loss. The treatment for hearing loss includes hearing aids and, in some cases, cochlear implants. Clinical trials involving potential new treatments for this condition may be available (see www.clinicaltrials.gov). Non-Syndromic Hearing Loss, GJB2-Related does not cause other health problems.

What causes Non-Syndromic Hearing Loss, GJB2-Related?

Non-Syndromic Hearing Loss, GJB2-Related is caused by a gene change, or mutation, in both copies of the GJB2 gene pair (also known as DFNB1). These mutations cause the genes to not work properly or not work at all. The function of the GJB2 genes is to make a protein that is important for hearing. When both copies of the GJB2 gene do not work correctly, it leads to Non-Syndromic Hearing Loss, GJB2-Related. Non-Syndromic Hearing Loss, GJB2-Related is inherited in an autosomal recessive manner. This means that, in most cases, both parents must be carriers of a mutation in one copy of the GJB2 gene to have a child with Non-Syndromic Hearing Loss, GJB2-Related. People who are carriers for Non-Syndromic Hearing Loss, GJB2-Related are usually healthy and usually do not have Non-Syndromic Hearing Loss themselves. Usually a child inherits two copies of each gene, one copy from the mother and one copy from the father. If the mother and father are both carriers for Non-Syndromic Hearing Loss, GJB2-Related, there is a 1 in 4, or 25%, chance in each pregnancy for both partners to pass on their GJB2 gene mutations to the child, who will then have Non-Syndromic Hearing Loss, GJB2-Related. Very rarely, carriers of a single GJB2 mutation will have inherited hearing loss with or without other symptoms. These individuals usually have one parent who is also affected. This type of inheritance, where having only one mutation causes symptoms, is called autosomal dominant. When a person with autosomal dominant hearing loss has a child, there is a 50%, or 1 in 2, chance with each pregnancy of having a child who will also develop this type of hearing loss. It is sometimes, but not always, possible to determine whether a specific mutation in the GJB2 gene will cause autosomal recessive Non-Syndromic Hearing Loss or an autosomal dominant type of hearing loss. Individuals found to carry more than one mutation for Non-Syndromic Hearing Loss, GJB2-Related should discuss their risk for having an affected child and any potential effects to their own hearing with their health care provider.

What can I do next?

You may wish to speak with a local genetic counselor about your carrier test results. A genetic counselor in your area can be located on the National Society of Genetic Counselors website (www.nsgc.org). You may wish to share your carrier screening results with your health care providers, especially if you have a family history of hearing loss or have concerns about your own hearing. Your siblings and other relatives are at increased risk to also have this mutation. You are encouraged to inform your family members of your test results as they may wish to consider being tested themselves. If you are pregnant, your partner can have carrier screening for Non-Syndromic Hearing Loss, GJB2-Related ordered by a health care professional. If your partner is not found to be a carrier for Non-Syndromic Hearing Loss, GJB2-Related, your risk of having a child with Non-Syndromic Hearing Loss, GJB2-Related is greatly reduced. Couples at risk of having a baby with Non-Syndromic Hearing Loss, GJB2-Related can opt to have prenatal diagnosis done through chorionic villus sampling (CVS) or amniocentesis during pregnancy or can choose to test the baby after birth for this condition. If you are not yet pregnant, your partner can have carrier screening for Non-Syndromic Hearing Loss, GJB2-Related ordered by a health care professional. If your partner is found to be a carrier for Non-Syndromic Hearing Loss, GJB2-Related, you have several reproductive options to consider:

- Natural pregnancy with or without prenatal diagnosis of the fetus or testing the baby after birth for Non-Syndromic Hearing Loss, GJB2-Related
- Preimplantation genetic diagnosis (PGD) with in vitro fertilization (IVF) to test embryos for Non-Syndromic Hearing Loss, GJB2-Related
- Adoption or use of a sperm or egg donor who is not a carrier for Non-Syndromic Hearing Loss, GJB2-Related

What resources are available?

- Genetics Home Reference: <http://ghr.nlm.nih.gov/condition/nonsyndromic-hearing-loss>
- Prenatal diagnosis done through CVS: <http://www.marchofdimes.org/chorionic-villus-sampling.aspx>
- Prenatal diagnosis done through Amniocentesis: <http://www.marchofdimes.org/amniocentesis.aspx>
- Preimplantation genetic diagnosis (PGD) with IVF: <http://www.natera.com/spectrum>

Patient Information
Patient Name: Donor 7660

Test Information
Ordering Physician: [REDACTED]
Clinic Information: Fairfax Cryobank

Date Of Birth: [REDACTED]
Case File ID: [REDACTED]

Report Date: 05/24/2025

XERODERMA PIGMENTOSUM VARIANT TYPE

Understanding Your Horizon Carrier Screen Results

What does being a carrier mean?

Your result shows that you are a carrier of xeroderma pigmentosum variant type (XP-V). A carrier of a genetic condition does not have the condition. Carriers also are not certain to have a child with the condition. We are all carriers of one or more genetic conditions.

Your children are not at high risk for this condition unless your partner or donor is also a carrier of XP-V. Further testing can be done to see if your partner or donor is a carrier.

What is xeroderma pigmentosum variant type (XP-V)?

XP-V mainly affects the skin and eyes and causes a higher chance of getting cancer. People with XP-V are extremely sensitive to ultraviolet (UV) radiation from sunlight and some indoor lights. They usually have symptoms starting in the first year of life or during childhood. Nearly all people with XP-V have freckling of the skin that is exposed to the sun by age two and very dry skin. About half of children with XP-V will have a severe sunburn after spending just a few minutes in the sun. Their sunburns can take weeks to heal. People with XP-V are 10,000 times more likely to develop certain types of skin cancer than the average person. They are also up to 2,000 times more likely to have melanoma (a severe type of skin cancer). Many children with XP-V have their first skin cancer before age 10 years. People with XP-V also have a higher chance of getting other cancers, including thyroid, brain, lung, breast, stomach, pancreas, and kidney cancer. People with XP-V can also have early signs of aging skin and eye problems, such as dryness, cancer, thin or absent eyelids, and loss of eyelashes. People with other types of xeroderma pigmentosum can have hearing loss, coordination problems, and intellectual disability. People with XP-V usually do not have these symptoms. People with XP-V often die in their 20s to 40s from skin or other cancers.^{1,2}

Currently there is no cure for XP-V, and treatment is based on symptoms. Early diagnosis is important so that babies and children with XP-V can avoid sunlight and UV light as much as possible.¹ Clinical trials involving potential new treatments for this condition could be available (see clinicaltrials.gov).

What causes xeroderma pigmentosum variant type (XP-V)?

XP-V is caused by changes, or variants, in the POLH gene. These changes make the gene not work properly. Genes are a set of instructions inside the cells of our bodies that tell our bodies how to grow and function. Everyone has two copies of the POLH gene. Carriers of XP-V have one working copy and one nonworking copy of the gene. People with XP-V have no working copies of the gene.

XP-V is usually passed down, or inherited, from both genetic parents. We inherit one copy of the POLH gene from each of our genetic parents. When both genetic parents are carriers, each child has a 1 in 4 (25%) chance of inheriting two nonworking genes and having XP-V. Each child also has a 1 in 2 (50%) chance of being a carrier of XP-V and a 1 in 4 (25%) chance of inheriting two working copies of the gene. This type of inheritance is called autosomal recessive inheritance.

Will my children have xeroderma pigmentosum variant type (XP-V)?

If your partner or donor also has a nonworking copy of the POLH gene, your children could have XP-V. Each child you have together would have a 1 in 4 (25%) chance of having XP-V. Each child you have together would also have a 3 in 4 (75%) chance of not having the condition.

If your partner or donor has POLH carrier screening and no variants are found, the chance that your children would have XP-V is very low. No further testing would usually be needed for you, your partner or donor, or your children related to XP-V.

What can I do next?

If you want to know if your children are at risk for XP-V, your partner or donor would need to have POLH carrier screening. If you have questions about this testing, please ask your healthcare provider or use the resources below. Many people find it helpful to speak with a genetic counselor.

If your partner or donor is found to be an XP-V carrier, your children would be at risk for having XP-V.

If you or your partner or surrogate are currently pregnant, tests called CVS (chorionic villus sampling) and amniocentesis can be done during pregnancy to find out if a baby has XP-V. These tests both have a small risk of miscarriage. Babies can also be tested for XP-V after birth instead.

If you or your partner or surrogate are not yet pregnant, you could have these options:

- natural pregnancy with CVS or amniocentesis to test for XP-V during pregnancy;
- natural pregnancy and testing the baby after birth for XP-V;
- preimplantation genetic testing (PGT-M) with in vitro fertilization (IVF) to test embryos for XP-V;
- adoption; or
- use of a sperm or egg donor who had no variants found in POLH carrier screening.

Where can I find more information?

- XP Family Support Group xpfamilysupport.org
- Xeroderma Pigmentosum Society xps.org
- CVS marchofdimes.org/chorionic-villus-sampling
- Amniocentesis marchofdimes.org/pregnancy/amniocentesis

What does this mean for my family?

You likely got (inherited) this nonworking gene from one of your genetic parents. Your genetic siblings and other family members could also carry it. You should

Patient Information

Patient Name: Donor 7660

Test Information

Ordering Physician: [REDACTED]

Date Of Birth: [REDACTED]

Case File ID: [REDACTED]

Clinic Information: Fairfax Cryobank

Report Date: 05/24/2025

tell your family members about your test result so they can decide if they want carrier screening for XP-V.

References

1. Kraemer KH et al. Xeroderma Pigmentosum. 2003 Jun 20 [Updated 2022 Mar 24]. In: Adam MP et al, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2024. Available from: <https://www.ncbi.nlm.nih.gov/books/NBK1397/>. Accessed September 2024.
2. MedlinePlus [Internet]. Bethesda (MD): National Library of Medicine (US). Xeroderma Pigmentosum; [updated 2023 Jun 27; cited 2024 Sept 25]; [about 5 p.]. Available from: <https://medlineplus.gov/genetics/condition/xeroderma-pigmentosum/>.

Patient Information
Patient Name: Donor 7660

Test Information
Ordering Physician: [REDACTED]
Clinic Information: Fairfax Cryobank

Date Of Birth: [REDACTED]
Case File ID: [REDACTED]

Report Date: 05/24/2025

VARIANT DETAILS

ABCC8, c.4178G>T (p.R1393L), likely pathogenic

- The c.4178G>T (p.R1393L) variant in the ABCC8 gene has not been observed in the gnomAD v2.1.1 dataset.
- This variant has been reported in a homozygous state or in conjunction with another variant in individual(s) with familial hyperinsulinism (PMID 26180531).
- This variant has been described in ClinVar [ID: 2137009].

GJB2, c.35del (p.G12Vfs*2), pathogenic

- The c.35del (p.G12Vfs*2) variant in the GJB2 gene has been observed at a frequency of 0.6188% in the gnomAD v2.1.1 dataset.
- This variant has been reported in a homozygous state or in conjunction with another variant in individual(s) with nonsyndromic hearing loss and deafness (DFNB) 1 (PMID: 9285800, 9328482, 9819448, 10422812, 10508996, 10713883).
- This premature termination variant is predicted to cause nonsense-mediated decay (NMD) in a gene where loss-of-function is a known mechanism of disease.
- This variant has been reported in ClinVar [ID: 17004].

POLH, c.1078dup (p.D360Gfs*32), likely pathogenic

- The c.1078dup (p.D360Gfs*32) variant in the POLH gene has been observed at a frequency of 0.0032% in the gnomAD v2.1.1 dataset.
- This premature termination variant is predicted to cause nonsense-mediated decay (NMD) in a gene where loss-of-function is a known mechanism of disease.
- This variant has been described in ClinVar [ID: 1696282].

Patient Information

Patient Name: Donor 7660

Test Information

Ordering Physician: [REDACTED]

Date Of Birth: [REDACTED]

Clinic Information: Fairfax Cryobank

Case File ID: [REDACTED]

Report Date: 05/24/2025

DISEASES SCREENED

Below is a list of all diseases screened and the result. Certain conditions have unique patient-specific numerical values, therefore, results for those conditions are formatted differently.

Autosomal Recessive

1
17-BETA HYDROXYSTEROID DEHYDROGENASE 3 DEFICIENCY (HSD17B3) negative

3
3-BETA-HYDROXYSTEROID DEHYDROGENASE TYPE II DEFICIENCY (HSD3B2) negative
3-HYDROXY-3-METHYLGLUTARYL-COENZYME A LYASE DEFICIENCY (HMGCL) negative
3-HYDROXYACYL-COA DEHYDROGENASE DEFICIENCY (HADH) negative
3-METHYLCOOTRONYL-CoA CARBOXYLASE 2 DEFICIENCY (MCCC2) negative
3-PHOSPHOGLYCERATE DEHYDROGENASE DEFICIENCY (PHGDH) negative

5
5-ALPHA-REDUCTASE DEFICIENCY (SRD5A2) negative

6
6-PYRUVOYL-TETRAHYDROPTERIN SYNTHASE (PTPS) DEFICIENCY (PTS) negative

A
ABCA4-RELATED CONDITIONS (ABCA4) negative
ABETALIPOPROTEINEMIA (MTTP) negative
ACHONDROGENESIS, TYPE 1B (SLC26A2) negative
ACHROMATOPSY, CNGB3-RELATED (CNGB3) negative
ACRODERMATITIS ENTEROPATHICA (SLC39A4) negative
ACTION MYOCLONUS-RENAL FAILURE (AMRF) SYNDROME (SCARB2) negative
ACUTE INFANTILE LIVER FAILURE, TRMU-RELATED (TRMU) negative
ACYL-COA OXIDASE I DEFICIENCY (ACOX1) negative
AICARDI-GOUTIERES SYNDROME (SAMHD1) negative
AICARDI-GOUTIERES SYNDROME, RNASEH2A-RELATED (RNASEH2A) negative
AICARDI-GOUTIERES SYNDROME, RNASEH2B-RELATED (RNASEH2B) negative
AICARDI-GOUTIERES SYNDROME, RNASEH2C-RELATED (RNASEH2C) negative
AICARDI-GOUTIERES SYNDROME, TREX1-RELATED (TREX1) negative
ALPHA-MANNOSEIDOSIS (MAN2B1) negative
ALPHA-THALASSEMIA (HBA1/HBA2) negative
ALPORT SYNDROME, COL4A3-RELATED (COL4A3) negative
ALPORT SYNDROME, COL4A4-RELATED (COL4A4) negative
ALSTROM SYNDROME (ALMS1) negative
AMISH INFANTILE EPILEPSY SYNDROME (ST3GAL5) negative
ANDERMANN SYNDROME (SLC12A6) negative
ARGININE:GLYCINE AMIDINOTRANSFERASE DEFICIENCY (AGAT DEFICIENCY) (GATM) negative
ARGININEMIA (ARG1) negative
ARGININOSUCCINATE LYASE DEFICIENCY (ASL) negative
AROMATASE DEFICIENCY (CYP19A1) negative
ASPARAGINE SYNTHETASE DEFICIENCY (ASNS) negative
ASPARTYLGLYCOSAMINURIA (AGA) negative
ATAxia WITH VITAMIN E DEFICIENCY (TTPA) negative
ATAxia-TELangiectasia (ATM) negative
ATAxia-TELangiectasia-LIKE DISORDER 1 (MRE11) negative
ATRANSFERRINEMIA (TF) negative
AUTISM SPECTRUM, EPILEPSY AND ARTHROGRYPOSIS (SLC35A3) negative
AUTOIMMUNE POLYGLANDULAR SYNDROME, TYPE 1 (AIRE) negative
AUTOSOMAL RECESSIVE CONGENITAL ICHTHYOSIS (ARCI), SLC27A4-RELATED (SLC27A4) negative
AUTOSOMAL RECESSIVE SPASTIC ATAXIA OF CHARLEVOIX-SAGUENAY (SACS) negative

B
BARDET-BIEDL SYNDROME, ARL6-RELATED (ARL6) negative
BARDET-BIEDL SYNDROME, BBS10-RELATED (BBS10) negative
BARDET-BIEDL SYNDROME, BBS12-RELATED (BBS12) negative
BARDET-BIEDL SYNDROME, BBS1-RELATED (BBS1) negative
BARDET-BIEDL SYNDROME, BBS2-RELATED (BBS2) negative
BARDET-BIEDL SYNDROME, BBS4-RELATED (BBS4) negative
BARDET-BIEDL SYNDROME, BBS5-RELATED (BBS5) negative
BARDET-BIEDL SYNDROME, BBS7-RELATED (BBS7) negative
BARDET-BIEDL SYNDROME, BBS9-RELATED (BBS9) negative
BARDET-BIEDL SYNDROME, TTC8-RELATED (TTC8) negative
BARE LYMPHOCYTE SYNDROME, CIITA-RELATED (CIITA) negative
BARTTER SYNDROME, BSNL-RELATED (BSNL) negative
BARTTER SYNDROME, KCNJ1-RELATED (KCNJ1) negative
BARTTER SYNDROME, SLC12A1-RELATED (SLC12A1) negative
BATTEN DISEASE, CLN3-RELATED (CLN3) negative
BETA-HEMOGLOBINOPATHIES (HBB) negative
BETA-KETOThIOLASE DEFICIENCY (ACAT1) negative
BETA-MANNOSEIDOSIS (MANBA) negative
BETA-UREIDOPROPIONASE DEFICIENCY (UPB1) negative
BILATERAL FRONTOPIRIETAL POLYMICROGYRIA (GPR56) negative

C
BIOTINIDASE DEFICIENCY (BTD) negative
BIOTIN-THIAMINE-RESPONSIVE BASAL GANGLIA DISEASE (BTBGD) (SLC19A3) negative
BLOOM SYNDROME (BLM) negative
BRITTLE CORNEA SYNDROME 1 (ZNF469) negative
BRITTLE CORNEA SYNDROME 2 (PRDM5) negative

D
CANAVAN DISEASE (ASPA) negative
CARBAMOYL PHOSPHATE SYNTHETASE I DEFICIENCY (CPS1) negative
CARNITINE DEFICIENCY (SLC22A5) negative
CARNITINE PALMITOYLTRANSFERASE IA DEFICIENCY (CPT1A) negative
CARNITINE PALMITOYLTRANSFERASE II DEFICIENCY (CPT2) negative
CARNITINE-ACYL CARNITINE TRANSLOCASE DEFICIENCY (SLC25A20) negative
CARPENTER SYNDROME (RAB23) negative
CARTILAGE-HAIR HYPOPLASIA (RMRP) negative
CATECHOLAMINERGIC POLYMORPHIC VENTRICULAR TACHYCARDIA (CASQ2) negative
CD59-MEDIATED HEMOLYTIC ANEMIA (CD59) negative
CEP152-RELATED MICROCEPHALY (CEP152) negative
CEREBRAL DYSGENESIS, NEUROPATHY, ICHTHYOSIS, AND PALMOPLANTAR KERATODERMA (CEDNIK) SYNDROME (SNAP29) negative
CEREBROTENDINOUS XANTHOMATOSIS (CYP27A1) negative
CHARCOT-MARIE-TOOTH DISEASE, RECESSIVE INTERMEDIATE C (PLEKHG5) negative
CHARCOT-MARIE-TOOTH-DISEASE, TYPE 4D (NDRG1) negative
CHEDIAK-HIGASHI SYNDROME (LYST) negative
CHOREOACANTHOCYTOSIS (VPS13A) negative
CHRONIC GRANULOMATOUS DISEASE, CYBA-RELATED (CYBA) negative
CHRONIC GRANULOMATOUS DISEASE, NCF2-RELATED (NCF2) negative
CILIOPATHIES, RGPRIPL1-RELATED (RGPRIPL1) negative
CITRIN DEFICIENCY (SLC25A13) negative
CITRULLINEMIA, TYPE 1 (ASS1) negative
CLN10 DISEASE (CTSD) negative
COHEN SYNDROME (VPS13B) negative
COL11A2-RELATED CONDITIONS (COL11A2) negative
COMBINED MALONIC AND METHYLMALONIC ACIDURIA (ACSF3) negative
COMBINED OXIDATIVE PHOSPHORYLATION DEFICIENCY 1 (GFM1) negative
COMBINED OXIDATIVE PHOSPHORYLATION DEFICIENCY 3 (TSFM) negative
COMBINED PITUITARY HORMONE DEFICIENCY 1 (POU1F1) negative
COMBINED PITUITARY HORMONE DEFICIENCY-2 (PROP1) negative
CONGENITAL ADRENAL HYPERPLASIA, 11-BETA-HYDROXYLASE DEFICIENCY (CYP11B1) negative
CONGENITAL ADRENAL HYPERPLASIA, 17-ALPHA-HYDROXYLASE DEFICIENCY (CYP17A1) negative
CONGENITAL ADRENAL HYPERPLASIA, 21-HYDROXYLASE DEFICIENCY (CYP21A2) negative
CONGENITAL ADRENAL INSUFFICIENCY, CYP11A1-RELATED (CYP11A1) negative
CONGENITAL AMEGAKARYOCYTIC THROMBOCYTOPENIA (MPL) negative
CONGENITAL CHRONIC DIARRHEA (DGAT1) negative
CONGENITAL DISORDER OF GLYCOSYLATION TYPE 1, ALG1-RELATED (ALG1) negative
CONGENITAL DISORDER OF GLYCOSYLATION, TYPE 1A, PMM2-Related (PMM2) negative
CONGENITAL DISORDER OF GLYCOSYLATION, TYPE 1B (MPI) negative
CONGENITAL DISORDER OF GLYCOSYLATION, TYPE 1C (ALG6) negative
CONGENITAL DYSERYTHROPOIETIC ANEMIA TYPE 2 (SEC23B) negative
CONGENITAL FINNISH NEPHROSIS (NPHS1) negative
CONGENITAL HYDROCEPHALUS 1 (CCDC88C) negative
CONGENITAL HYPERINSULINISM, KCNJ11-Related (KCNJ11) negative
CONGENITAL INSENSITIVITY TO PAIN WITH ANHIDROSIS (CIPA) (NTRK1) negative
CONGENITAL MYASTHENIC SYNDROME, CHAT-RELATED (CHAT) negative
CONGENITAL MYASTHENIC SYNDROME, CHRN-RELATED (CHRNE) negative
CONGENITAL MYASTHENIC SYNDROME, COLQ-RELATED (COLQ) negative
CONGENITAL MYASTHENIC SYNDROME, DOK7-RELATED (DOK7) negative
CONGENITAL MYASTHENIC SYNDROME, RAPSN-RELATED (RAPSN) negative
CONGENITAL NEPHROPATHY, PLCE1-RELATED (PLCE1) negative
CONGENITAL NEUTROPENIA, G6PC3-RELATED (G6PC3) negative
CONGENITAL NEUTROPENIA, HAX1-RELATED (HAX1) negative
CONGENITAL NEUTROPENIA, VPS45-RELATED (VPS45) negative
CONGENITAL SECRETORY CHLORIDE DIARRHEA 1 (SLC26A3) negative
CORNEAL DYSTROPHY AND PERCEPTIVE DEAFNESS (SLC4A11) negative
CORTICOSTERONE METHYLOXIDASE DEFICIENCY (CYP11B2) negative
COSTEIFF SYNDROME (3-METHYLGUTACONIC ACIDURIA, TYPE 3) (OPA3) negative
CRB1-RELATED RETINAL DYSTROPHIES (CRB1) negative
CYSTIC FIBROSIS (CFTR) negative
CYSTINOSIS (CTNS) negative
CYTOCHROME C OXIDASE DEFICIENCY, PET100-RELATED (PET100) negative
CYTOCHROME P450 OXIDOREDUCTASE DEFICIENCY (POR) negative

D
D-BIFUNCTIONAL PROTEIN DEFICIENCY (HSD17B4) negative

Patient Information

Patient Name: Donor 7660

Test Information

Ordering Physician: [REDACTED]

Date Of Birth: [REDACTED]

Clinic Information: Fairfax Cryobank

Case File ID: [REDACTED]

Report Date:

05/24/2025

D

DEAFNESS, AUTOSOMAL RECESSIVE 77 (LOXHD1) negative
 DIHYDROPTERIDINE REDUCTASE (DHPR) DEFICIENCY (QDPR) negative
 DONNAI-BARROW SYNDROME (LRP2) negative
 DUBIN-JOHNSON SYNDROME (ABCC2) negative
 DYSKERATOSIS CONGENITA SPECTRUM DISORDERS (TERT) negative
 DYSKERATOSIS CONGENITA, RTEL1-RELATED (RTEL1) negative
 DYSTROPHIC EPIDERMOLYSIS BULLOSA, COL7A1-Related (COL7A1) negative

E

EARLY INFANTILE EPILEPTIC ENCEPHALOPATHY, CAD-RELATED (CAD) negative
 EHLERS-DANLOS SYNDROME TYPE VI (PLOD1) negative
 EHLERS-DANLOS SYNDROME, CLASSIC-LIKE, TNXB-RELATED (TNXB) negative
 EHLERS-DANLOS SYNDROME, TYPE VII C (ADAMTS2) negative
 ELLIS-VAN CREVELD SYNDROME, EVC2-RELATED (EVC2) negative
 ELLIS-VAN CREVELD SYNDROME, EVC-RELATED (EVC) negative
 ENHANCED S-CONE SYNDROME (NR2E3) negative
 EPIPERMESE DEFICIENCY (GALACTOSEMIA TYPE III) (GALE) negative
 EPIHYSEAL DYSPLASIA, MULTIPLE, 7/DESBUquoIS DYSPLASIA 1 (CANT1) negative
 ERCC6-RELATED DISORDERS (ERCC6) negative
 ERCC8-RELATED DISORDERS (ERCC8) negative
 ETHYLMALONIC ENCEPHALOPATHY (ETHE1) negative

F

FACTOR XI DEFICIENCY (F11) negative
 FAMILIAL DYSAUTONOMIA (IKBKAP) negative
 FAMILIAL HEMOPHAGOCYTIC LYMPHOHISTIOCYTOSIS, PRF1-RELATED (PRF1) negative
 FAMILIAL HEMOPHAGOCYTIC LYMPHOHISTIOCYTOSIS, STX11-RELATED (STX11) negative
 FAMILIAL HEMOPHAGOCYTIC LYMPHOHISTIOCYTOSIS, STXBP2-RELATED (STXBP2) negative
 FAMILIAL HEMOPHAGOCYTIC LYMPHOHISTIOCYTOSIS, UNC13D-RELATED (UNC13D) negative
 FAMILIAL HYPERCHOLESTEROLEMIA, LDLRAP1-RELATED (LDLRAP1) negative
 FAMILIAL HYPERCHOLESTEROLEMIA, LDLR-RELATED (LDLR) negative
 FAMILIAL HYPERINSULINISM, ABCC8-RELATED (ABCC8) see first page
 FAMILIAL NEPHROGENIC DIABETES INSIPIDUS, AQP2-RELATED (AQP2) negative
 FANCONI ANEMIA, GROUP A (FANCA) negative
 FANCONI ANEMIA, GROUP C (FANCC) negative
 FANCONI ANEMIA, GROUP D2 (FANCD2) negative
 FANCONI ANEMIA, GROUP E (FANCE) negative
 FANCONI ANEMIA, GROUP F (FANCF) negative
 FANCONI ANEMIA, GROUP G (FANCG) negative
 FANCONI ANEMIA, GROUP I (FANCI) negative
 FANCONI ANEMIA, GROUP J (BRIP1) negative
 FANCONI ANEMIA, GROUP L (FANCL) negative
 FARBER LIPOGRANULOMATOSIS (ASAHI1) negative
 FOVEAL HYPOPLASIA (SLC38A8) negative
 FRASER SYNDROME 3, GRIP1-RELATED (GRIP1) negative
 FRASER SYNDROME, FRAS1-RELATED (FRAS1) negative
 FRASER SYNDROME, FREM2-RELATED (FREM2) negative
 FRIEDREICH ATAXIA (FXN) negative
 FRUCTOSE-1,6-BISPHOSPHATASE DEFICIENCY (FBP1) negative
 FUCOSIDOSIS, FUCA1-RELATED (FUCA1) negative
 FUMARASE DEFICIENCY (FH) negative

G

GABA-TRANSAMINASE DEFICIENCY (ABAT) negative
 GALACTOKINASE DEFICIENCY (GALACTOSEMIA, TYPE II) (GALK1) negative
 GALACTOSEMIA (GALT) negative
 GALACTOSALIDOSIS (CTSA) negative
 GAUCHER DISEASE (GBA) negative
 GCH1-RELATED CONDITIONS (GCH1) negative
 GDF5-RELATED CONDITIONS (GDF5) negative
 GERODERMA OSTEODYPLASTICA (GORAB) negative
 GITELMAN SYNDROME (SLC12A3) negative
 GLANZMANN THROMbasthenIA (ITGB3) negative
 GLUTARIC ACIDEMIA, TYPE 1 (GCDH) negative
 GLUTARIC ACIDEMIA, TYPE 2A (ETFA) negative
 GLUTARIC ACIDEMIA, TYPE 2B (ETFB) negative
 GLUTARIC ACIDEMIA, TYPE 2C (ETFDH) negative
 GLUTATHIONE SYNTHETASE DEFICIENCY (GSS) negative
 GLYCINE ENCEPHALOPATHY, AMT-RELATED (AMT) negative
 GLYCINE ENCEPHALOPATHY, GLDC-RELATED (GLDC) negative
 GLYCOGEN STORAGE DISEASE TYPE 5 (McArdle Disease) (PYGM) negative
 GLYCOGEN STORAGE DISEASE TYPE IXB (PHKB) negative
 GLYCOGEN STORAGE DISEASE TYPE IXC (PHKG2) negative
 GLYCOGEN STORAGE DISEASE, TYPE 1a (G6PC) negative
 GLYCOGEN STORAGE DISEASE, TYPE 1b (SLC37A4) negative
 GLYCOGEN STORAGE DISEASE, TYPE 2 (POMPE DISEASE) (GAA) negative
 GLYCOGEN STORAGE DISEASE, TYPE 3 (AGL) negative
 GLYCOGEN STORAGE DISEASE, TYPE 4 (GBE1) negative
 GLYCOGEN STORAGE DISEASE, TYPE 7 (PFKM) negative

horizon
natera carrier screen

GRACILE SYNDROME (BCS1L) negative
 GUANIDINOACETATE METHYLTRANSFERASE DEFICIENCY (GAMT) negative

H

HARLEQUIN ICHTHYOSIS (ABCA12) negative
 HEME OXYGENASE 1 DEFICIENCY (HMOX1) negative
 HEMOCHROMATOSIS TYPE 2A (HFE2) negative
 HEMOCHROMATOSIS, TYPE 3, TFR2-Related (TFR2) negative
 HEPATOCEREBRAL MITOCHONDRIAL DNA DEPLETION SYNDROME, MPV17-RELATED (MPV17) negative
 HEREDITARY FRUCTOSE INTOLERANCE (ALDOB) negative
 HEREDITARY HEMOCHROMATOSIS TYPE 2B (HAMP) negative
 HEREDITARY SPASTIC PARAPARESIS, TYPE 4 (TECPR2) negative
 HEREDITARY SPASTIC PARAPLEGIA, CYP7B1-RELATED (CYP7B1) negative
 HERMANSKY-PUDLAK SYNDROME, AP3B1-RELATED (AP3B1) negative
 HERMANSKY-PUDLAK SYNDROME, BLOC1S3-RELATED (BLOC1S3) negative
 HERMANSKY-PUDLAK SYNDROME, BLOC1S6-RELATED (BLOC1S6) negative
 HERMANSKY-PUDLAK SYNDROME, HP51-RELATED (HP51) negative
 HERMANSKY-PUDLAK SYNDROME, HP53-RELATED (HP53) negative
 HERMANSKY-PUDLAK SYNDROME, HP54-RELATED (HP54) negative
 HERMANSKY-PUDLAK SYNDROME, HP55-RELATED (HP55) negative
 HERMANSKY-PUDLAK SYNDROME, HP56-RELATED (HP56) negative
 HOLOCARBOXYLASE SYNTHETASE DEFICIENCY (HLCs) negative
 HOMOCYSTEINURIA AND MEGLABLASTIC ANEMIA TYPE CBLG (MTR) negative
 HOMOCYSTEINURIA DUE TO DEFICIENCY OF MTHFR (MTHFR) negative
 HOMOCYSTEINURIA, CBS-RELATED (CBS) negative
 HOMOCYSTEINURIA, Type cbIE (MTRR) negative
 HYDROLETHALUS SYNDROME (HYLS1) negative
 HYPER-IGM IMMUNODEFICIENCY (CD40) negative
 HYPERORNITHINEMIA-HYPERAMMONEMIA-HOMOCITRULLINURIA (HHH SYNDROME) (SLC2A15) negative
 HYPERPHOSPHATEMIC FAMILIAL TUMORAL CALCINOSIS, GALNT3-RELATED (GALNT3) negative
 HYPOMYELINATING LEUKODYSTROPHY 12 (VPS11) negative
 HYPOPHOSPHATASIA, ALPL-RELATED (ALPL) negative

I

IMERSLUND-GRÄSBECK SYNDROME 2 (AMN) negative
 IMMUNODEFICIENCY-CENTROMERIC INSTABILITY-FACIAL ANOMALIES (ICF) SYNDROME, DNMT3B-RELATED (DNMT3B) negative
 IMMUNODEFICIENCY-CENTROMERIC INSTABILITY-FACIAL ANOMALIES (ICF) SYNDROME, ZBTB24-RELATED (ZBTB24) negative
 INCLUSION BODY MYOPATHY (GNE) negative
 INFANTILE CEREBRAL AND CEREBELLAR ATROPHY (MED17) negative
 INFANTILE NEPHRONOPHTHISIS (INVS) negative
 INFANTILE NEUROAXONAL DYSTROPHY (PLA2G6) negative
 ISOLATED ECTOPIA LENTIS (ADAMTS4) negative
 ISOLATED SULFITE OXIDASE DEFICIENCY (SUOX) negative
 ISOLATED THYROID-STIMULATING HORMONE DEFICIENCY (TSHB) negative
 ISOVALERIC ACIDEMIA (IVD) negative

J

JOHANSON-BLIZZARD SYNDROME (UBR1) negative
 JOUBERT SYNDROME 2 / MECKEL SYNDROME 2 (TMEM216) negative
 JOUBERT SYNDROME AND RELATED DISORDERS (JSRD), TMEM67-RELATED (TMEM67) negative
 JOUBERT SYNDROME, AHI1-RELATED (AHI1) negative
 JOUBERT SYNDROME, ARL13B-RELATED (ARL13B) negative
 JOUBERT SYNDROME, B9D1-RELATED (B9D1) negative
 JOUBERT SYNDROME, B9D2-RELATED (B9D2) negative
 JOUBERT SYNDROME, C2CD3-RELATED/OROFACIODIGITAL SYNDROME 14 (C2CD3) negative
 JOUBERT SYNDROME, CC2D2A-RELATED/COACH SYNDROME (CC2D2A) negative
 JOUBERT SYNDROME, CEP104-RELATED (CEP104) negative
 JOUBERT SYNDROME, CEP120-RELATED/SHORT-RIB THORACIC DYSPLASIA 13 WITH OR WITHOUT POLYDACTYLY (CEP120) negative
 JOUBERT SYNDROME, CEP41-RELATED (CEP41) negative
 JOUBERT SYNDROME, CPLAN1-RELATED / OROFACIODIGITAL SYNDROME 6 (CPLAN1) negative
 JOUBERT SYNDROME, CSPP1-RELATED (CSPP1) negative
 JOUBERT SYNDROME, INPP5E-RELATED (INPP5E) negative
 JUNCTIONAL EPIDERMOLYSIS BULLOSA, COL17A1-RELATED (COL17A1) negative
 JUNCTIONAL EPIDERMOLYSIS BULLOSA, ITGA6-RELATED (ITGA6) negative
 JUNCTIONAL EPIDERMOLYSIS BULLOSA, ITGB4-RELATED (ITGB4) negative
 JUNCTIONAL EPIDERMOLYSIS BULLOSA, LAMB3-RELATED (LAMB3) negative
 JUNCTIONAL EPIDERMOLYSIS BULLOSA, LAMC2-RELATED (LAMC2) negative
 JUNCTIONAL EPIDERMOLYSIS BULLOSA/LARYNGOONYCHOCUTANEOUS SYNDROME, LAMA3-RELATED (LAMA3) negative

K

KRABBE DISEASE (GALC) negative

L

LAMELLAR ICHTHYOSIS, TYPE 1 (TGM1) negative

Patient Information

Patient Name: Donor 7660

Test Information

Ordering Physician: [REDACTED]

Date Of Birth: [REDACTED]

Clinic Information: Fairfax Cryobank

Case File ID: [REDACTED]

Report Date: 05/24/2025

L

LARON SYNDROME (GHR) negative
 LEBER CONGENITAL AMAUROSIS 2 (RPE65) negative
 LEBER CONGENITAL AMAUROSIS TYPE A1PL1 (A1PL1) negative
 LEBER CONGENITAL AMAUROSIS TYPE GUCY2D (GUCY2D) negative
 LEBER CONGENITAL AMAUROSIS TYPE TULP1 (TULP1) negative
 LEBER CONGENITAL AMAUROSIS, IQCB1-RELATED/SENIOR-LOKEN SYNDROME 5 (IQCB1) negative
 LEBER CONGENITAL AMAUROSIS, TYPE CEP290 (CEP290) negative
 LEBER CONGENITAL AMAUROSIS, TYPE LCA5 (LCA5) negative
 LEBER CONGENITAL AMAUROSIS, TYPE RDH12 (RDH12) negative
 LEIGH SYNDROME, FRENCH-CANADIAN TYPE (LRPPRC) negative
 LETHAL CONGENITAL CONTRACTURE SYNDROME 1 (GLE1) negative
 LEUKOENCEPHALOPATHY WITH VANISHING WHITE MATTER (EIF2B5) negative
 LEUKOENCEPHALOPATHY WITH VANISHING WHITE MATTER, EIF2B1-RELATED (EIF2B1) negative
 LEUKOENCEPHALOPATHY WITH VANISHING WHITE MATTER, EIF2B2-RELATED (EIF2B2) negative
 LEUKOENCEPHALOPATHY WITH VANISHING WHITE MATTER, EIF2B3-RELATED (EIF2B3) negative
 LEUKOENCEPHALOPATHY WITH VANISHING WHITE MATTER, EIF2B4-RELATED (EIF2B4) negative
 LIG4 SYNDROME (LIG4) negative
 LIMB-GIRDLE MUSCULAR DYSTROPHY TYPE 8 (TRIM32) negative
 LIMB-GIRDLE MUSCULAR DYSTROPHY, TYPE 2A (CAPN3) negative
 LIMB-GIRDLE MUSCULAR DYSTROPHY, TYPE 2B (DYSF) negative
 LIMB-GIRDLE MUSCULAR DYSTROPHY, TYPE 2C (SGCG) negative
 LIMB-GIRDLE MUSCULAR DYSTROPHY, TYPE 2D (SGCA) negative
 LIMB-GIRDLE MUSCULAR DYSTROPHY, TYPE 2E (SGCB) negative
 LIMB-GIRDLE MUSCULAR DYSTROPHY, TYPE 2F (SGCD) negative
 LIMB-GIRDLE MUSCULAR DYSTROPHY, TYPE 2I (FKRP) negative
 LIPOAMIDE DEHYDROGENASE DEFICIENCY (DIHYDROLIPOAMIDE DEHYDROGENASE DEFICIENCY) (DLD) negative
 LIPOID ADRENAL HYPERPLASIA (STAR) negative
 LIPOPROTEIN LIPASE DEFICIENCY (LPL) negative
 LONG CHAIN 3-HYDROXYACYL-COA DEHYDROGENASE DEFICIENCY (HADHA) negative
 LRAT-RELATED CONDITIONS (LRAT) negative
 LUNG DISEASE, IMMUNODEFICIENCY, AND CHROMOSOME BREAKAGE SYNDROME (LICS) (NSMCE3) negative
 LYSINURIC PROTEIN INTOLERANCE (SLC7A7) negative

M

MALONYL-COA DECARBOXYLASE DEFICIENCY (MLYCD) negative
 MAPLE SYRUP URINE DISEASE, TYPE 1A (BCKDHA) negative
 MAPLE SYRUP URINE DISEASE, TYPE 1B (BCKDHB) negative
 MAPLE SYRUP URINE DISEASE, TYPE 2 (DBT) negative
 MCKUSICK-KAUFMAN SYNDROME (MKKS) negative
 MECKEL SYNDROME 7/NEPHRONOPHTHISIS 3 (NPHP3) negative
 MECKEL-GRUBER SYNDROME, TYPE 1 (MKKS1) negative
 MECR-RELATED NEUROLOGIC DISORDER (MECR) negative
 MEDIUM CHAIN ACYL-CoA DEHYDROGENASE DEFICIENCY (ACADM) negative
 MEDNIK SYNDROME (AP1S1) negative
 MEGALENCEPHALIC LEUKOENCEPHALOPATHY WITH SUBCORTICAL CYSTS (MLC1) negative
 MEROSIN-DEFICIENT MUSCULAR DYSTROPHY (LAMA2) negative
 METABOLIC ENCEPHALOPATHY AND ARRHYTHMIAS, TANGO2-RELATED (TANGO2) negative
 METACHROMATIC LEUKODYSTROPHY, ARSA-RELATED (ARSA) negative
 METACHROMATIC LEUKODYSTROPHY, PSAP-RELATED (PSAP) negative
 METHYLMALONIC ACIDEMIA AND HOMOCYSTINURIA TYPE CBLF (LMBRD1) negative
 METHYLMALONIC ACIDEMIA, MCEE-RELATED (MCEE) negative
 METHYLMALONIC ACIDURIA AND HOMOCYSTINURIA, TYPE CBLC (MMACHC) negative
 METHYLMALONIC ACIDURIA AND HOMOCYSTINURIA, TYPE CbID (MMDAHC) negative
 METHYLMALONIC ACIDURIA, MMAA-RELATED (MMAA) negative
 METHYLMALONIC ACIDURIA, MMAB-RELATED (MMAB) negative
 METHYLMALONIC ACIDURIA, TYPE MUT(0) (MUT) negative
 MEVALONIC KINASE DEFICIENCY (MVK) negative
 MICROCEPHALIC OSTEODYSPLASTIC PRIMORDIAL DWARFISM TYPE II (PCNT) negative
 MICROPHTHALMIA / ANOPHTHALMIA, VSX2-RELATED (VSX2) negative
 MITOCHONDRIAL COMPLEX 1 DEFICIENCY, ACAD9-RELATED (ACAD9) negative
 MITOCHONDRIAL COMPLEX 1 DEFICIENCY, NDUFAF5-RELATED (NDUFAF5) negative
 MITOCHONDRIAL COMPLEX 1 DEFICIENCY, NDUFS6-RELATED (NDUFS6) negative
 MITOCHONDRIAL COMPLEX 1 DEFICIENCY, NUCLEAR TYPE 1 (NDUFS4) negative
 MITOCHONDRIAL COMPLEX 1 DEFICIENCY, NUCLEAR TYPE 10 (NDUFAF2) negative
 MITOCHONDRIAL COMPLEX 1 DEFICIENCY, NUCLEAR TYPE 17 (NDUFAF6) negative
 MITOCHONDRIAL COMPLEX 1 DEFICIENCY, NUCLEAR TYPE 19 (FOXRED1) negative
 MITOCHONDRIAL COMPLEX 1 DEFICIENCY, NUCLEAR TYPE 3 (NDUFS7) negative
 MITOCHONDRIAL COMPLEX 1 DEFICIENCY, NUCLEAR TYPE 4 (NDUFS1) negative
 MITOCHONDRIAL COMPLEX IV DEFICIENCY, NUCLEAR TYPE 2, SCO2-RELATED (SCO2) negative
 MITOCHONDRIAL COMPLEX IV DEFICIENCY, NUCLEAR TYPE 6 (COX15) negative
 MITOCHONDRIAL DNA DEPLETION SYNDROME 2 (TK2) negative

horizonTM
 natera carrier screen

MITOCHONDRIAL DNA DEPLETION SYNDROME 3 (DGUOK) negative
 MITOCHONDRIAL MYOPATHY AND SIDEROBLOMATIC ANEMIA (MLASA1) (PUS1) negative
 MITOCHONDRIAL TRIFUNCTIONAL PROTEIN DEFICIENCY, HADHB-RELATED (HADHB) negative
 MOLYBDENUM COFACTOR DEFICIENCY TYPE B (MOCSD2) negative
 MOLYBDENUM COFACTOR DEFICIENCY, TYPE A (MOCSD1) negative
 MUCOLIPIDOSIS II/III A (GNPTAB) negative
 MUCOLIPIDOSIS III GAMMA (GNPTC) negative
 MUCOLIPIDOSIS, TYPE IV (MCOLN1) negative
 MUCOPOLYSACCHARIDOSIS, TYPE I (HURLER SYNDROME) (IDUA) negative
 MUCOPOLYSACCHARIDOSIS, TYPE III A (SANFILIPPO A) (SGSH) negative
 MUCOPOLYSACCHARIDOSIS, TYPE III B (SANFILIPPO B) (NAGLU) negative
 MUCOPOLYSACCHARIDOSIS, TYPE III C (SANFILIPPO C) (HGSNAT) negative
 MUCOPOLYSACCHARIDOSIS, TYPE III D (SANFILIPPO D) (GNS) negative
 MUCOPOLYSACCHARIDOSIS, TYPE IV A (MORQUIO SYNDROME) (GALNS) negative
 MUCOPOLYSACCHARIDOSIS, TYPE IV B/GM1 GANGLIOSIDOSIS (GLB1) negative
 MUCOPOLYSACCHARIDOSIS, TYPE IX (HYAL1) negative
 MUCOPOLYSACCHARIDOSIS, TYPE VI (MAROTEAUX-LAMY) (ARSB) negative
 MUCOPOLYSACCHARIDOSIS, TYPE VII (GUSB) negative
 MULIBREY NANISM (TRIM37) negative
 MULTIPLE PTERYGIUM SYNDROME, CHRNG-RELATED/ESCOBAR SYNDROME (CHRNG) negative
 MULTIPLE SULFATASE DEFICIENCY (SUMF1) negative
 MUSCLE-EYE-BRAIN DISEASE, POMGNT1-RELATED (POMGNT1) negative
 MUSCULAR DYSTROPHY-DYSTROGLYCANOPATHY (RXYLT1) negative
 MUSK-RELATED CONGENITAL MYASTHENIC SYNDROME (MUSK) negative
 MYONEUROGASTROINTESTINAL ENCEPHALOPATHY (MNGIE) (TYMP) negative
 MYOTONIA CONGENITA (CLCN1) negative

N

N-ACETYLGLUTAMATE SYNTHASE DEFICIENCY (NAGS) negative
 NEIMALINE MYOPATHY, NEB-RELATED (NEB) negative
 NEPHRONOPHTHISIS 1 (NPHP1) negative
 NEURONAL CEROID LIPOFUSCINOSIS, CLN5-RELATED (CLN5) negative
 NEURONAL CEROID LIPOFUSCINOSIS, CLN6-RELATED (CLN6) negative
 NEURONAL CEROID LIPOFUSCINOSIS, CLN8-RELATED (CLN8) negative
 NEURONAL CEROID LIPOFUSCINOSIS, MFSD8-RELATED (MFSD8) negative
 NEURONAL CEROID LIPOFUSCINOSIS, PPT1-RELATED (PPT1) negative
 NEURONAL CEROID LIPOFUSCINOSIS, TPP1-RELATED (TPP1) negative
 NGLY1-CONGENITAL DISORDER OF GLYCOSYLATION (NGLY1) negative
 NIEMANN-PICK DISEASE, TYPE C1 / D (NPC1) negative
 NIEMANN-PICK DISEASE, TYPE C2 (NPC2) negative
 NIEMANN-PICK DISEASE, TYPES A / B (SMPD1) negative
 NIJMEGEN BREAKAGE SYNDROME (NBN) negative
 NON-SYNDROMIC HEARING LOSS, GJB2-RELATED (GJB2) see first page
 NON-SYNDROMIC HEARING LOSS, MYO15A-RELATED (MYO15A) negative
 NONSYNDROMIC HEARING LOSS, OTOA-RELATED (OTOA) negative
 NONSYNDROMIC HEARING LOSS, OTOF-RELATED (OTOF) negative
 NONSYNDROMIC HEARING LOSS, PJVK-RELATED (PJVK) negative
 NONSYNDROMIC HEARING LOSS, SYNE4-RELATED (SYNE4) negative
 NONSYNDROMIC HEARING LOSS, TMC1-RELATED (TMC1) negative
 NONSYNDROMIC HEARING LOSS, TMPRSS3-RELATED (TMPRSS3) negative
 NONSYNDROMIC INTELLECTUAL DISABILITY (CC2D1A) negative
 NORMOPHOSPHATEMIC TUMORAL CALCINOSIS (SAMD9) negative

O

OCULOCUTANEOUS ALBINISM TYPE III (TYRP1) negative
 OCULOCUTANEOUS ALBINISM TYPE IV (SLC45A2) negative
 OCULOCUTANEOUS ALBINISM, OCA2-RELATED (OCA2) negative
 OCULOCUTANEOUS ALBINISM, TYPES 1A AND 1B (TYR) negative
 ODONTO-ONYCHO-DERMAL DYSPLASIA / SCHOPF-SCHULZ-PASSARGE SYNDROME (WNT10A) negative
 OMENN SYNDROME, RAG2-RELATED (RAG2) negative
 ORNITHINE AMINOTRANSFERASE DEFICIENCY (OAT) negative
 OSTEogenesis IMPERFECTA TYPE VII (CRTAP) negative
 OSTEogenesis IMPERFECTA TYPE VIII (P3H1) negative
 OSTEogenesis IMPERFECTA TYPE XI (FKBP10) negative
 OSTEogenesis IMPERFECTA TYPE XIII (BMP1) negative
 OSTEOPETROSIS, INFANTILE MALIGNANT, TCIRG1-RELATED (TCIRG1) negative
 OSTEOPETROSIS, OSTM1-RELATED (OSTM1) negative

P

PANTOTHENATE KINASE-ASSOCIATED NEURODEGENERATION (PANK2) negative
 PAPILLON LEFEVRE SYNDROME (CTSC) negative
 PARKINSON DISEASE 15 (FBXO7) negative
 PENDRED SYNDROME (SLC26A4) negative
 PERLMAN SYNDROME (DIS3L2) negative
 PGM3-CONGENITAL DISORDER OF GLYCOSYLATION (PGM3) negative
 PHENYLKETONURIA (PAH) negative
 PIGN-CONGENITAL DISORDER OF GLYCOSYLATION (PIGN) negative
 PITUITARY HORMONE DEFICIENCY, COMBINED 3 (LHX3) negative
 POLG-RELATED DISORDERS (POLG) negative

Patient Information

Patient Name: Donor 7660

Test Information

Ordering Physician: [REDACTED]

Date Of Birth: [REDACTED]

Clinic Information: Fairfax Cryobank

Case File ID: [REDACTED]

Report Date:

05/24/2025

P

POLYCYSTIC KIDNEY DISEASE, AUTOSOMAL RECESSIVE (PKHD1) negative
 PONTOCEREBELLAR HYPOPLASIA, EXOSC3-RELATED (EXOSC3) negative
 PONTOCEREBELLAR HYPOPLASIA, RARS2-RELATED (RARS2) negative
 PONTOCEREBELLAR HYPOPLASIA, TSEN2-RELATED (TSEN2) negative
 PONTOCEREBELLAR HYPOPLASIA, TSEN54-RELATED (TSEN54) negative
 PONTOCEREBELLAR HYPOPLASIA, TYPE 1A (VRK1) negative
 PONTOCEREBELLAR HYPOPLASIA, TYPE 2D (SEPSECS) negative
 PONTOCEREBELLAR HYPOPLASIA, VPS53-RELATED (VPS53) negative
 PRIMARY CILIARY DYSKINESIA, CCDC103-RELATED (CCDC103) negative
 PRIMARY CILIARY DYSKINESIA, CCDC39-RELATED (CCDC39) negative
 PRIMARY CILIARY DYSKINESIA, DNAH11-RELATED (DNAH11) negative
 PRIMARY CILIARY DYSKINESIA, DNAH5-RELATED (DNAH5) negative
 PRIMARY CILIARY DYSKINESIA, DNAI1-RELATED (DNAI1) negative
 PRIMARY CILIARY DYSKINESIA, DNAI2-RELATED (DNAI2) negative
 PRIMARY CONGENITAL GLAUCOMA/PETERS ANOMALY (CYP1B1) negative
 PRIMARY HYPEROXALURIA, TYPE 1 (AGXT) negative
 PRIMARY HYPEROXALURIA, TYPE 2 (GRHPR) negative
 PRIMARY HYPEROXALURIA, TYPE 3 (HOGA1) negative
 PRIMARY MICROCEPHALY 1, AUTOSOMAL RECESSIVE (MCPH1) negative
 PROGRESSIVE EARLY-ONSET ENCEPHALOPATHY WITH BRAIN ATROPHY AND THIN CORPUS CALLOSUM (TBCCD) negative
 PROGRESSIVE FAMILIAL INTRAHEPATIC CHOLESTASIS, ABCB4-RELATED (ABCB4) negative
 PROGRESSIVE FAMILIAL INTRAHEPATIC CHOLESTASIS, TYPE 1 (PFIC1) (ATP88B) negative
 PROGRESSIVE FAMILIAL INTRAHEPATIC CHOLESTASIS, TYPE 2 (ABCB11) negative
 PROGRESSIVE FAMILIAL INTRAHEPATIC CHOLESTASIS, TYPE 4 (PFIC4) (TJP2) negative
 PROGRESSIVE PSEUDORHEUMATOID DYSPLASIA (CCN6) negative
 PROLIDASE DEFICIENCY (PEPD) negative
 PROPIONIC ACIDEMIA, PCCA-RELATED (PCCA) negative
 PROPIONIC ACIDEMIA, PCCB-RELATED (PCCB) negative
 PSEUDOANTHOMA ELASTICUM (ABCC6) negative
 PTERIN-4 ALPHA-CARBINOLAMINE DEHYDRATASE (PCD) DEFICIENCY (PCBD1) negative
 PYCNOYDYSOSTOSIS (CTSK) negative
 PYRIDOXAL 5'-PHOSPHATE-DEPENDENT EPILEPSY (PNPO) negative
 PYRIDOXINE-DEPENDENT EPILEPSY (ALDH7A1) negative
 PYRUVATE CARBOXYLASE DEFICIENCY (PC) negative
 PYRUVATE DEHYDROGENASE DEFICIENCY, PDHB-RELATED (PDHB) negative

R

REFSUM DISEASE, PHYH-RELATED (PHYH) negative
 RENAL TUBULAR ACIDOSIS AND DEAFNESS, ATP6V1B1-RELATED (ATP6V1B1) negative
 RENAL TUBULAR ACIDOSIS, PROXIMAL, WITH OCULAR ABNORMALITIES AND MENTAL RETARDATION (SLC4A4) negative
 RETINITIS PIGMENTOSA 25 (EYS) negative
 RETINITIS PIGMENTOSA 26 (CERKL) negative
 RETINITIS PIGMENTOSA 28 (FAM161A) negative
 RETINITIS PIGMENTOSA 36 (PRCD) negative
 RETINITIS PIGMENTOSA 59 (DHDDS) negative
 RETINITIS PIGMENTOSA 62 (MAK) negative
 RHIZOMELIC CHONDRODYSPLASIA PUNCTATA, TYPE 1 (PEX7) negative
 RHIZOMELIC CHONDRODYSPLASIA PUNCTATA, TYPE 2 (GNPAT) negative
 RHIZOMELIC CHONDRODYSPLASIA PUNCTATA, TYPE 3 (AGPS) negative
 RLBP1-RELATED RETINOPATHY (RLBP1) negative
 ROBERTS SYNDROME (ESCO2) negative
 RYR1-RELATED CONDITIONS (RYR1) negative

S

SALLA DISEASE (SLC17A5) negative
 SANDHOFF DISEASE (HEXB) negative
 SCHIMKE IMMUNOOSSEOUS DYSPLASIA (SMARCAL1) negative
 SCHINDLER DISEASE (NAGA) negative
 SEGAWA SYNDROME, TH-RELATED (TH) negative
 SENIOR-LOKEN SYNDROME 4/NEPHRONOPHTHISIS 4 (NPHP4) negative
 SEPIAPTERIN REDUCTASE DEFICIENCY (SPR) negative
 SEVERE COMBINED IMMUNODEFICIENCY (SCID), CD3D-RELATED (CD3D) negative
 SEVERE COMBINED IMMUNODEFICIENCY (SCID), CD3E-RELATED (CD3E) negative
 SEVERE COMBINED IMMUNODEFICIENCY (SCID), FOXN1-RELATED (FOXN1) negative
 SEVERE COMBINED IMMUNODEFICIENCY (SCID), IKBKB-RELATED (IKBKB) negative
 SEVERE COMBINED IMMUNODEFICIENCY (SCID), IL7R-RELATED (IL7R) negative
 SEVERE COMBINED IMMUNODEFICIENCY (SCID), JAK3-RELATED (JAK3) negative
 SEVERE COMBINED IMMUNODEFICIENCY (SCID), PTPRC-RELATED (PTPRC) negative
 SEVERE COMBINED IMMUNODEFICIENCY (SCID), RAG1-RELATED (RAG1) negative
 SEVERE COMBINED IMMUNODEFICIENCY, ADA-Related (ADA) negative
 SEVERE COMBINED IMMUNODEFICIENCY, TYPE ATHABASKAN (DCLRE1C) negative
 SHORT-RIB THORACIC DYSPLASIA 3 WITH OR WITHOUT POLYDACTYLY (DYNC2H1) negative
 SHWACHMAN-DIAMOND SYNDROME, SBDS-RELATED (SBDS) negative
 SIALIDOSIS (NEU1) negative
 SJÖGREN-LARSSON SYNDROME (ALDH3A2) negative
 SMITH-LEMLI-OPITZ SYNDROME (DHCR7) negative
 SPASTIC PARAPLEGIA, TYPE 15 (ZFYVE26) negative

SPASTIC TETRAPLEGIA, THIN CORPUS CALLOSUM, AND PROGRESSIVE MICROCEPHALY (SPATCCM) (SLC1A4) negative

SPG11-RELATED CONDITIONS (SPG11) negative

SPINAL MUSCULAR ATROPHY (SMN1) negative SMN1: >= 3 copies; g.27134T>G: present; the g.27134T>G variant does not modify carrier risk in individuals who carry 3 or more copies of SMN1.

SPINAL MUSCULAR ATROPHY WITH RESPIRATORY DISTRESS TYPE 1 (IGHMBP2) negative

SPINOCEREBELLAR ATAXIA, AUTOSOMAL RECESSIVE 10 (ANO10) negative

SPINOCEREBELLAR ATAXIA, AUTOSOMAL RECESSIVE 12 (WWOX) negative

SPONDYLOCOSTAL DYSOSTOSIS 1 (DLL3) negative

SPONDYLOTHORACIC DYSOSTOSIS, MESP2-Related (MESP2) negative

STEEL SYNDROME (COL27A1) negative

STEROID-RESISTANT NEPHROTIC SYNDROME (NPHS2) negative

STUVE-WIEDEMANN SYNDROME (LIFR) negative

SURF1-RELATED CONDITIONS (SURF1) negative

SURFACTANT DYSFUNCTION, ABCA3-RELATED (ABCA3) negative

T

TAY-SACHS DISEASE (HEXA) negative

TBCE-RELATED CONDITIONS (TBCE) negative

THIAMINE-DEPENDENT MEGALOBLASTIC ANEMIA SYNDROME (SLC19A2) negative

THYROID DYSHORMONOGENESIS 1 (SLC5A5) negative

THYROID DYSHORMONOGENESIS 2A (TPO) negative

THYROID DYSHORMONOGENESIS 3 (TG) negative

THYROID DYSHORMONOGENESIS 6 (DUOX2) negative

TRANSCOBALAMIN II DEFICIENCY (TCN2) negative

TRICHOHEPATOENTERIC SYNDROME, SKIC2-RELATED (SKIC2) negative

TRICHOHEPATOENTERIC SYNDROME, TTC37-RELATED (TTC37) negative

TRICHOHYDRODYSSTROPHY 1/XERODERMA PIGMENTOSUM, GROUP D (ERCC2) negative

TRIMETHYLMALINURIA (FM03) negative

TRIPLE A SYNDROME (AAAS) negative

TSHR-RELATED CONDITIONS (TSHR) negative

TYROSINEMIA TYPE III (HPD) negative

TYROSINEMIA, TYPE 1 (FAH) negative

TYROSINEMIA, TYPE 2 (TAT) negative

U

USHER SYNDROME, TYPE 1B (MYO7A) negative

USHER SYNDROME, TYPE 1C (USH1C) negative

USHER SYNDROME, TYPE 1D (CDH23) negative

USHER SYNDROME, TYPE 1F (PCDH15) negative

USHER SYNDROME, TYPE 1J/DEAFNESS, AUTOSOMAL RECESSIVE, 48 (CIB2) negative

USHER SYNDROME, TYPE 2A (USH2A) negative

USHER SYNDROME, TYPE 2C (ADGRV1) negative

USHER SYNDROME, TYPE 3 (CLRN1) negative

V

VERY LONG-CHAIN ACYL-CoA DEHYDROGENASE DEFICIENCY (ACADVL) negative

VICI SYNDROME (EPG5) negative

VITAMIN D-DEPENDENT RICKETS, TYPE 1A (CYP27B1) negative

VITAMIN D-RESISTANT RICKETS TYPE 2A (VDR) negative

VLDLR-ASSOCIATED CEREBELLAR HYPOPLASIA (VLDLR) negative

W

WALKER-WARBURG SYNDROME, CRPPA-RELATED (CRPPA) negative

WALKER-WARBURG SYNDROME, FKTN-RELATED (FKTN) negative

WALKER-WARBURG SYNDROME, LARGE1-RELATED (LARGE1) negative

WALKER-WARBURG SYNDROME, POMT1-RELATED (POMT1) negative

WALKER-WARBURG SYNDROME, POMT2-RELATED (POMT2) negative

WARSAW BREAKAGE SYNDROME (DDX11) negative

WERNER SYNDROME (WRN) negative

WILSON DISEASE (ATP7B) negative

WOLCOTT-RALLISON SYNDROME (EIF2AK3) negative

WOLMAN DISEASE (LIPA) negative

WOODHOUSE-SAKATI SYNDROME (DCAF17) negative

X

XERODERMA PIGMENTOSUM VARIANT TYPE (POLH) see first page

XERODERMA PIGMENTOSUM, GROUP A (XPA) negative

XERODERMA PIGMENTOSUM, GROUP C (XPC) negative

Z

ZELLWEGER SPECTRUM DISORDER, PEX13-RELATED (PEX13) negative

ZELLWEGER SPECTRUM DISORDER, PEX16-RELATED (PEX16) negative

ZELLWEGER SPECTRUM DISORDER, PEX5-RELATED (PEX5) negative

ZELLWEGER SPECTRUM DISORDERS, PEX10-RELATED (PEX10) negative

ZELLWEGER SPECTRUM DISORDERS, PEX12-RELATED (PEX12) negative

ZELLWEGER SPECTRUM DISORDERS, PEX1-RELATED (PEX1) negative

ZELLWEGER SPECTRUM DISORDERS, PEX26-RELATED (PEX26) negative

ZELLWEGER SPECTRUM DISORDERS, PEX2-RELATED (PEX2) negative

Patient Information

Patient Name: Donor 7660

Test Information

Ordering Physician: [REDACTED]

Date Of Birth: [REDACTED]

Clinic Information: Fairfax Cryobank

Case File ID: [REDACTED]

Report Date: 05/24/2025

Z

ZELLWEGER SPECTRUM DISORDERS, PEX6-RELATED (PEX6) negative

Patient Information
Patient Name: Donor 7660

Date Of Birth: [REDACTED]
Case File ID: [REDACTED]

Test Information
Ordering Physician: [REDACTED]

Clinic Information: Fairfax Cryobank

Report Date: 05/24/2025

Testing Methodology, Limitations, and Comments:

Next-generation sequencing (NGS)

Sequencing library prepared from genomic DNA isolated from a patient sample is enriched for targets of interest using standard hybridization capture protocols and PCR amplification (for targets specified below). NGS is then performed to achieve the standards of quality control metrics, including a minimum coverage of 99% of targeted regions at 20X sequencing depth. Sequencing data is aligned to human reference sequence, followed by deduplication, metric collection and variant calling (coding region +/- 20bp). Variants are then classified according to ACMGG/AMP standards of interpretation using publicly available databases including but not limited to ENSEMBL, HGMD Pro, ClinGen, ClinVar, 1000G, ESP and gnomAD. Variants predicted to be pathogenic or likely pathogenic for the specified diseases are reported. It should be noted that the data interpretation is based on our current understanding of the genes and variants at the time of reporting. Putative positive sequencing variants that do not meet internal quality standards or are within highly homologous regions are confirmed by Sanger sequencing or gene-specific long-range PCR as needed prior to reporting.

Copy Number Variant (CNV) analysis is limited to deletions involving two or more exons for all genes on the panel, in addition to specific known recurrent single-exon deletions. CNVs of small size may have reduced detection rate. This method does not detect gene inversions, single-exonic and sub-exonic deletions (unless otherwise specified), and duplications of all sizes (unless otherwise specified). Additionally, this method does not define the exact breakpoints of detected CNV events. Confirmation testing for copy number variation is performed by specific PCR, Multiplex Ligation-dependent Probe Amplification (MLPA), next generation sequencing, or other methodology.

This test may not detect certain variants due to local sequence characteristics, high/low genomic complexity, homologous sequence, or allele dropout (PCR-based assays). Variants within noncoding regions (promoter, 5'UTR, 3'UTR, deep intronic regions, unless otherwise specified), small deletions or insertions larger than 25bp, low-level mosaic variants, structural variants such as inversions, and/or balanced translocations may not be detected with this technology.

SPECIAL NOTES

For ABCC6, sequencing variants in exons 1-7 are not detected due to the presence of regions of high homology.

For CFTR, when the CFTR R117H variant is detected, reflex analysis of the polythymidine variations (5T, 7T and 9T) at the intron 9 branch/acceptor site of the CFTR gene will be performed. Multi-exon duplication analysis is included.

For CYP21A2, targets were enriched using long-range PCR amplification, followed by next generation sequencing. Duplication analysis will only be performed and reported when c.955C>T (p.Q319*) is detected. Sequencing and CNV analysis may have reduced sensitivity, if variants result from complex rearrangements, in trans with a gene deletion, or CYP21A2 gene duplication on one chromosome and deletion on the other chromosome. This analysis cannot detect sequencing variants located on the CYP21A2 duplicated copy.

For DDX11, sequencing variants in exons 7-11 and CNV for the entire gene are not analyzed due to high sequence homology.

For GJB2, CNV analysis of upstream deletions of GJB6-D13S1830 (309kb deletion) and GJB6-D13S1854 (232kb deletion) is included.

For HBA1/HBA2, CNV analysis is offered to detect common deletions of -alpha3.7, -alpha4.2, --MED, --SEA, --FIL, --THAI, --alpha20.5, and/or HS-40.

For OTOA, sequencing variants in exons 25-29 and CNV in exons 21-29 are not analyzed due to high sequence homology.

For RPGRIP1L, variants in exon 23 are not detected due to assay limitation.

For SAMD9, only p.K1495E variant will be analyzed and reported.

Friedreich Ataxia (FXN)

The GAA repeat region of the FXN gene is assessed by trinucleotide PCR assay and capillary electrophoresis. Variances of +/-1 repeat for normal alleles and up to +/-3 repeats for premutation alleles may occur. For fully penetrant expanded alleles, the precise repeat size cannot be determined, therefore the approximate allele size is reported. Sequencing and copy number variants are analyzed by next-generation sequencing analysis.

Friedreich Ataxia Repeat Categories

Categories	GAA Repeat Sizes
Normal	<34
Premutation	34 - 65
Full	>65

Patient Information

Patient Name: Donor 7660

Test Information

Ordering Physician: [REDACTED]

Date Of Birth: [REDACTED]

Clinic Information: Fairfax Cryobank

Case File ID: [REDACTED]

Report Date: 05/24/2025

Spinal Muscular Atrophy (SMN1)

The total combined copy number of SMN1 and SMN2 exon 7 is quantified based on NGS read depth. The ratio of SMN1 to SMN2 is calculated based on the read depth of a single nucleotide that distinguishes these two genes in exon 7. In addition to copy number analysis, testing for the presence or absence of a single nucleotide polymorphism (g.27134T>G in intron 7 of SMN1) associated with the presence of a SMN1 duplication allele is performed using NGS.

Ethnicity	Two SMN1 copies carrier risk before g.27134T>G testing	Carrier risk after g.27134T>G testing	
		g.27134T>G ABSENT	g.27134T>G PRESENT
Caucasian	1 in 632	1 in 769	1 in 29
Ashkenazi Jewish	1 in 350	1 in 580	LIKELY CARRIER
Asian	1 in 628	1 in 702	LIKELY CARRIER
African-American	1 in 121	1 in 396	1 in 34
Hispanic	1 in 1061	1 in 1762	1 in 140

Variant Classification

Only pathogenic or likely pathogenic variants are reported. Other variants including benign variants, likely benign variants, variants of uncertain significance, or inconclusive variants identified during this analysis may be reported in certain circumstances. Our laboratory's variant classification criteria are based on the ACMG and internal guidelines and our current understanding of the specific genes. This interpretation may change over time as more information about a gene and/or variant becomes available. Natera and its lab partner(s) may reclassify variants at certain intervals but may not release updated reports without a specific request made to Natera by the ordering provider. Natera may disclose incidental findings if deemed clinically pertinent to the test performed.

Negative Results

A negative carrier screening result reduces the risk for a patient to be a carrier of a specific disease but does not completely rule out carrier status. Please visit <https://www.natera.com/panel-option/h-all/> for a table of carrier rates, detection rates, residual risks and promised variants/exons per gene. Carrier rates before and after testing vary by ethnicity and assume a negative family history for each disease screened and the absence of clinical symptoms in the patient. Any patient with a family history for a specific genetic disease will have a higher carrier risk prior to testing and, if the disease-causing mutation in their family is not included on the test, their carrier risk would remain unchanged. Genetic counseling is recommended for patients with a family history of genetic disease so that risk figures based on actual family history can be determined and discussed along with potential implications for reproduction. Horizon carrier screening has been developed to identify the reproductive risks for monogenic inherited conditions. Even when one or both members of a couple screen negative for pathogenic variants in a specific gene, the disease risk for their offspring is not zero. There is still a low risk for the condition in their offspring due to a number of different mechanisms that are not detected by Horizon including, but not limited to, pathogenic variant(s) in the tested gene or in a different gene not included on Horizon, pathogenic variant(s) in an upstream regulator, uniparental disomy, de novo mutation(s), or digenic or polygenic inheritance.

Additional Comments

These analyses generally provide highly accurate information regarding the patient's carrier status. Despite this high level of accuracy, it should be kept in mind that there are many potential sources of diagnostic error, including misidentification of samples, polymorphisms, or other rare genetic variants that interfere with analysis. Families should understand that rare diagnostic errors may occur for these reasons.