

Donor 4824

Genetic Testing Summary

Fairfax Cryobank recommends reviewing this genetic testing summary with your healthcare provider to determine suitability.

Last Updated: 08/17/18

Donor Reported Ancestry: English, Irish, Norwegian, Swedish

Jewish Ancestry: No

Genetic Test*	Result	Comments/Donor's Residual Risk**
denetic rest	nesun	Comments/Donor's Residual Risk

Chromosome analysis (karyotype)	Normal male karyotype	No evidence of clinically significant chromosome abnormalities
Hemoglobin evaluation	Normal hemoglobin fractionation and MCV/MCH results	Reduced risk to be a carrier for sickle cell anemia, beta thalassemia, alpha thalassemia trait (aa/ and a-/a-) and other hemoglobinopathies
Cystic Fibrosis (CF) carrier screening	Negative by genotyping of 99 mutations in the CFTR gene	1/300
Spinal Muscular Atrophy (SMA) carrier screening	Negative for deletions of exon 7 in the SMN1 gene	1/610
Hb Beta Chain Related Hemoglobinopathy (including Beta Thalassemia and Sickle Cell Disease)	Negative for 28 mutations tested by genotyping in the HBB gene	1/290
Tay Sachs enzyme analysis	Non-carrier by Hexosaminidase A activity	
Special Testing		
Alpha 1 Antitrypsin Deficiency	Negative for 4 mutations by genotyping in the SERPINA1 gene	1/700
3-Methylcrontonyl-CoA Carboxylase Deficiency (MCCC1-Related)	Negative by gene sequencing in the MCCC1 gene	1/592

3-Methylcrontonyl-CoA Carboxylase Deficiency (MCCC2-Related)	Negative by gene sequencing in the MCCC2 gene	1/272
Maple Syrup Urine Disease, Type 1 B	Negative by gene sequencing in the BCKDHB gene	1/983
Non-Syndromic Hearing Loss (GJB2- Related)	Negative by gene sequencing in the GJB2 gene	1/343
Bardet-Biedl Syndrome (BBS1-Related)	Negative by gene sequencing in the BBS1 gene	1/5587
Biotinidase Deficiency	Negative by gene sequencing in the BTD gene	1/43
Congenital Disorder of Glycosylation, Type 1 A	Negative by gene sequencing in the PMM2 gene	1/229
Factor XI Deficiency	Negative by gene sequencing in the F11 gene	1/119
Phenylalanine Hydroxylase Deficiency	Negative by gene sequencing in the PAH gene	1/197

*No single test can screen for all genetic disorders. A negative screening result significantly reduces, but cannot eliminate, the risk for these conditions in a pregnancy.

**Donor residual risk is the chance the donor is still a carrier after testing negative.

CarrierMap™

4824 4824 Partner Not Tested **Ordering Practice:** Practice Code: DOB: Fairfax Cryobank Gender: Male Ethnicity: European Procedure ID: 29123 Kit Barcode: Physician: Report Generated: 2015-09-08 Method: Genotyping Report Updated: 2015-09-08 Specimen: Blood, #30564 Specimen Collection: 2015-08-28 Specimen Received: 2015-08-31 Specimen Analyzed: 2015-09-08

SUMMARY OF RESULTS

NO MUTATIONS IDENTIFIED

4824 4824 was not identified to carry any of the mutations tested.

All mutations analyzed were not detected, reducing but not eliminating your chance to be a carrier for the associated genetic diseases. A list of all the diseases and mutations you were screened for is included later in this report. The test does not screen for every possible genetic disease.

For disease information, please visit www.recombine.com/diseases. To speak with a Genetic Counselor, call 855.OUR.GENES.

o^r Male

Panel: Alpha-1-Antitrypsin Deficiency, Diseases Tested: 1, Mutations Tested: 4, Genes Tested: 1, Null Calls: 0

Assay performed by Reprogenetics CLIA ID: 31D1054821 Lab Technician Bo Chu

Reviewed by Pere Colls, PhD, HCLD, Lab Director

Methods and Limitations

Genotyping: Genotyping is performed using the Illumina Infinium Custom HD Genotyping assay to identify mutations in >200 genes. The assay is not validated for homozygous mutations, and it is possible that individuals affected with disease may not be accurately genotyped.

Limitations: In some cases, genetic variations other than that which is being assayed may interfere with mutation detection, resulting in false-negative or false-positive results. Additional sources of error include, but are not limited to: sample contamination, sample mixup, bone marrow transplantation, blood transfusions, and technical errors.

The test does not test for all forms of genetic disease, birth defects, and intellectual disability. All results should be interpreted in the context of family history; additional evaluation may be indicated based on a history of these conditions. Additional testing may be necessary to determine mutation phase in individuals identified to carry more than one mutation in the same gene. All mutations included within the genes assayed may not be detected, and additional testing may be appropriate for some individuals.

Carrier Map™

Diseases & Mutations Assayed

🛑 High Impact 🛑 Treatment Benefits 🔵 X-Linked 😑 Moderate Impact

нтхм			Mutations
000	Alpha-1-Antitrypsin Deficiency	4	♂ Genotyping c.226_228delTTC (p.76delF), c.A1131T (p.L377F), c.C187T (p.R63C), c.G1096A (p.E366K)

CARRIER SCREENING REPORT

Patient	Sample	Referring Doctor
Patient Name: 4824 Donor Date of Birth: Reference #: Indication: Carrier Testing	Specimen Type: Blood Lab #: Date Collected: 10/7/2016 Date Received: 1/30/2018 Final Report: 2/6/2018	Fairfax Cryobank, Inc.

RESULT SUMMARY

Results: No clinically significant variant(s) detected

Gene(s) analyzed: BBS1

Interpretation: Screening for the presence of pathogenic variants in the *BBS1* gene which is associated with Bardet-Biedl syndrome (*BBS1*-related) was performed by next generation sequencing and possibly genotyping for select variants on DNA extracted from this patient's sample. No clinically significant variants were detected during this analysis. This negative result does not rule out the possibility that a pathogenic variant in the gene examined is present.

Genetic counseling is recommended.

This technology may not detect all small insertion/deletions and is not diagnostic for large duplications/deletions and structural genomic variation. The coding DNA sequence of the gene plus at least five base pairs flanking splice sites were sequenced and analyzed relative to the hg19 assembly. A mutation(s) deep in intronic sequences or in untranslated regions of the gene except a portion described above or a pathogenic variant(s) in other genes not included in this test could be present in this patient. The analytical sensitivity of this test is estimated at 99% for single base substitutions and 97% overall. All potentially pathogenic variants were subjected to Sanger sequencing or genotyping by allele specific primer extension analysis for confirmation of the result. Any benign variants identified during this analysis were not reported.

Please note that this carrier screening test masks likely benign variants and variants of uncertain significance (VUS) if there are any. Only known pathogenic variants or likely pathogenic variants which are expected to result in deleterious effects on protein function are reported. If reporting of likely benign variants and VUS is desired in this patient, please contact the laboratory (tel. 212-241-2537) to request an amended report.

Comments: This test was developed and its performance characteristics were determined by Mount Sinai Genomics, Inc. It is considered acceptable for patient testing. It has not been cleared or approved by the FDA. The FDA has determined that such clearance or approval is not necessary.

Pati

ent: 4824 Donor	DOB:	Lab #:
-----------------	------	--------

This type of mutation analysis generally provides highly accurate genotype information for point mutations and single nucleotide polymorphisms. Despite this level of accuracy, it should be kept in mind that there are many potential sources of diagnostic error, including misidentification of samples, polymorphisms, mosaicism or other rare genetic variants that interfere with analysis. In addition, families should understand the limitations of the testing and that rare diagnostic errors may occur for the reasons described.

For Disease Specific Standards and Guidelines:

https://www.acmg.net/ Additional disease-specific references available upon request.

This case has been reviewed and electronically signed by Guiqing Cai, Ph.D., DABMGG, Associate Laboratory Director

Laboratory Medical Consultant: George A. Diaz, M.D., Ph.D.

Table of Residual Risks by Ethnicity

Please note: This table displays residual risks after a negative result for each of the genes and corresponding disorders. If a patient is reported to be a carrier of a disease, their residual risk is 1 and this table does not apply for that disease.

Disease (Inheritance)	Gene	Ethnicity	Carrier Frequency	Detection Rate	Residual Risk	Analytical Detection Rate
Bardet-Biedl Syndrome (BBS1-Related) (AR)	BBS1	Worldwide	1 in 392	93%	1 in 5587	>95%
NM_024649.4		Faroese	1 in 30	>95%	1 in 581	>95%

AR: Autosomal Recessive

CARRIER SCREENING REPORT

Patient	Sample	Referring Doctor
Patient Name: Donor 4824	Specimen Type: Blood	
Date of Birth:	Lab #:	Fairfax Cryobank, Inc.
Reference #: FFAXCB-S41661158NG	Date Collected: 10/7/2016	
Indication: Carrier Testing	Date Received: 5/18/2018	·
	Final Report: 6/1/2018	,
Test Type: Unmask Additional Gene(s)	Final Report: 6/1/2018	

RESULT SUMMARY

Results: No clinically significant variant(s) detected

Gene(s) analyzed: MCCC1, MCCC2, BCKDHB, and GJB2

Interpretation: Screening for the presence of pathogenic variants in the *MCCC1*, *MCCC2*, *BCKDHB*, and *GJB2* genes which are associated with 3-methylcrotonyl-CoA carboxylase deficiency (*MCCC1*-related), 3-methylcrotonyl-CoA carboxylase deficiency (*MCCC1*-related), and non-syndromic hearing loss (*GJB2*-related), respectively, was performed by next generation sequencing and possibly genotyping for select variants on DNA extracted from this patient's sample. No clinically significant variants were detected during this analysis. This negative result does not rule out the possibility that a pathogenic variant in the genes examined is present.

Genetic counseling is recommended.

This technology may not detect all small insertion/deletions and is not diagnostic for large duplications/deletions and structural genomic variation. The coding DNA sequence of the gene plus at least five base pairs flanking splice sites were sequenced and analyzed relative to the hg19 assembly. A mutation(s) deep in intronic sequences or in untranslated regions of the gene except a portion described above or a pathogenic variant(s) in other genes not included in this test could be present in this patient. The analytical sensitivity of this test is estimated at 99% for single base substitutions and 97% overall. All potentially pathogenic variants were subjected to Sanger sequencing or genotyping by allele specific primer extension analysis for confirmation of the result. Any benign variants identified during this analysis were not reported.

Please note that this carrier screening test masks likely benign variants and variants of uncertain significance (VUS) if there are any. Only known pathogenic variants or likely pathogenic variants which are expected to result in deleterious effects on protein function are reported. If reporting of likely benign variants and VUS is desired in this patient, please contact the laboratory (tel. 212-241-2537) to request an amended report.

Comments: This test was developed and its performance characteristics were determined by Mount Sinai Genomics, Inc. It is considered acceptable for patient testing. It has not been cleared or approved by the FDA. The FDA has determined that such clearance or approval is not necessary.

Pati

ient:	Donor 4824	DOB:		Lab #:

This type of mutation analysis generally provides highly accurate genotype information for point mutations and single nucleotide polymorphisms. Despite this level of accuracy, it should be kept in mind that there are many potential sources of diagnostic error, including misidentification of samples, polymorphisms, mosaicism or other rare genetic variants that interfere with analysis. In addition, families should understand the limitations of the testing and that rare diagnostic errors may occur for the reasons described.

For Disease Specific Standards and Guidelines:

https://www.acmg.net/ Additional disease-specific references available upon request.

This case has been reviewed and electronically signed by Ruth Kornreich, Ph.D., FACMG, Co-Laboratory Director

Laboratory Medical Consultant: George A. Diaz, M.D., Ph.D.

Table of Residual Risks by Ethnicity

Please note: This table displays residual risks after a negative result for each of the genes and corresponding disorders. If a patient is reported to be a carrier of a disease, their residual risk is 1 and this table does not apply for that disease.

Disease (Inheritance)	Gene	Ethnicity	Carrier Frequency	Detection Rate	Residual Risk	Analytical Detection Rate
Maple Syrup Urine Disease, Type 1b (AR)	BCKDHB	Caucasian	1 in 433	56%	1 in 983	>95%
NM_000056.3		Asian	1 in 163	57%	1 in 378	>95%
		Ashkenazi Jewish	1 in 97	>95%	1 in 1921	>95%
		Worldwide	1 in 327	72%	1 in 1165	>95%
3-Methylcrotonyl-CoA Carboxylase	MCCC1	Caucasian	1 in 137	77%	1 in 592	88%
Deficiency (MCCC1-Related) (AR) NM_020166.4		Worldwide	1 in 147	75%	1 in 585	>95%
3-Methylcrotonyl-CoA Carboxylase	MCCC2	Caucasian	1 in 112	59%	1 in 272	91%
Deficiency (MCCC2-Related) (AR) NM_022132.4		Worldwide	1 in 120	69%	1 in 385	>95%
Non-Syndromic Hearing Loss	GJB2	Caucasian	1 in 42	88%	1 in 343	>95%
(GJB2-Related) (AR)		Asian	1 in 50	83%	1 in 289	>95%
NM_004004.5		Ashkenazi Jewish	1 in 21	>95%	1 in 401	>95%
		Worldwide	1 in 43	82%	1 in 234	>95%

AR: Autosomal Recessive

Patient	Sample	Referring Doctor
Patient Name: 4824 Donor Date of Birth: Reference #: P0269749 Indication: Carrier Testing Test Type: NGS single gene full sequencing test	Specimen Type: Blood Lab #: Date Collected: 10/7/2016 Date Received: 10/10/2016 Final Report: 10/24/2016	Fairfax Cryobank

RESULTS

Results: No clinically significant variant(s) detected

Gene(s) analyzed: BTD, PMM2, F11, PAH

Interpretation: Screening for the presence of pathogenic variants in the *BTD, PMM2, F11,* and *PAH* genes which are associated with biotinidase deficiency, congenital disorder of glycosylation, type Ia, factor XI deficiency, and phenylalanine hydroxylase deficiency was performed by next generation sequencing and possibly genotyping for select variants on DNA extracted from this patient's sample. No clinically significant variants were detected during this analysis. This negative result does not rule out the possibility that a pathogenic variant in the gene examined is present.

Genetic counseling is recommended.

This technology may not detect all small insertion/deletions and is not diagnostic for large duplications/deletions and structural genomic variation. The coding DNA sequence of the gene plus at least five base pairs flanking splice sites were sequenced and analyzed relative to the hg19 assembly. A mutation(s) deep in intronic sequences or in untranslated regions of the gene except a portion described above or a pathogenic variant(s) in other genes not included in this test could be present in this patient. The analytical sensitivity of this test is estimated at 99% for single base substitutions and 97% overall. All potentially pathogenic variants were subjected to Sanger sequencing or genotyping by allele specific primer extension analysis for confirmation of the result. Any benign variants identified during this analysis were not reported.

Please note that this carrier screening test masks likely benign variants and variants of uncertain significance (VUS) if there are any. Only known pathogenic variants or likely pathogenic variants which are expected to result in deleterious effects on protein function are reported. If reporting of likely benign variants and VUS is desired in this patient, please contact the laboratory (tel. 212-241-2537) to request an amended report.

Comments: This test was developed and its performance characteristics were determined by The Genetic Testing Laboratory at the Mount Sinai School of Medicine. It is considered acceptable for patient testing. It has not been cleared or approved by the FDA. The FDA has determined that such clearance or approval is not necessary.

This type of mutation analysis generally provides highly accurate genotype information for point mutations and single nucleotide polymorphisms. Despite this level of accuracy, it should be kept in mind that there are many potential sources of diagnostic error, including misidentification of samples, polymorphisms, mosaicism or other rare genetic variants that interfere with analysis. In addition, families should understand the limitations of the testing and that rare diagnostic errors may occur for the reasons described.

Mount Sinai Genetic Testing Laboratory One Gustave L. Levy Place, Box 1497 New York, NY 10029-6574

icahn.mssm.edu/genetictesting

Page 1 of 2

Tel: 212-241-7518 Fax: 212-241-0139

CLIA#: 33D0653419

This case has been reviewed and electronically signed by Ozge Birsoy, Ph.D., FACMG, Assistant Laboratory Director

Laboratory Medical Consultant: George A. Diaz, M.D., Ph.D.

Table of Residual Risks by Ethnicity

Please note: This table displays residual risks after a negative result for each of the genes and corresponding disorders. If a patient is reported to be a carrier of a disease, their residual risk is 1 and this table does not apply for that disease.

Disease (Inheritance)	Gene	Ethnicity	Carrier Frequency	Detection Rate	Residual Risk
Biotinidase Deficiency (AR)	BTD	Caucasian	1 in 12	74%	1 in 43
NM_000060.3		Hispanic	1 in 30	60%	1 in 74
Exons: 2-4; Variants: 12		Worldwide	1 in 25	60%	1 in 61
Congenital Disorder of Glycosylation,	PMM2	Caucasian	1 in 42	82%	1 in 229
Type Ia (AR)		Asian	1 in 449	20%	1 in 561
NM_000303.2		Ashkenazi Jewish	1 in 61	>95%	1 in 1201
Exons: 1-8; Variants: 16		Worldwide	1 in 124	76%	1 in 514
Factor XI Deficiency (AR)	F11	Caucasian	1 in 101	15%	1 in 119
NM_000128.3		Asian	1 in 163	35%	1 in 250
		Ashkenazi Jewish	1 in 11	>95%	1 in 201
Exons: 2-15; Variants: 11		Worldwide	1 in 92	31%	1 in 133
Phenylalanine Hydroxylase Deficiency (AR)	PAH	Caucasian	1 in 50	75%	1 in 197
		African	1 in 158	41%	1 in 267
NM_000277.1		Asian	1 in 78	41%	1 in 132
		Ashkenazi Jewish	1 in 225	17%	1 in 271
		Worldwide	1 in 65	66%	1 in 189
		Turkish	1 in 32	63%	1 in 85
		Irish	1 in 34	70%	1 in 111
		Sicilian	1 in 26	48%	1 in 49
		Sephardic Jewish - Iranian, Bukharian,	1 in 18	52%	1 in 36
Exons: 1-13; Variants: 29		Kavkazi, Tunisian and Moroccan			

Note: A list of specific variants tested will be provided upon request. AR: Autosomal Recessive

Mount Sinai Genetic Testing Laboratory One Gustave L. Levy Place, Box 1497 New York, NY 10029-6574

icahn.mssm.edu/genetictesting

Page 2 of 2

Tel: 212-241-7518 Fax: 212-241-0139