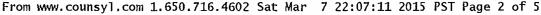
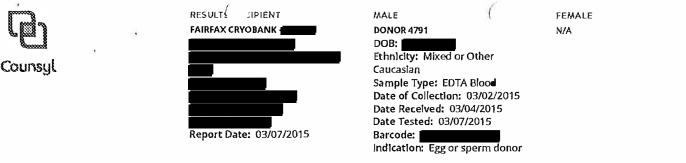


Donor 4791

Genetic Testing Summary

Fairfax Cryobank recommends reviewing this genetic testing summary with your healthcare provider to determine suitability.


Last Updated: 02/12/24


Donor Reported Ancestry: English, Icelandic

Jewish Ancestry: No

Genetic Test*	Result	Comments/Donor's Residual Risk**			
Chromosome Analysis (karyotype)	Normal male karyotype	No evidence of clinically significant chromosome abnormalities			
Hemoglobin evaluation	Normal hemoglobin fractionation and MCV/MCH results	Reduced risk to be a carrier for sickle cell anemia, beta thalassemia, alpha thalassemia trait (aa/ and a-/a-) and other hemoglobinopathies			
Cystic Fibrosis (CF) carrier screening	Negative by genotyping of 99 mutations in the CFTR gene	1/300			
Spinal Muscular Atrophy (SMA) carrier screening	Negative for deletions of exon 7 of the SMN1 gene	1/610			
Hb Beta Chain Related Hemoglobinopathy (including Beta Thalassemia and Sickle Cell Disease) by genotyping	Non-carrier for 28 mutations tested in the HBB gene	1/290			
Special testing					
6-Pyruvoyl-Terahydropterin Synthase Deficiency (PTS)	Negative by gene sequencing in the PTS gene	1/1800			
Nephrotic Syndrome (NPHS1-Related)	Negative by gene sequencing in the NPHS1 gene	1/920			
Gene: RNASEH2B, DHCR7	Negative by gene sequencing	See attached for residual risks			

*No single test can screen for all genetic disorders. A negative screening result significantly reduces, but cannot eliminate, the risk for these conditions in a pregnancy. **Donor residual risk is the chance the donor is still a carrier after testing negative.

Family Prep Screen

NEGATIVE

ABOUT THIS TEST

The Counsyl Family Prep Screen (version 1.0) tests known mutations to help you learn about your chance to have a child with a genetic disease. PANEL DETAILS Fairfax Cryobank Fundamental Panel (3 diseases tested) VERSION DONOR 4791 (Family Prep Screen 1.0)

RESULTS SUMMARY

NEGATIVE

No known or potential disease-causing mutations were detected.

CLINICAL NOTES

None

NEXT STEPS

- If necessary, patients can discuss residual risks with their physician or a genetic counselor.
- To schedule a complimentary appointment to speak with a clinical expert about these results, please visit counsyl.com/my/consults/.

From www.counsyl.com 1.650.716.4602 Sat Mar 7 22:07:11 2015 PST Page 3 of 5

RESULTS ZIPIENT FAIRFAX CRYOBANK Attn: NPI: Report Date: 03/07/2015

MALE	1
ONOR 4791	
DOB:	
Ethnicity: Mixed or Oth	er
Caucasian	
Barcode	

FEMALE N/A

Methods and Limitations

DONOR 4791 [Family Prep Screen 1.0]: targeted genotyping and copy number analysis.

Targeted genotyping: Targeted DNA mutation analysis is used to simultaneously determine the genotype of 127 variants associated with 2 diseases. The test is not validated for detection of homozygous mutations, and although rare, asymptomatic individuals affected by the disease may not be genotyped accurately.

Copy number analysis: Targeted copy number analysis is used to determine the copy number of exon 7 of the SMN1 gene relative to other genes. Other mutations may interfere with this analysis. Some individuals with two copies of SMN1 are carriers with two SMN1 genes on one chromosome and a SMN1 deletion on the other chromosome. In addition, a small percentage of SMA cases are caused by nondeletion mutations in the SMN1 gene. Thus, a test result of two SMN1 copies significantly reduces the risk of being a carrier; however, there is still a residual risk of being a carrier and subsequently a small risk of future affected offspring for individuals with two or more SMN1 gene copies. Some SMA cases arise as the result of de novo mutation events which will not be detected by carrier testing.

Limitations: In an unknown number of cases, nearby genetic variants may interfere with mutation detection. Other possible sources of diagnostic error include sample mix-up, trace contamination, bone marrow transplantation, blood transfusions and technical errors. If more than one variant is detected in a gene, additional studies may be necessary to determine if those variants lie on the same chromosome or different chromosomes. The Counsyl test does not fully address all inherited forms of intellectual disability, birth defects and genetic disease. A family history of any of these conditions may warrant additional evaluation. Furthermore, not all mutations will be identified in the genes analyzed and additional testing may be beneficial for some patients. For example, individuals of African, Southeast Asian, and Mediterranean ancestry are at increased risk for being carriers for hemoglobinopathles, which can be identified by CBC and hemoglobin electrophoresis or HPLC (*ACOG Practice Bulletin No. 78. Obstet. Gynecol. 2007;109:229-37*).

This test was developed and its performance characteristics determined by Counsyl, Inc. It has not been cleared or approved by the US Food and Drug Administration (FDA). The FDA does not require this test to go through premarket review. This test is used for clinical purposes. It should not be regarded as investigational or for research. This laboratory is certified under the Clinical Laboratory Improvement Amendments of 1988 (CLIA) as qualified to perform high-complexity clinical testing. These results are adjunctive to the ordering physician's workup. CLIA Number: **#05D1102604**.

LAB DIRECTORS

Hyunseok Kang.

H. Peter Kang, MO, MS, FCAP

Q AH

Rebecca Mar-Heyming, PhD, DABMG

Copyright 2015 Counsyl, Inc All rights reserved. 180 Kimball Way, South San Francisco, CA 94080 (888) COUNSYL | http://www.counsyi.com Page 2 of 4 Version: 3.1.6 From www.counsyl.com 1.650.716.4602 Sat Mar 7 22:07:11 2015 PST Page 4 of 5

RESUL **CIPIENT** FAIRFAX CRYOBANK

MALE **DONOR 4791** DOB: Ethnicity: Mixed or Other Caucasian Barcode:

Diseases Tested

Autosomal Recessive Disorders

TARGETED GENOTYPING

Cystic Fibrosis - Gene: CFTR, Variants (99); G85E, R117H, R334W, R347P, A455E, G542*, G551D, R553*, R560T, R1162*, W1282*, N1303K, c.1521_1523delCTT, c.1519_1521delATC, c.2052delA, c.3528delC, c.489+1G>T, c.579+1G>T, c.1585-1G>A, c.1766+1G>A, 2789+5G>A, c.2988+1G>A, 3849+10kbC>T, E60*, R75*, E92*, Y122*, G178R, R347H, Q493*, V520F, S549N, P574H, M1101K, D1152H, c.2012delT, c.262_263delTT, c.313delA, c.948delT, c.3744delA, c.3773dupT, c.1680-1G>A, 3272-26A>G, c.2051_2052delAAJnsG, S549R(c.1645A>C), R117C, L206W, G330*, T338I, R352Q, S364P, G480C, C524*, S549R(c.1647T>G), Q552*, A559T, G622D, R709*, K710*, R764*, Q890*, R1066C, W1089*, Y1092X, R1158*, S1196*, W1204*, Q1238*, S1251N, S1255*, c.3067_3072del6, c.442delA, c.531delT, c.803delA, c.805_806delAT, c.1545_1546delTA, M607_Q643del, c.1911delG,

c.1923_1931del9Ins1, c.1976delA, c.3039delC, c.3536_3539delCCAA, c.3659delC, c.1155_1156dupTA, c.2052dupA, c.2175dupA, c.2738InsG, 296+12T>C, c.273+1G>A, 405+3A>C, c.274-1G>A, 711+5G>A, c.580-1G>T, c.1766+1G>T, 1898+5G>T, Q996, c.325_327delTATinsG, 3849+4A>G, c.1075_1079del5Ins5. NS8-5T allele analysis is only reported in the presence of the R117H mutation. Detection rate: Mixed or Other Caucasian 91%.

FEMALE

N/A

Hb Beta Chain-Related Hemoglobinopathy (including Beta Thalassemia and Sickle Cell Disease) - Gene: H8B. Variants (28): E7V, K18*, Q40*, c.126_129delCTIT, c.27dupG, NS-II-654, NS-II-745, c.315+1G>A, NS-I-6, NS-I-110, IVS-I-5, c.92+1G>A, -88C>T, -28A>G, -29A>G, c.25_26delAA, c.217dupA, c.316-2A>C, c.316-2A>G, G25, -87C>G, E7K, W16*, c.51delC, c.20delA, E27K, E122Q, E122K. Detection rate: Mixed or Other Caucasian 83%.

COPY NUMBER ANALYSIS

Spinal Muscular Atrophy - Gene: SMN1. Variant (1): SMN1 copy number. Detection rate: Mixed or Other Caucasian 95%.

From www.counsyl.com 1.650.716.4602 Sat Mar 7 22:07:11 2015 PST Page 5 of 5

RESULTS JIPIENT FAIRFAX CRYOBANK -Report Date: 03/07/2015

MALE	(
DONO <u>R 4791</u>	
DOB:	
Ethnicity: Mixed or Oth	er
Caucasian	
Barcode:	

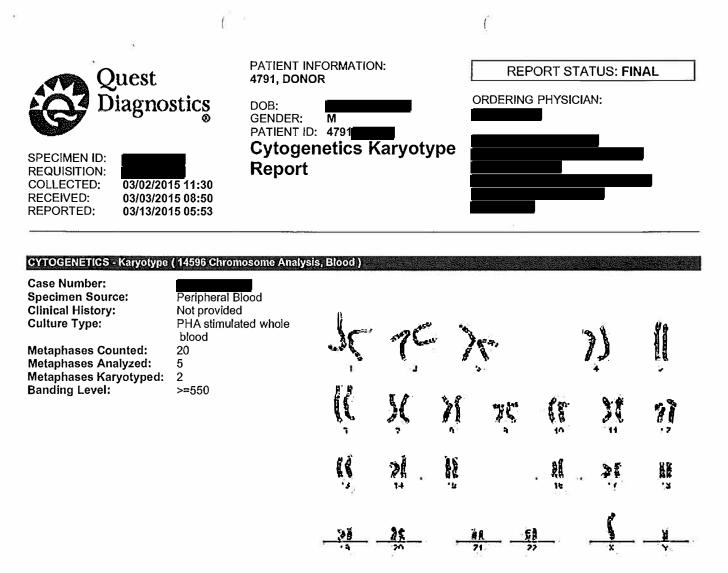
FEMALE N/A

Risk Calculations

Below are the risk calculations for all diseases tested. Since negative results do not completely rule out the possibility of being a carrier, the **residual risk** represents the patient's post-test likelihood of being a carrier and the **reproductive risk** represents the likelihood the patient's future children could inherit each disease. These risks are inherent to all carrier screening tests, may vary by ethnicity, are predicated on a negative family history and are present even after a negative test result. Inaccurate reporting of ethnicity may cause errors in risk calculation.

Disease	DONOR 4791 Residual Risk	Reproductive Risk
Cystic Fibrosis	1 in 300	1 in 33,000
Hb Beta Chain-Related Hemoglobinopathy (including Beta Thalassemia and Sickle Cell Disease)	1 in 290	1 in 58,000
Spinal Muscular Atrophy	SMN1: 2 copies 1 in 610	1 in 84,000

Final REPORT STATUS PATIENT INFORMATION 4791, DONOR ORDERING PHYSICIAN Nichols Institute, Chantilly DOB: Age: SEX: M SPECIMEN INFORMATION SPECIMEN: ID: 4791 REQUISITION: LAB REF NO: COLLECTED: 03/02/2015 11:30 RECEIVED: 08:50 03/03/2015 REPORTED: 03/13/2015 13:01


(

Reference Range Lab Test Name In Range Out of Range AMD FAX Report to Client AMD Hemoglobinopathy Evaluation 4.20-5.80 Mill/uL ERYTHROCYTE COUNT 4.74 13.2-17.1 g/dL HEMOGLOBIN 14.2 HEMATOCRIT 43.4 38.5-50.0 % 80.0-100.0 FL 91.7 MCV MCH 29.9 27.0-33.0 pg 11.0-15.0 % RDW 13.1 Hemoglobin A 97.4 >96.0 % Hemoglobin F 0,0 <2.0 % Hemoglobin A2 2.6 1.8-3.5 % Interpretation

NORMAL PATTERN

By high-performance liquid chromatography (HPLC), there is a normal pattern of hemoglobins and normal levels of HbA2 and HbF are present. No variant hemoglobins are observed. This is consistent with A/A phenotype. If iron deficiency coexists with beta thalassemia trait HbA2 may be in the normal range. Rare variant hemoglobins have been known to co-elute with hemoglobin A by high-performance liquid chromatography. If clinically indicated, Thalassemia and Hemoglobinopathy comprehensive is available (Test code 17365X[12658]).

085.0		Ć				í	
	3					а д. С	
	2		PATIENT INFO			REPORT STATUS Final	
Nichols Instit	tute, Chantilly		4/51,001			ORDERING PHYSICIAN	
			DOB:		Age:		
COLLECTED: REPORTED:	03/02/2015 03/13/2015	11:30 13:01	SEX: M ID: 4791-				
Test Name			In Range	Out o	f Range	Reference Range	Lab
Chromosom	e Analysis, 1	Blood	2		2	-	AMD
	some Analysis						
			CY	TOGENET	IC RESULTS	ž.	
		Test Setup Da Test Complet Specimen Sou	Reference #: ate: 03/03/201 ion Date: 03/1 rce: Periphera tory:Not provi	13/2015 al Blood			
		Metaphases C	:PHA stimulate ounted:20 l (G-bands):>=	Analyzed		ryotyped:2	
		KARYOTYPE: 46,XY					
		INTERPRETATION NORMAL MALE	ON and COMMENI karyotype	28 :			
		chromosomes 1		anding p		ethodologies, the ithout apparent structural	
		by standard (thods, o	or rare eve	s that cannot be detected ents such as low level	
		Electronic S:	ignature on Fi	le			
			., FCCMG, DABM rector, Cytoge		703-802-73	156	
Results	s Received		03/13/15 Reference]	lab acce	ssion: CB1	5003725EC	21
						test, go to stics.com/faq/chromsblood	
Performing	Laboratory I	nformation:					
	AGNOSTICS INCORPORA Ty Director: KENNET	FED NICHOLS INSTITUTE H SISCO, MD.PhD	14225 NEWBROOK DR C	HANTILLY VA	20151		
200014001	, DIRECCOL MEMORI						
		n					

Interpretation / Comments

NORMAL MALE karyotype

Within the limits of standard cytogenetic methodologies, the chromosomes had normal G-banding patterns without apparent structural abnormality or rearrangement.

This test does not address genetic disorders that cannot be detected by standard cytogenetic methods, or rare events such as low level mosaicism or very subtle rearrangements.

Reviewed by

Electronic Signature on File

Jie Xu, Ph.D., FCCMG, DABMG Technical Director, Cytogenetics, 703-802-7156

PERFORMING LABORATORY INFORMATION Quest Diagnostics Nichols Institute, 14225 Newbrook Drive, Chantilly, VA - 20151 Laboratory Director: Kenneth Sisco, MD CLIA49D0221801

This test was developed and its performance characteristics have been determined by Quest Diagnostics Nichols Institute, Chantilly, VA. It has not been cleared or approved by the U.S. Food and Drug Administration. The FDA has determined that such clearance or approval is not necessary. Performance characteristics refer to the analytical performance of the test.

CARRIER SCREENING REPORT

Patient	Sample	Referring Doctor
Patient Name: Donor 4791 Date of Birth: FFAXCB-S44791 Indication: Carrier Testing Test Type: Custom Carrier Screen (ECS)	Specimen Type: Semen Lab #: Date Collected: 1/7/2019 Date Received: 1/10/2019 Final Report: 1/24/2019	Fairfax Cryobank, Inc.

Results

Negative: No clinically significant variant(s) detected

Gene(s) analyzed: PTS

Recommendations:

Consideration of residual risk by ethnicity after a negative carrier screen is recommended, especially in the case of a positive family history for a specific disorder.

Interpretation:

Screening for the presence of pathogenic variants in the *PTS* gene which is associated with 6-pyruvoyltetrahydropterin synthase deficiency was performed by next generation sequencing and possibly genotyping for select variants on DNA extracted from this patient's sample. No clinically significant variants were detected during this analysis.

Please note that negative results reduce but do not eliminate the possibility that this individual is a carrier for the disorder(s) tested. Please see table of residual risks for specific detection rates and residual risk by ethnicity. With individuals of mixed ethnicity, it is recommended to use the highest residual risk estimate. Only variants determined to be pathogenic or likely pathogenic are reported in this carrier screening test.

Comments:

This carrier screening test masks likely benign variants and variants of uncertain significance (VUS) if there are any. Only known pathogenic variants or likely pathogenic variants which are expected to result in deleterious effects on protein function are reported. If reporting of likely benign variants and VUS is desired in this patient, please contact the laboratory (tel. 212-241-2537) to request an amended report.

Please note these tests were developed and their performance characteristics were determined by Mount Sinai Genomics, Inc. They have not been cleared or approved by the FDA. These analyses generally provide highly accurate information regarding the patient's carrier or affected status. Despite this high level of accuracy, it should be kept in mind that there are many potential sources of diagnostic error, including misidentification of samples, polymorphisms, or other rare genetic variants that interfere with analysis. Families should understand that rare diagnostic errors may occur for these reasons.

Patient: Donor 4791

DOB:

Lab #:

Table of Residual Risks by Ethnicity

Please note: This table displays residual risks after a negative result for each of the genes and corresponding disorders. If a patient is reported to be a carrier of a disease, their residual risk is 1 and this table does not apply for that disease.

Disease (Inheritance)	ease (Inheritance) Gene) Gene Ethnicity Carrier Frequency			Detection Rate	Residual Risk	Analytical Detection Rate	
6-Pyruvoyl-Tetrahydropterin Synthase	PTS	African	1 in 703	99%	1 in 70,200	99%			
Deficiency (AR)		Ashkenazi Jewish	1 in 1559	99%	1 in 156,000				
NM_000317.2		East Asian	1 in 156	95%	1 in 2,800				
		Finnish	1 in 363	90%	1 in 3,500				
		Caucasian	1 in 478	74%	1 in 1,800				
		Latino	1 in 533	80%	1 in 2,700				
		South Asian	1 in 343	84%	1 in 2,100				
		Worldwide	1 in 395	81%	1 in 2,100				

AR: Autosomal Recessive

This case has been reviewed and electronically signed by Anastasia Larmore, PhD, Assistant Director

Laboratory Medical Consultant: George A. Diaz, M.D., Ph.D.

Patient: Donor 4791

DOB:

Test Methods and Comments

a Mount Sinai venture

Genomic DNA isolated from this patient was analyzed by one or more of the following methodologies, as applicable:

Fragile X CGG Repeat Analysis (Analytical Detection Rate >99%)

PCR amplification using Asuragen, Inc. AmplideX[®] FMR1 PCR reagents followed by capillary electrophoresis for allele sizing was performed. Samples positive for FMR1 CGG repeats in the premutation and full mutation size range were further analyzed by Southern blot analysis to assess the size and methylation status of the FMR1 CGG repeat.

Genotyping (Analytical Detection Rate >99%)

Multiplex PCR amplification and allele specific primer extension analyses using the MassARRAY® System were used to identify variants that are complex in nature or are present in low copy repeats. Rare sequence variants may interfere with assay performance.

Multiplex Ligation-Dependent Probe Amplification (MLPA) (Analytical Detection Rate >99%)

MLPA® probe sets and reagents from MRC-Holland were used for copy number analysis of specific targets versus known control samples. False positive or negative results may occur due to rare sequence variants in target regions detected by MLPA probes. Analytical sensitivity and specificity of the MLPA method are both 99%.

For alpha thalassemia, the copy numbers of the HBA1 and HBA2 genes were analyzed. Alpha-globin gene deletions, triplications, and the Constant Spring (CS) mutation are assessed. This test is expected to detect approximately 90% of all alpha-thalassemia mutations, varying by ethnicity. Carriers of alpha-thalassemia with three or more HBA copies on one chromosome, and one or no copies on the other chromosome, may not be detected. With the exception of triplications, other benign alpha-globin gene polymorphisms will not be reported. Analyses of HBA1 and HBA2 are performed in association with long-range PCR of the coding regions followed by short-read sequencing.

For Duchenne muscular dystrophy, the copy numbers of all DMD exons were analyzed. Potentially pathogenic single exon deletions and duplications are confirmed by a second method. Analysis of DMD is performed in association with sequencing of the coding regions.

For congenital adrenal hyperplasia, the copy number of the CYP21A2 gene was analyzed. This analysis can detect large deletions due to unequal meiotic crossing-over between CYP21A2 and the pseudogene CYP21A1P. These 30-kb deletions make up approximately 20% of CYP21A2 pathogenic alleles. This test may also identify certain point mutations in CYP21A2 caused by gene conversion events between CYP21A2 and CYP21A1P. Some carriers may not be identified by dosage sensitive methods as this testing cannot detect individuals with two copies (duplication) of the CYP21A2 gene on one chromosome and loss of CYP21A2 (deletion) on the other chromosome. Analysis of CYP21A2 is performed in association with long-range PCR of the coding regions followed by short-read sequencing.

For spinal muscular atrophy (SMA), the copy numbers of the SMN1 and SMN2 genes were analyzed. The individual dosage of exons 7 and 8 as well as the combined dosage of exons 1, 4, 6 and 8 of SMN1 and SMN2 were assessed. Copy number gains and losses can be detected with this assay. Depending on ethnicity, 6 - 29 % of carriers will not be identified by dosage sensitive methods as this testing cannot detect individuals with two copies (duplication) of the SMN1 gene on one chromosome and loss of SMN1 (deletion) on the other chromosome (silent 2+0 carrier) or individuals that carry an intragenic mutation in SMN1. Please also note that 2% of individuals with SMA have an SMN1 mutation that occurred de novo. Typically in these cases, only one parent is an SMA carrier.

The presence of the c.*3+80T>G (chr5:70.247.901T>G) variant allele in an individual with Ashkenazi Jewish or Asian ancestry is typically indicative of a duplication of SMN1. When present in an Ashkenazi Jewish or Asian individual with two copies of SMN1, c.*3+80T>G is likely indicative of a silent (2+0) carrier. In individuals with two copies of SMN1 with African American, Hispanic or Caucasian ancestry, the presence or absence of c.*3+80T>G significantly increases or decreases, respectively, the likelihood of being a silent 2+0 silent carrier.

Pathogenic or likely pathogenic sequence variants in exon 7 may be detected during testing for the c.*3+80T>G variant allele; these will be reported if confirmed to be located in SMN1 using locus-specific Sanger primers

MLPA for Gaucher disease (GBA), cystic fibrosis (CFTR), and non-syndromic hearing loss (GJB2/GJB6) will only be performed if indicated for confirmation of detected CNVs. If GBA analysis was performed, the copy numbers of exons 1, 3, 4, and 6 - 10 of the GBA gene (of 11 exons total) were analyzed. If CFTR analysis was performed, the copy numbers of all 27 CFTR exons were analyzed. If GJB2/GJB6 analysis was performed, the copy number of the two GJB2 exons were analyzed, as well as the presence or absence of the two upstream deletions of the GJB2 regulatory region, del(GJB6-D13S1830) and del(GJB6-D13S1854).

Patient: Donor 4791

DOB:

Lab #:

Next Generation Sequencing (NGS) (Analytical Detection Rate >95%)

NGS was performed on a panel of genes for the purpose of identifying pathogenic or likely pathogenic variants.

Agilent SureSelectTMQXT technology was used with a custom capture library to target the exonic regions and intron/exon splice junctions of the relevant genes, as well as a number of UTR, intronic or promoter regions that contain previously reported mutations. Samples were pooled and sequenced on the Illumina HiSeq 2500 platform in the Rapid Run mode or the Illumina NovaSeq platform in the Xp workflow, using 100 bp paired-end reads. The sequencing data was analyzed using a custom bioinformatics algorithm designed and validated in house.

The coding exons and splice junctions of the known protein-coding RefSeq genes were assessed for the average depth of coverage (minimum of 20X) and data quality threshold values. Most exons not meeting a minimum of >20X read depth across the exon are further analyzed by Sanger sequencing. Please note that several genomic regions present difficulties in mapping or obtaining read depth >20X. The exons contained within these regions are noted within Table 1 (as "Exceptions") and will not be reflexed to Sanger sequencing if the mapping quality or coverage is poor. Any variants identified during testing in these regions are confirmed by a second method and reported if determined to be pathogenic or likely pathogenic. However, as there is a possibility of false negative results within these regions, detection rates and residual risks for these genes have been calculated with the presumption that variants in these exons will not be detected, unless included in the MassARRAY[®] genotyping platform.

This test will detect variants within the exons and the intron-exon boundaries of the target regions. Variants outside these regions may not be detected, including, but not limited to, UTRs, promoters, and deep intronic areas, or regions that fall into the Exceptions mentioned above. This technology may not detect all small insertion/deletions and is not diagnostic for repeat expansions and structural genomic variation. In addition, a mutation(s) in a gene not included on the panel could be present in this patient.

Variant interpretation and classification was performed based on the American College of Medical Genetics Standards and Guidelines for the Interpretation of Sequence Variants (Richards et al, 2015). All potentially pathogenic variants may be confirmed by either a specific genotyping assay or Sanger sequencing, if indicated. Any benign variants, likely benign variants or variants of uncertain significance identified during this analysis will not be reported.

Copy Number Variant Analysis (Analytical Detection Rate >95%)

Large duplications and deletions were called from the relative read depths on an exon-by-exon basis using a custom exome hidden Markov model (XHMM) algorithm. Deletions or duplications determined to be pathogenic or likely pathogenic were confirmed by either a custom arrayCGH platform, quantitative PCR, or MLPA (depending on CNV size and gene content). While this algorithm is designed to pick up deletions and duplications of 2 or more exons in length, potentially pathogenic single-exon CNVs will be confirmed and reported, if detected.

Exon Array (Confirmation method) (Accuracy >99%)

The customized oligonucleotide microarray (Oxford Gene Technology) is a highly-targeted exon-focused array capable of detecting medically relevant microdeletions and microduplications at a much higher resolution than traditional aCGH methods. Each array matrix has approximately 180,000 60-mer oligonucleotide probes that cover the entire genome. This platform is designed based on human genome NCBI Build 37 (hg19) and the CGH probes are enriched to target the exonic regions of the genes in this panel.

Quantitative PCR (Confirmation method) (Accuracy >99%)

The relative quantification PCR is utilized on a Roche Universal Library Probe (UPL) system, which relates the PCR signal of the target region in one group to another. To test for genomic imbalances, both sample DNA and reference DNA is amplified with primer/probe sets that specific to the target region and a control region with known genomic copy number. Relative genomic copy numbers are calculated based on the standard $\Delta\Delta$ Ct formula.

Long-Range PCR (Analytical Detection Rate >99%)

Long-range PCR was performed to generate locus-specific amplicons for *CYP21A2*, *HBA1* and *HBA2* and *GBA*. The PCR products were then prepared for short-read NGS sequencing and sequenced. Sequenced reads were mapped back to the original genomic locus and run through the bioinformatics pipeline. If indicated, copy number from MLPA was correlated with the sequencing output to analyze the results. For *CYP21A2*, a certain percentage of healthy individuals carry a duplication of the *CYP21A2* gene, which has no clinical consequences. In cases where two copies of a gene are located on the same chromosome in tandem, only the second copy will be amplified and assessed for potentially pathogenic variants, due to size limitations of the PCR reaction. However, because these alleles contain at least two copies of the *CYP21A2* gene in tandem, it is expected that this patient has at least one functional gene in the tandem allele and this patient is therefore less likely to be a carrier. When an individual carries both a duplication allele and a pathogenic variant, or multiple pathogenic variants, the current analysis may not be able to

Lab #:

Patient: Donor 4791

determine the phase (cis/trans configuration) of the CYP21A2 alleles identified. Family studies may be required in certain scenarios where phasing is required to determine the carrier status.

DOB:

Residual Risk Calculations

Carrier frequencies and detection rates for each ethnicity were calculated through the combination of internal curations of >28,000 variants and genomic frequency data from >138,000 individuals across seven ethnic groups in the gnomAD database. Additional variants in HGMD and novel deleterious variants were also incorporated into the calculation. Residual risk values are calculated using a Bayesian analysis combining the *a priori* risk of being a pathogenic mutation carrier (carrier frequency) and the detection rate. They are provided only as a guide for assessing approximate risk given a negative result, and values will vary based on the exact ethnic background of an individual. This report does not represent medical advice but should be interpreted by a genetic counselor, medical geneticist or physician skilled in genetic result interpretation and the relevant medical literature.

Sanger Sequencing (Confirmation method) (Accuracy >99%)

Sanger sequencing, as indicated, was performed using BigDye Terminator chemistry with the ABI 3730 DNA analyzer with target specific amplicons. It also may be used to supplement specific guaranteed target regions that fail NGS sequencing due to poor quality or low depth of coverage (<20 reads) or as a confirmatory method for NGS positive results. False negative results may occur if rare variants interfere with amplification or annealing.

Tay-Sachs Disease (TSD) Enzyme Analysis (Analytical Detection Rate >98%)

Hexosaminidase activity and Hex A% activity were measured by a standard heat-inactivation, fluorometric method using artificial 4-MU-β-N-acetyl glucosaminide (4-MUG) substrate. This assay is highly sensitive and accurate in detecting Tay-Sachs carriers and individuals affected with TSD. Normal ranges of Hex A% activity are 55.0-72.0 for white blood cells and 58.0-72.0 for plasma. It is estimated that less than 0.5% of Tay-Sachs carriers have non-carrier levels of percent Hex A activity, and therefore may not be identified by this assay. In addition, this assay may detect individuals that are carriers of or are affected with Sandhoff disease. False positive results may occur if benign variants, such as pseudodeficiency alleles, interfere with the enzymatic assay. False negative results may occur if both *HEXA* and *HEXB* pathogenic or pseudodeficiency variants are present in the same individual.

Please note these tests were developed and their performance characteristics were determined by Mount Sinai Genomics, Inc. They have not been cleared or approved by the FDA. These analyses generally provide highly accurate information regarding the patient's carrier or affected status. Despite this high level of accuracy, it should be kept in mind that there are many potential sources of diagnostic error, including misidentification of samples, polymorphisms, or other rare genetic variants that interfere with analysis. Families should understand that rare diagnostic errors may occur for these reasons.

SELECTED REFERENCES

Carrier Screening

Grody W et al. ACMG position statement on prenatal/preconception expanded carrier screening. *Genet Med.* 2013 15:482-3.

Fragile X syndrome:

Chen L et al. An information-rich CGG repeat primed PCR that detects the full range of Fragile X expanded alleles and minimizes the need for Southern blot analysis. *J Mol Diag* 2010 12:589-600.

Spinal Muscular Atrophy:

Luo M et al. An Ashkenazi Jewish SMN1 haplotype specific to duplication alleles improves pan-ethnic carrier screening for spinal muscular atrophy. *Genet Med.* 2014 16:149-56.

Ashkenazi Jewish Disorders:

Scott SA et al. Experience with carrier screening and prenatal diagnosis for sixteen Ashkenazi Jewish Genetic Diseases. *Hum. Mutat.* 2010 31:1-11.

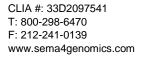
Duchenne Muscular Dystrophy:

Flanigan KM et al. Mutational spectrum of DMD mutations in dystrophinopathy patients: application of modern diagnostic techniques to a large cohort. *Hum Mutat.* 2009 30:1657-66.

Variant Classification:

Richards S et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. *Genet Med.* 2015 May;17(5):405-24

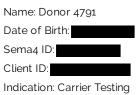
Additional disease-specific references available upon request.


Patient: Donor 4791

DOB:

CARRIER SCREENING REPORT

Lab #:


Page 6 of 6

Patient Information

Specimen Information

Specimen Type: No Specimen received Date Collected: 01/07/2019 Date Received: 04/01/2021 Final Report: 04/18/2021

Referring Provider

Fairfax Cryobank, Inc.

Unmask Additional Gene(s) V1E

Number of genes tested: 1

SUMMARY OF RESULTS AND RECOMMENDATIONS

[⊖] Negative
Negative for all genes tested: NPHS1
To view a full list of genes and diseases tested
please see Table 1 in this report

AR=Autosomal recessive; XL=X-linked

Recommendations

• Consideration of residual risk by ethnicity after a negative carrier screen is recommended for the other diseases on the panel, especially in the case of a positive family history for a specific disorder.

Test description

This patient was tested for a panel of diseases using a combination of sequencing, targeted genotyping and copy number analysis. Please note that negative results reduce but do not eliminate the possibility that this individual is a carrier for one or more of the disorders tested. Please see Table 1 for a list of genes and diseases tested, and **go.sema4.com/residualrisk** for specific detection rates and residual risk by ethnicity. With individuals of mixed ethnicity, it is recommended to use the highest residual risk estimate. Only variants determined to be pathogenic or likely pathogenic are reported in this carrier screening test.

Anastasia Larmore, Ph.D., Associate Laboratory Director Laboratory Medical Consultant: George A. Diaz, M.D., Ph.D.

Genes and diseases tested

For specific detection rates and residual risk by ethnicity, please visit go.sema4.com/residualrisk

Table 1: List of genes and diseases tested with detailed results

	Disease	Gene	Inheritance Pattern	Status	Detailed Summary
Θ	Negative				
	Nephrotic Syndrome (<i>NPHS1</i> -Related) / Congenital Finnish Nephrosis	NPHS1	AR	Reduced Risk (see table below)	

AR=Autosomal recessive; XL=X-linked

Table 2: Residual Risk by ethnicity for negative results

Disease (Inheritance) Gene		Ethnicity	Carrier Frequency	Detec tion Rate	Residual Risk	Analytical Detection Rate	
Nephrotic Syndrome (NPHS1 - Related) /	NPHS1	African	1 in 191	77%	1 in 830	99%	
Congenital Finnish Nephrosis (AR)		East Asian	1 in 398	59%	1 in 980		
NM_004646.3		Finnish	1 in 41	98%	1 in 1,900		
		European (Non-Finnish)	1 in 190	79%	1 in 920		
		Native American	1 in 298	68%	1 in 920		
		South Asian	1 in 145	77%	1 in 620		
		Worldwide	1 in 137	84%	1 in 880		
		Groffdale Conference Mennonites	1 in 12	99%	1 in 1,100		

* Carrier detection by HEXA enzyme analysis has a detection rate of approximately 98% (Applies to HEXA gene testing only).

+ Carrier frequencies include milder and reduced penetrance forms of the disease. Therefore, carrier frequencies may appear higher than reported in the literature (Applies to *BTD, Fg, GJB2, GJB1, GLA*, and *MEFV* gene testing only).

+ Please note that *GJB2* testing includes testing for the two upstream deletions, del(GJB6-D13S1830) and del(GJB6-D13S1854) (PMID:11807148 and 15994881) (Applies to *GJB2* gene testing only). AR: Autosomal recessive; N/A: Not available; XL: X-linked

Test methods and comments

Genomic DNA isolated from this patient was analyzed by one or more of the following methodologies, as applicable:

Fragile X CGG Repeat Analysis (Analytical Detection Rate >99%)

PCR amplification using Asuragen,

Inc. AmplideX® *FMR1* PCR reagents followed by capillary electrophoresis for allele sizing was performed. Samples positive for *FMR1* CGG repeats in the premutation and full mutation size range were further analyzed by Southern blot analysis to assess the size and methylation status of the *FMR1* CGG repeat.

Genotyping (Analytical Detection Rate >99%)

Multiplex PCR amplification and allele specific primer extension analyses using the MassARRAY® System were used to identify variants that are complex in nature or are present in low copy repeats. Rare sequence variants may interfere with assay performance.

Multiplex Ligation-Dependent Probe Amplification (MLPA) (Analytical Detection Rate >99%)

MLPA® probe sets and reagents from MRC-Holland were used for copy number analysis of specific targets versus known control samples. False positive or negative results may occur due to rare sequence variants in target regions detected by MLPA probes. Analytical sensitivity and specificity of the MLPA method are both 99%.

For alpha thalassemia, the copy numbers of the *HBA1* and *HBA2* genes were analyzed. Alpha-globin gene deletions, triplications, and the Constant Spring (CS) mutation are assessed. This test is expected to detect approximately 90% of all alpha-thalassemia mutations, varying by ethnicity. carriers of alpha-thalassemia with three or more *HBA* copies on one chromosome, and one or no copies on the other chromosome, may not be detected. With the exception of triplications, other benign alpha-globin gene polymorphisms will not be reported. Analyses of *HBA1* and *HBA2* are performed in association with long-range PCR of the coding regions followed by short-read sequencing.

sema4

For Duchenne muscular dystrophy, the copy numbers of all *DMD* exons were analyzed. Potentially pathogenic single exon deletions and duplications are confirmed by a second method. Analysis of *DMD* is performed in association with sequencing of the coding regions. For congenital adrenal hyperplasia, the copy number of the *CYP21A2* gene was analyzed. This analysis can detect large deletions due to unequal meiotic crossing-over between *CYP21A2* and the pseudogene *CYP21A1P*. These 30-kb deletions make up approximately 20% of *CYP21A2* pathogenic alleles. This test may also identify certain point mutations in *CYP21A2* caused by gene conversion events between *CYP21A2* and *CYP21A2* and *CYP21A1P*. Some carriers may not be identified by dosage sensitive methods as this testing cannot detect individuals with two copies (duplication) of the *CYP21A2* gene on one chromosome and loss of *CYP21A2* (deletion) on the other chromosome. Analysis of *CYP21A2* is performed in association with long-range PCR of the coding regions followed by short-read sequencing.

For spinal muscular atrophy (SMA), the copy numbers of the *SMN1* and *SMN2* genes were analyzed. The individual dosage of exons 7 and 8 as well as the combined dosage of exons 1, 4, 6 and 8 of *SMN1* and *SMN2* were assessed. Copy number gains and losses can be detected with this assay. Depending on ethnicity, 6 - 29 % of carriers will not be identified by dosage sensitive methods as this testing cannot detect individuals with two copies (duplication) of the *SMN1* gene on one chromosome and loss of *SMN1* (deletion) on the other chromosome (silent 20 carrier) or individuals that carry an intragenic mutation in *SMN1*. Please also note that 2% of individuals with SMA have an *SMN1* mutation that occurred *de novo*. Typically in these cases, only one parent is an SMA carrier.

The presence of the c.*380T>G (chr5:70.247.901T>G) variant allele in an individual with Ashkenazi Jewish or Asian ancestry is typically indicative of a duplication of *SMN1*. When present in an Ashkenazi Jewish or Asian individual with two copies of *SMN1*, c.*380T>G is likely indicative of a silent (20) carrier. In individuals with two copies of *SMN1* with African American, Hispanic or Caucasian ancestry, the presence or absence of c.*380T>G significantly increases or decreases, respectively, the likelihood of being a silent 20 silent carrier.

Pathogenic or likely pathogenic sequence variants in exon 7 may be detected during testing for the c.*380T>G variant allele; these will be reported if confirmed to be located in SMN1 using locus-specific Sanger primers

MLPA for Gaucher disease (*GBA*), cystic fibrosis (*CFTR*), and non-syndromic hearing loss (*GJB2/GJB6*) will only be performed if indicated for confirmation of detected CNVs. If *GBA* analysis was performed, the copy numbers of exons 1, 3, 4, and 6 - 10 of the *GBA* gene (of 11 exons total) were analyzed. If *CFTR* analysis was performed, the copy numbers of all 27 *CFTR* exons were analyzed. If *GJB2/GJB6* analysis was performed, the copy numbers of all 27 *CFTR* exons were analyzed. If *GJB2/GJB6* analysis was performed, the copy numbers of all 27 *CFTR* exons were analyzed. If *GJB2/GJB6* analysis was performed, the copy numbers of all 27 *CFTR* exons were analyzed. If *GJB2/GJB6* analysis was performed, the copy numbers of all 27 *CFTR* exons were analyzed. If *GJB2/GJB6* analysis was performed, the copy number of the two *GJB2* exons were analyzed, as well as the presence or absence of the two upstream deletions of the *GJB2* regulatory region, del(*GJB6*-D13S1830) and del(*GJB6*-D13S1854).

Next Generation Sequencing (NGS) (Analytical Detection Rate >95%)

NGS was performed on a panel of genes for the purpose of identifying pathogenic or likely pathogenic variants.

Agilent SureSelectTMQXT technology was used with a custom capture library to target the exonic regions and intron/exon splice junctions of the relevant genes, as well as a number of UTR, intronic or promoter regions that contain previously reported mutations. Samples were pooled and sequenced on the Illumina HiSeq 2500 platform in the Rapid Run mode or the Illumina NovaSeq platform in the Xp workflow, using 100 bp paired-end reads. The sequencing data was analyzed using a custom bioinformatics algorithm designed and validated in house. The coding exons and splice junctions of the known protein-coding RefSeq genes were assessed for the average depth of coverage (minimum of 20X) and data quality threshold values. Most exons not meeting a minimum of >20X read depth across the exon are further analyzed by Sanger sequencing. Please note that several genomic regions present difficulties in mapping or obtaining read depth >20X. The exons contained within these regions are noted within Table 1 (as "Exceptions") and will not be reflexed to Sanger sequencing if the mapping quality or coverage is poor. Any variants identified during testing in these regions are confirmed by a second method and reported if determined to be pathogenic or likely pathogenic. However, as there is a possibility of false negative results within these regions, detection rates and residual risks for these genes have been calculated with the presumption that variants in these exons will not be detected, unless included in the MassARRAY® genotyping platform.

This test will detect variants within the exons and the intron-exon boundaries of the target regions. Variants outside these regions may not be detected, including, but not limited to, UTRs, promoters, and deep intronic areas, or regions that fall into the Exceptions mentioned above. This technology may not detect all small insertion/deletions and is not diagnostic for repeat expansions and structural genomic variation. In addition, a mutation(s) in a gene not included on the panel could be present in this patient.

Variant interpretation and classification was performed based on the American College of Medical Genetics Standards and Guidelines for the Interpretation of Sequence Variants (Richards et al, 2015). All potentially pathogenic variants may be confirmed by either a specific genotyping assay or Sanger sequencing, if indicated. Any benign variants, likely benign variants or variants of uncertain significance identified during this analysis will not be reported.

Copy Number Variant Analysis (Analytical Detection Rate >95%)

Large duplications and deletions were called from the relative read depths on an exon-by-exon basis using a custom exome hidden Markov model (XHMM) algorithm. Deletions or duplications determined to be pathogenic or likely pathogenic were confirmed by either a custom

sema4

arrayCGH platform, quantitative PCR, or MLPA(depending on CNV size and gene content). While this algorithm is designed to pick up deletions and duplications of 2 or more exons in length, potentially pathogenic single-exon CNVs will be confirmed and reported, if detected.

Exon Array (Confirmation method) (Accuracy >99%)

The customized oligonucleotide microarray (Oxford Gene Technology) is a highly-targeted exon-focused array capable of detecting medically relevant microdeletions and microduplications at a much higher resolution than traditional aCGH methods. Each array matrix has approximately 180,000 60-mer oligonucleotide probes that cover the entire genome. This platform is designed based on human genome NCBI Build 37 (hg19) and the CGH probes are enriched to target the exonic regions of the genes in this panel.

Quantitative PCR (Confirmation method) (Accuracy >99%)

The relative quantification PCR is utilized on a Roche Universal Library Probe (UPL) system, which relates the PCR signal of the target region in one group to another. To test for genomic imbalances, both sample DNA and reference DNA is amplified with primer/probe sets that specific to the target region and a control region with known genomic copy number. Relative genomic copy numbers are calculated based on the standard ΔΔCt formula.

Long-Range PCR (Analytical Detection Rate >99%)

Long-range PCR was performed to generate locus-specific amplicons for *CYP21A2*, *HBA1* and *HBA2* and *GBA*. The PCR products were then prepared for short-read NGS sequencing and sequenced. Sequenced reads were mapped back to the original genomic locus and run through the bioinformatics pipeline. If indicated, copy number from MLPA was correlated with the sequencing output to analyze the results. For *CYP21A2*, a certain percentage of healthy individuals carry a duplication of the *CYP21A2* gene, which has no clinical consequences. In cases where two copies of a gene are located on the same chromosome in tandem, only the second copy will be amplified and assessed for potentially pathogenic variants, due to size limitations of the PCR reaction. However, because these alleles contain at least two copies of the *CYP21A2* gene in tandem, it is expected that this patient has at least one functional gene in the tandem allele and this patient is therefore less likely to be a carrier. When an individual carries both a duplication allele and a pathogenic variant, or multiple pathogenic variants, the current analysis may not be able to determine the phase (cisrans configuration) of the *CYP21A2* alleles identified. Family studies may be required in certain scenarios where phasing is required to determine the carrier status.

Residual Risk Calculations

Carrier frequencies and detection rates for each ethnicity were calculated through the combination of internal curations of >28,000 variants and genomic frequency data from >138,000 individuals across seven ethnic groups in the gnomAD database. Additional variants in HGMD and novel deleterious variants were also incorporated into the calculation. Residual risk values are calculated using a Bayesian analysis combining the *a priori* risk of being a pathogenic mutation carrier (carrier frequency) and the detection rate. They are provided only as a guide for assessing approximate risk given a negative result, and values will vary based on the exact ethnic background of an individual. This report does not represent medical advice but should be interpreted by a genetic counselor, medical geneticist or physician skilled in genetic result interpretation and the relevant medical literature.

Sanger Sequencing (Confirmation method) (Accuracy >99%)

Sanger sequencing, as indicated, was performed using BigDye Terminator chemistry with the ABI 3730 DNA analyzer with target specific amplicons. It also may be used to supplement specific guaranteed target regions that fail NGS sequencing due to poor quality or low depth of coverage (<20 reads) or as a confirmatory method for NGS positive results. False negative results may occur if rare variants interfere with amplification or annealing.

Tay-Sachs Disease (TSD) Enzyme Analysis (Analytical Detection Rate > 98%)

Hexosaminidase activity and Hex A% activity were measured by a standard heat-inactivation, fluorometric method using artificial 4-MU-β-Nacetyl glucosaminide (4-MUG) substrate. This assay is highly sensitive and accurate in detecting Tay-Sachs carriers and individuals affected with TSD. Normal ranges of Hex A% activity are 55.0-72.0 for white blood cells and 58.0-72.0 for plasma. It is estimated that less than 0.5% of Tay-Sachs carriers have non-carrier levels of percent Hex A activity, and therefore may not be identified by this assay. In addition, this assay may detect individuals that are carriers of or are affected with Sandhoff disease. False positive results may occur if benign variants, such as pseudodeficiency alleles, interfere with the enzymatic assay. False negative results may occur if both *HEXA* and *HEXB* pathogenic or pseudodeficiency variants are present in the same individual.

Please note these tests were developed and their performance characteristics were determined by Mount Sinai Genomics, Inc. They have not been cleared or approved by the FDA. These analyses generally provide highly accurate information regarding the patient's carrier or affected status. Despite this high level of accuracy, it should be kept in mind that there are many potential sources of diagnostic error, including misidentification of samples, polymorphisms, or other rare genetic variants that interfere with analysis. Families should understand that rare diagnostic errors may occur for these reasons.

SELECTED REFERENCES

Carrier Screening

sema4

Grody W et al. ACMG position statement on prenatal/preconception expanded carrier screening. Genet Med. 2013 15:482-3.

Fragile X syndrome:

Chen L et al. An information-rich CGG repeat primed PCR that detects the full range of Fragile X expanded alleles and minimizes the need for Southern blot analysis. *J Mol Diag* 2010 12:589-600.

Spinal Muscular Atrophy:

Luo M et al. An Ashkenazi Jewish SMN1 haplotype specific to duplication alleles improves pan-ethnic carrier screening for spinal muscular atrophy. *Genet Med*. 2014 16:149-56.

Ashkenazi Jewish Disorders:

Scott SA et al. Experience with carrier screening and prenatal diagnosis for sixteen Ashkenazi Jewish Genetic Diseases. Hum. Mutat. 2010 31:1-11.

Duchenne Muscular Dystrophy:

Flanigan KM et al. Mutational spectrum of DMD mutations in dystrophinopathy patients: application of modern diagnostic techniques to a large cohort. *Hum Mutat* . 2009 30:1657-66.

Variant Classification:

Richards S et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. *Genet Med.* 2015 May;17(5):405-24

Additional disease-specific references available upon request.

4978 Santa Anita Ave. Temple City, CA 91780 (p) 626-350-0537 (f) 626-454-1667 info@fulgentgenetics.com www.fulgentgenetics.com

Patient Information: 4791, Donor DOB: Sex: M MR#: 4791 Patient#:

Specimen Type: Saliva Collected: Sep 28,2022 Received Date: Sep 30,2022 Authorized Date: Oct 03,2022 Physician: Seitz, Suzanne ATTN: Seitz, Suzanne Fairfax Cryobank 3015 Williams Drive Fairfax, VA 22031 Phone: Fax: Laboratory: Fulgent Genetics CAP#: 8042697 CLIA#: 05D2043189 Laboratory Director: Dr. Hanlin (Harry) Gao Report Date: Oct 10,2022

Final Report

TEST PERFORMED

Single Gene - Gene

(1 Gene Panel: RNASEH2B; gene sequencing with deletion and duplication analysis)

RESULTS:

No clinically significant sequence or copy-number variants were identified in the submitted specimen.

A negative result does not rule out the possibility of a genetic predisposition nor does it rule out any pathogenic mutations of the sort not queried by this test or in areas not reliably assessed by this test.

INTERPRETATION:

Notes and Recommendations:

- As requested, this report only includes variants classified as Pathogenic, Likely Pathogenic, or Risk Allele at the time of analysis. If detected, this report does not include variants classified as of uncertain significance.
- Gene specific notes and limitations may be present. See below.
- These results should be interpreted in the context of this individual's clinical findings, biochemical profile, and family history.
- Genetic counseling is recommended. Available genetic counselors and additional resources can be found at the National Society of Genetic Counselors (NSGC; <u>https://www.nsgc.org</u>)
- Guide to Interpreting Genomic Reports: A Genomics Toolkit (CSER Consortium; February 2017) (<u>https://www.genome.gov/For-Health-Professionals/Provider-Genomics-Education-Resources#hep</u>)

GENES TESTED:

Single Gene - Gene 1 gene tested (100.00% at >20x).

RNASEH2B

Gene Specific Notes and Limitations

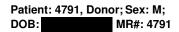
No gene specific limitations apply to the gene on the tested panel.

METHODS:

Patient: 4791, Donor; Sex: M; DOB: MR#: 4791

4978 Santa Anita Ave. Temple City, CA 91780 (p) 626-350-0537 (f) 626-454-1667 info@fulgentgenetics.com www.fulgentgenetics.com

Genomic DNA was isolated from the submitted specimen indicated above (if cellular material was submitted). DNA was barcoded, and enriched for the coding exons of targeted genes using hybrid capture technology. Prepared DNA libraries were then sequenced using a Next Generation Sequencing technology. Following alignment to the human genome reference sequence (assembly GRCh37), variants were detected in regions of at least 10x coverage. For this specimen, 100.00% and 100.00% of coding regions and splicing junctions of genes listed had been sequenced with coverage of at least 10x and 20x, respectively, by NGS or by Sanger sequencing. The remaining regions did not have 10x coverage, and were not evaluated. Variants were interpreted manually using locus specific databases, literature searches, and other molecular biological principles. To minimize false positive results, any variants that do not meet internal quality standards are confirmed by Sanger sequencing. Variants classified as pathogenic, likely pathogenic, or risk allele which are located in the coding regions and nearby intronic regions (+/- 20bp) of the genes listed above are reported. Variants outside these intervals may be reported but are typically not guaranteed. When a single pathogenic or likely pathogenic variant is identified in a clinically relevant gene with autosomal recessive inheritance, the laboratory will attempt to ensure 100% coverage of coding sequences either through NGS or Sanger sequencing technologies ("fill-in"). All genes listed were evaluated for large deletions and/or duplications. However, single exon deletions or duplications will not be detected in this assay, nor will copy number alterations in regions of genes with significant pseudogenes. Putative deletions or duplications identified by NGS are confirmed by an orthogonal method (gPCR or MLPA), unless exceeding an internally specified and validated quality score, beyond which deletions and duplications are considered real without further confirmation. New York patients: diagnostic findings are confirmed by Sanger, MLPA, or gPCR; exception SNV variants in genes for which confirmation of NGS results has been performed >=10 times may not be confirmed if identified with high guality by NGS. Bioinformatics: The Fulgent Germline v2019.2 pipeline was used to analyze this specimen.


LIMITATIONS:

These test results and variant interpretation are based on the proper identification of the submitted specimen, accuracy of any stated familial relationships, and use of the correct human reference sequences at the queried loci. In very rare instances, errors may result due to mix-up or co-mindling of specimens. Positive results do not imply that there are no other contributors, genetic or otherwise, to this individual's phenotype, and negative results do not rule out a genetic cause for the indication for testing. Official gene names change over time. Fulgent uses the most up to date gene names based on HUGO Gene Nomenclature Committee (https://www.genenames.org) recommendations. If the gene name on report does not match that of ordered gene, please contact the laboratory and details can be provided. Result interpretation is based on the available clinical and family history information for this individual, collected published information, and Alamut annotation available at the time of reporting. This assay is designed and validated for detection of germline variants only. It is not designed or validated for the detection of low-level mosaicism or somatic mutations. This assay will not detect certain types of genomic aberrations such as translocations, inversions, or repeat expansions (eg. trinucleotide or hexanucleotide repeat expansion). DNA alterations in regulatory regions or deep intronic regions (greater than 20bp from an exon) may not be detected by this test. Unless otherwise indicated, no additional assays have been performed to evaluate genetic changes in this specimen. There are technical limitations on the ability of DNA sequencing to detect small insertions and deletions. Our laboratory uses a sensitive detection algorithm, however these types of alterations are not detected as reliably as single nucleotide variants. Rarely, due to systematic chemical, computational, or human error, DNA variants may be missed. Although next generation sequencing technologies and our bioinformatics analysis significantly reduce the confounding contribution of pseudogene sequences or other highly-homologous sequences, sometimes these may still interfere with the technical ability of the assay to identify pathogenic alterations in both sequencing and deletion/duplication analyses. Deletion/duplication analysis can identify alterations of genomic regions which are two or more contiguous exons in size; single exon deletions or duplications may occasionally be identified, but are not routinely detected by this test. When novel DNA duplications are identified, it is not possible to discern the genomic location or orientation of the duplicated segment, hence the effect of the duplication cannot be predicted. Where deletions are detected, it is not always possible to determine whether the predicted product will remain in-frame or not. Unless otherwise indicated, deletion/duplication analysis has not been performed in regions that have been sequenced by Sanger.

SIGNATURE:

a Nelonie Dor

Melanie Jones, Ph.D., CGMBS, FACMG on 10/10/2022 04:15 PM PDT Electronically signed

DISCLAIMER:

This test was developed and its performance characteristics determined by **Fulgent Genetics**. It has not been cleared or approved by the FDA. The laboratory is regulated under CLIA as qualified to perform high-complexity testing. This test is used for clinical purposes. It should not be regarded as investigational or for research. Since genetic variation, as well as systematic and technical factors, can affect the accuracy of testing, the results of testing should always be interpreted in the context of clinical and familial data. For assistance with interpretation of these results, healthcare professionals may contact us directly at (626) 350-0537 or info@fulgentgenetics.com. It is recommended that patients receive appropriate genetic counseling to explain the implications of the test result, including its residual risks, uncertainties and reproductive or medical options.

4978 Santa Anita Ave. Temple City, CA 91780 (p) 626-350-0537 (f) 626-454-1667 info@fulgentgenetics.com www.fulgentgenetics.com

Patient Information: 4791, Donor DOB: Sex: M MR#: 4791 Patient#:

<u>Physician:</u> Seitz, Suzanne ATTN: Seitz, Suzanne Fairfax Cryobank 3015 Williams Drive Fairfax, VA 22031 Phone: Fax: Laboratory: Fulgent Genetics CAP#: 8042697 CLIA#: 05D2043189 Laboratory Director: Dr. Hanlin (Harry) Gao Report Date: Aug 04,2023

Final Report

TEST PERFORMED

DHCR7 Single Gene

(1 Gene Panel: *DHCR7*; gene sequencing with deletion and duplication analysis)

RESULTS:

No clinically significant sequence or copy-number variants were identified in the submitted specimen.

A negative result does not rule out the possibility of a genetic predisposition nor does it rule out any pathogenic mutations of the sort not queried by this test or in areas not reliably assessed by this test.

INTERPRETATION:

Notes and Recommendations:

- As requested, this report only includes variants classified as Pathogenic, Likely Pathogenic, or Risk Allele at the time of analysis. If detected, this report does not include variants classified as of uncertain significance.
- Gene specific notes and limitations may be present. See below.
- These results should be interpreted in the context of this individual's clinical findings, biochemical profile, and family history.
- Genetic counseling is recommended. Available genetic counselors and additional resources can be found at the National Society of Genetic Counselors (NSGC; <u>https://www.nsgc.org</u>)
- Guide to Interpreting Genomic Reports: A Genomics Toolkit (CSER Consortium; February 2017) (<u>https://www.genome.gov/For-Health-Professionals/Provider-Genomics-Education-Resources#hep</u>)

GENES TESTED:

DHCR7 Single Gene 1 genes tested (100.00% at >20x).

DHCR7

Gene Specific Notes and Limitations

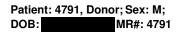
No gene specific limitations apply to the genes on the tested panel.

METHODS:

Patient: 4791, Donor; Sex: M; DOB: , MR#: 4791

4978 Santa Anita Ave. Temple City, CA 91780 (p) 626-350-0537 (f) 626-454-1667 info@fulgentgenetics.com www.fulgentgenetics.com

Genomic DNA was isolated from the submitted specimen indicated above (if cellular material was submitted). DNA was barcoded, and enriched for the coding exons of targeted genes using hybrid capture technology. Prepared DNA libraries were then sequenced using a Next Generation Sequencing technology. Following alignment to the human genome reference sequence (assembly GRCh37), variants were detected in regions of at least 10x coverage. For this specimen, 100.00% and 100.00% of coding regions and splicing junctions of genes listed had been sequenced with coverage of at least 10x and 20x, respectively, by NGS or by Sanger sequencing. The remaining regions did not have 10x coverage, and were not evaluated. Variants were interpreted manually using locus specific databases, literature searches, and other molecular biological principles. To minimize false positive results, any variants that do not meet internal quality standards are confirmed by Sanger sequencing. Variants classified as pathogenic, likely pathogenic, or risk allele which are located in the coding regions and nearby intronic regions (+/- 20bp) of the genes listed above are reported. Variants outside these intervals may be reported but are typically not guaranteed. When a single pathogenic or likely pathogenic variant is identified in a clinically relevant gene with autosomal recessive inheritance, the laboratory will attempt to ensure 100% coverage of coding sequences either through NGS or Sanger sequencing technologies ("fill-in"). All genes listed were evaluated for large deletions and/or duplications. However, single exon deletions or duplications will not be detected in this assay, nor will copy number alterations in regions of genes with significant pseudogenes. Putative deletions or duplications identified by NGS are confirmed by an orthogonal method (gPCR or MLPA), unless exceeding an internally specified and validated quality score, beyond which deletions and duplications are considered real without further confirmation. New York patients: diagnostic findings are confirmed by Sanger, MLPA, or gPCR; exception SNV variants in genes for which confirmation of NGS results has been performed >=10 times may not be confirmed if identified with high guality by NGS. Bioinformatics: The Fulgent Germline v2019.2 pipeline was used to analyze this specimen.


LIMITATIONS:

These test results and variant interpretation are based on the proper identification of the submitted specimen, accuracy of any stated familial relationships, and use of the correct human reference sequences at the queried loci. In very rare instances, errors may result due to mix-up or co-mindling of specimens. Positive results do not imply that there are no other contributors, genetic or otherwise, to this individual's phenotype, and negative results do not rule out a genetic cause for the indication for testing. Official gene names change over time. Fulgent uses the most up to date gene names based on HUGO Gene Nomenclature Committee (https://www.genenames.org) recommendations. If the gene name on report does not match that of ordered gene, please contact the laboratory and details can be provided. Result interpretation is based on the available clinical and family history information for this individual, collected published information, and Alamut annotation available at the time of reporting. This assay is designed and validated for detection of germline variants only. It is not designed or validated for the detection of low-level mosaicism or somatic mutations. This assay will not detect certain types of genomic aberrations such as translocations, inversions, or repeat expansions (eg. trinucleotide or hexanucleotide repeat expansion). DNA alterations in regulatory regions or deep intronic regions (greater than 20bp from an exon) may not be detected by this test. Unless otherwise indicated, no additional assays have been performed to evaluate genetic changes in this specimen. There are technical limitations on the ability of DNA sequencing to detect small insertions and deletions. Our laboratory uses a sensitive detection algorithm, however these types of alterations are not detected as reliably as single nucleotide variants. Rarely, due to systematic chemical, computational, or human error, DNA variants may be missed. Although next generation sequencing technologies and our bioinformatics analysis significantly reduce the confounding contribution of pseudogene sequences or other highly-homologous sequences, sometimes these may still interfere with the technical ability of the assay to identify pathogenic alterations in both sequencing and deletion/duplication analyses. Deletion/duplication analysis can identify alterations of genomic regions which are two or more contiguous exons in size; single exon deletions or duplications may occasionally be identified, but are not routinely detected by this test. When novel DNA duplications are identified, it is not possible to discern the genomic location or orientation of the duplicated segment, hence the effect of the duplication cannot be predicted. Where deletions are detected, it is not always possible to determine whether the predicted product will remain in-frame or not. Unless otherwise indicated, deletion/duplication analysis has not been performed in regions that have been sequenced by Sanger.

SIGNATURE:

Canlleng

Yan Meng, Ph.D., CGMB, FACMG on 8/4/2023 03:52 PM PDT Electronically signed

DISCLAIMER:

This test was developed and its performance characteristics determined by **Fulgent Genetics**. It has not been cleared or approved by the FDA. The laboratory is regulated under CLIA as qualified to perform high-complexity testing. This test is used for clinical purposes. It should not be regarded as investigational or for research. Since genetic variation, as well as systematic and technical factors, can affect the accuracy of testing, the results of testing should always be interpreted in the context of clinical and familial data. For assistance with interpretation of these results, healthcare professionals may contact us directly at (626) 350-0537 or info@fulgentgenetics.com. It is recommended that patients receive appropriate genetic counseling to explain the implications of the test result, including its residual risks, uncertainties and reproductive or medical options.