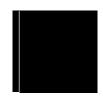


Donor 4988

Genetic Testing Summary

Fairfax Cryobank recommends reviewing this genetic testing summary with your healthcare provider to determine suitability.


Last Updated: 02/05/24

Donor Reported Ancestry: African American Jewish Ancestry: No

Genetic Test*	Result	Comments/Donor's Residual Risk**
Chromosome analysis (karyotype)	Normal male karyotype	No evidence of clinically significant chromosome abnormalities
Hemoglobin evaluation	Normal hemoglobin fractionation and MCV/MCH results	Reduced risk to be a carrier for sickle cell anemia, beta thalassemia, alpha thalassemia trait (aa/ and a-/a-) and other hemoglobinopathies
Cystic Fibrosis (CF) carrier screening	Negative by genotyping of 149 mutations in the CFTR gene	1/207
Spinal Muscular Atrophy (SMA) carrier screening	Negative for deletions of exon 7 in the SMN1 gene	1/121
Standard testing attached- 22 diseases by genotyping	Negative for mutations tested	
Special Testing		
PMP22 duplication- tested based on an offspring positive result. The offspring has neuromuscular disease.	Positive: PMP22 duplication. The presence of this variant results in autosomal dominant Charcot Marie Tooth Disease- see results attached.	Offspring are at 50% risk to inherit this variant. Those with the variant have a likelihood of developing Charcot-Marie Tooth disease type 1A. See donor results attached.
		Donor and his immediate family have no symptoms of the disease as of 2/5/24.

^{*}No single test can screen for all genetic disorders. A negative screening result significantly reduces, but cannot eliminate, the risk for these conditions in a pregnancy.**Donor residual risk is the chance the donor is still a carrier after testing negative.

Patient Information:
4988, Donor
DOB:
Sex: M
MR#: 4988
Patient#:

Accession:

Test#:
Order#:
Ext Test#:
Ext Order#:
Specimen Type: DNA
Collected: Not provided

Collected: Not provided Received Date: Dec 22,2023 Authorized Date: Dec 25,2023 Physician:
Seitz, Suzanne
ATTN: Seitz, Suzanne
Fairfax Cryobank
3015 Williams Drive
Fairfax, VA 22031

Phone: Fax: Laboratory:
Fulgent Genetics
CAP#: 8042697
CLIA#: 05D2043189
Laboratory Director:
Dr. Hanlin (Harry) Gao
Report Date: Jan 12,2024

Final Report

TEST PERFORMED

PMP22 Single Gene

(1 Gene Panel: PMP22; deletion and duplication analysis)

RESULTS:

A pathogenic variant consistent with a molecular diagnosis of a *PMP22*-related condition was identified.

Clinically Significant Variants

Gen	ne Info		Variant Info	
GENE	INHERITANCE	VARIANT	ZYGOSITY	CLASSIFICATION
<i>PMP22</i> NM_000304.4	Autosomal Dominant	Duplication of Exons 1-5 p.?	Not Applicable*	Pathogenic

*Due to limitations of this test, the exact nature of the above-reported variant can not be established (e.g. tandem duplication as opposed to insertion into a different chromosome). As such the zygosity of this variant is most appropriately expressed as "Not Applicable".

Additional Variants of Potential Clinical Relevance None

INTERPRETATION:

Notes and Recommendations:

- As requested, this report only includes variants classified as Pathogenic, Likely Pathogenic, or Risk Allele at the time of analysis. If detected, this report does not include variants classified as of uncertain significance.
- Children, siblings, and each parent of this individual are at risk of harboring the pathogenic variant reported. Testing of at risk family members for this variant is available.
- Gene specific notes and limitations may be present. See below.
- These results should be interpreted in the context of this individual's clinical findings, biochemical profile, and family history.
- Genetic counseling is recommended. Available genetic counselors and additional resources can be found at the National Society of Genetic Counselors (NSGC; https://www.nsgc.org)
- Guide to Interpreting Genomic Reports: A Genomics Toolkit (CSER Consortium; February 2017) (https://www.genome.gov/For-Health-Professionals/Provider-Genomics-Education-Resources#hep)

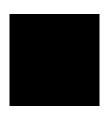
Patient: 4988, Donor; Sex: M;

DOB: MR#: 4988

PAGE 1 of 4

About PMP22

Heterozygous mutations in the *PMP22* gene are associated with Charcot-Marie-Tooth disease (CMT) type 1A and type 1E, Dejerine-Sottas disease, Hereditary Neuropathy with Liability to Pressure Palsies (HNPP), and Roussy-Levy syndrome (OMIM: 601097). Notably, copy number variations, including both deletions and duplications of the PMP22 gene, have been commonly reported in association with related diseases (PubMed: 20493460, 20739940, 21193943, 25500726, 24530202). Generally, duplications are associated with CMT whereas deletions are associated with HNPP.


PMP22 NM_000304.4:Duplication of Exons 1-5 (p.?)

Classification: Pathogenic

Zygosity and Inheritance	This Pathogenic variant is consistent with autosomal dominant inheritance of a PMP22-related condition.
Variant Type	 Genomic change: g.?_?ins[chr17:(?_15133073)_(15168710_?)]. An apparent whole gene duplication of the PMP22 gene (NM_000304.4) was identified in the submitted specimen. This duplication encompasses the genomic region including exons 1-5 (exon 1 is non-coding) of this gene.
Variant in Cases	 Whole gene duplications of PMP22 have been previously reported in patients with Charcot-Marie-Tooth disease and have been found to co-segregate with disease in multiple families (PubMed: 20301384, 25500726, 27577214, 1822787). A 1.5-Mb duplication at 17p11.2 that includes PMP22 accounts for as much as 50% of all CMT (PubMed: 20301532).
Variant in Controls	 A similar 1.39Mb duplication (chr17:14096997-15486650) has been observed at a frequency of less than 0.02% (4/21694 alleles) in the Genome Aggregation Database (Structural variant: DUP_17_43570). The Broad Institute gnomAD database of >15000 genome sequences and the Database of Genomic Variants (DGV) were used for this analysis.
Other Variant Information	 Note: The scope of the performed analysis is limited to the ordered genes and is not designed to determine the exact breakpoints or boundaries of copy number variants. The above apparent whole gene duplication of PMP22 may or may not represent part of a larger duplication involving other genes. No other information is available for this variant.

Patient: 4988, Donor; Sex: M; DOB: MR#: 4988

GENES TESTED:

PMP22 Single Gene

1 genes tested (100.00% at >20x).

PMP22

Gene Specific Notes and Limitations

No gene specific limitations apply to the genes on the tested panel.

METHODS:

Genomic DNA was isolated from the submitted specimen indicated above (if cellular material was submitted). DNA was barcoded, and enriched for the coding exons of targeted genes using hybrid capture technology. Prepared DNA libraries were then seguenced using a Next Generation Sequencing technology. Following alignment to the human genome reference sequence (assembly GRCh37), variants were detected in regions of at least 10x coverage. For this specimen, 100.00% and 100.00% of coding regions and splicing junctions of genes listed had been sequenced with coverage of at least 10x and 20x, respectively, by NGS or by Sanger sequencing. The remaining regions did not have 10x coverage, and were not evaluated. Variants were interpreted manually using locus specific databases, literature searches, and other molecular biological principles. To minimize false positive results, any variants that do not meet internal quality standards are confirmed by Sanger sequencing. Variants classified as pathogenic, likely pathogenic, or risk allele which are located in the coding regions and nearby intronic regions (+/- 20bp) of the genes listed above are reported. Variants outside these intervals may be reported but are typically not guaranteed. When a single pathogenic or likely pathogenic variant is identified in a clinically relevant gene with autosomal recessive inheritance, the laboratory will attempt to ensure 100% coverage of coding sequences either through NGS or Sanger sequencing technologies ("fill-in"). All genes listed were evaluated for large deletions and/or duplications. However, single exon deletions or duplications will not be detected in this assay, nor will copy number alterations in regions of genes with significant pseudogenes. Putative deletions or duplications identified by NGS are confirmed by an orthogonal method (qPCR or MLPA), unless exceeding an internally specified and validated quality score, beyond which deletions and duplications are considered real without further confirmation. New York patients: diagnostic findings are confirmed by Sanger, MLPA, or gPCR; exception SNV variants in genes for which confirmation of NGS results has been performed >=10 times may not be confirmed if identified with high quality by NGS. Bioinformatics: The Fulgent Germline v2019.2 pipeline was used to analyze this specimen.

LIMITATIONS:

These test results and variant interpretation are based on the proper identification of the submitted specimen, accuracy of any stated familial relationships, and use of the correct human reference sequences at the queried loci. In very rare instances, errors may result due to mix-up or co-mingling of specimens. Positive results do not imply that there are no other contributors, genetic or otherwise, to this individual's phenotype, and negative results do not rule out a genetic cause for the indication for testing. Official gene names change over time. Fulgent uses the most up to date gene names based on HUGO Gene Nomenclature Committee (https://www.genenames.org) recommendations. If the gene name on report does not match that of ordered gene, please contact the laboratory and details can be provided. Result interpretation is based on the available clinical and family history information for this individual, collected published information, and Alamut annotation available at the time of reporting. This assay is designed and validated for detection of germline variants only. It is not designed or validated for the detection of low-level mosaicism or somatic mutations. This assay will not detect certain types of genomic aberrations such as translocations, inversions, or repeat expansions (eg. trinucleotide or hexanucleotide repeat expansion). DNA alterations in regulatory regions or deep intronic regions (greater than 20bp from an exon) may not be detected by this test. Unless otherwise indicated, no additional assays have been performed to evaluate genetic changes in this specimen. There are technical limitations on the ability of DNA sequencing to detect small insertions and deletions. Our laboratory uses a sensitive detection algorithm for copy number variants, however these types of alterations are not detected as reliably as single nucleotide variants. Rarely, due to systematic chemical, computational, or human error, DNA variants may be missed. Although next generation sequencing technologies and our bioinformatics analysis significantly reduce the confounding contribution of pseudogene sequences or other highly-homologous sequences, sometimes these may still interfere with the technical ability of the assay to identify pathogenic alterations in both sequencing and deletion/duplication analyses. Deletion/duplication analysis can identify alterations of genomic regions which are two or more contiguous exons in size;

Patient: 4988, Donor; Sex: M; DOB: MR#: 4988

single exon deletions or duplications may occasionally be identified, but are not routinely detected by this test. When novel DNA duplications are identified, it is not possible to discern the genomic location or orientation of the duplicated segment, hence the effect of the duplication cannot be predicted. Where deletions are detected, it is not always possible to determine whether the predicted product will remain in-frame or not. Unless otherwise indicated, deletion/duplication analysis has not been performed in regions that have been sequenced by Sanger.

SIGNATURE:

Zhenbin Chen, Ph.D., CGMB, FACMG on 1/12/2024 10:52 PM PST

Electronically signed

DISCLAIMER:

This test was developed and its performance characteristics determined by Fulgent Genetics. It has not been cleared or approved by the FDA. The laboratory is regulated under CLIA as qualified to perform high-complexity testing. This test is used for clinical purposes. It should not be regarded as investigational or for research. Since genetic variation, as well as systematic and technical factors, can affect the accuracy of testing, the results of testing should always be interpreted in the context of clinical and familial data. For assistance with interpretation of these results, healthcare professionals may contact us directly at (626) 350-0537 or info@fulgentgenetics.com. It is recommended that patients receive appropriate genetic counseling to explain the implications of the test result, including its residual risks, uncertainties and reproductive or medical options.

Patient: 4988, Donor; Sex: M; DOB: MR#: 4988

Ordering Practice:

Practice Code:
Fairfax Cryobank Physician:

Report Generated: 2016-04-07

4988

DOB:
Gender: Male
Ethnicity: African
Procedure ID: 48922
Kit Barcode:

Method: Genotyping Specimen: Blood, #51228

Specimen Collection: 2016-03-30 Specimen Received: 2016-03-31 Specimen Analyzed: 2016-04-07 Partner Not Tested

SUMMARY OF RESULTS

NO MUTATIONS IDENTIFIED

4988 wa

was not identified to carry any of the mutations tested.

All mutations analyzed were not detected, reducing but not eliminating your chance to be a carrier for the associated genetic diseases. A list of all the diseases and mutations you were screened for is included later in this report. The test does not screen for every possible genetic disease.

For disease information, please visit www.recombine.com/diseases. To speak with a Genetic Counselor, call 855.OUR.GENES.

of Male

Panel: Fairfax Cryobank Panel V2, Diseases Tested: 22, Mutations Tested: 452, Genes Tested: 22, Null Calls: 0

Assay performed by Reprogenetics
CLIA ID: 31 D 1054821
3 Regent Street, Livingston, NJ 07039
Lab Technician Bo Chu

Recombine CLIA # 31 D2100763
Reviewed by Pere Colls, PhD, HCLD, Lab Director

This test was developed and its performance determined by Recombine Inc. and it has not been cleared or approved by the U.S. Food and Drug Administration.

Methods and Limitations

Genotyping: Genotyping is performed using the Illumina Infinium Custom HD Genotyping assay to identify mutations in >200 genes. The assay is not validated for homozygous mutations, and it is possible that individuals affected with disease may not be accurately genotyped.

Spinal Muscular Atrophy: Spinal Muscular Atrophy: Carrier status for SMA is assessed via genotyping and via copy number analysis by qPCR. Some individuals with a normal number of SMN1 copies (2 copies) may carry both copies of the gene on the same allele/chromosome; this analysis is not able to detect these individuals. Thus, a normal SMN1 result significantly reduces but does not eliminate the risk of being a carrier. Additionally, SMA may be caused by non-deletion mutations in the SMN1 gene; CarrierMap tests for some, but not all, of these mutations via genotyping. Some SMA cases arise as the result of de novo mutation events which will not be detected by carrier testing.

Limitations: In some cases, genetic variations other than that which is being assayed may interfere with mutation detection, resulting in false-negative or false-positive results. Additional sources of error include, but are not limited to: sample contamination, sample mixup, bone marrow transplantation, blood transfusions, and technical errors.

The test does not test for all forms of genetic disease, birth defects, and intellectual disability. All results should be interpreted in the context of family history; additional evaluation may be indicated based on a history of these conditions. Additional testing may be necessary to determine mutation phase in individuals identified to carry more than one mutation in the same gene. All mutations included within the genes assayed may not be detected, and additional testing may be appropriate for some individuals.

● High Impact ● Treatment Benefits ● X-Linked ● Moderate Impact

Diseases & Mutations Assayed

H T X M			Mutations
• 0 0 0	Alpha Thalassemia	9	of Genotyping SEA deletion, c.207C>A (p.N69K), c.223G>C (p.D75G), c.2T>C (p.M1T), c.207C>G (p.N69K), c.340_351 delCTCCCCGCCGAG (p.L114_E117del), c.377T>C (p.L126P), c.427T>C (p.X143Qext32), c.*+94A>G
	Beta Thalassemia	84	Ø Genotyping c.124_127delTTCT (p.F42lfs), c.17_18delCT, c.20delA (p.E7Gfs), c.217insA (p.S73Kfs), c.223+702_444+342del620insAAGTAGA, c.230delC, c.25_26delAA, c.315+1G>A, c.315+2T>C, c.316-197C>T, c.316-146T>G, c.315+745C>G, c.316-1G>A, c.316-1G>C, c.316-2A>G, c.316-3C>A, c.316-3C>A, c.316+745C>G, c.316-1G>A, c.316-1G>C, c.316-2A>G, c.316-3C>A, c.316-3C>A, c.92+5G>C, c.51delC (p.K18Rfs), c.93-21G>A, c.92+1G>A, c.92+5G>A, c.92+5G>C, c.92+5G>T, c.92+6T>C, c.93-1G>A, c.93-1G>T, c50A>C, c78a>g, c79a>g, c81a>g, c.52A>T (p.K18X), c137c>g, c138c>t, c151c>t, c.118C>T (p.Q40X), c.169G>C (p.G57R), c.295G>A (p.V99M), c.34G>A (p.V12l), c.415G>C (p.A139P), c.47G>A (p.W16X), c.48G>A (p.W16X), c80t>a, c.2T>C (p.M1T), c.75T>A (p.G25G), c.444+111A>G, c29g>a, c.68_74delAAGTTGG, c.92G>C (p.R31T), c.27_28insG, c.92+1G>T, c.92+1G>C, c.93-15T>G, c.93-1G>C, c.112delT, c.113G>A (p.W38X), c.114G>A (p.W38X), c.126delC, c.444+113A>G, c.250delG, c.225delC, c.383_385delAGG (p.Q128_A129delQAinsP), c.321_322insG (p.N109fs), c.316-1G>T, c.316-2A>C, c.287_288insA (p.197fs), c.271G>T (p.E91X), c.203_204delTG (p.V68Afs), c.154delC (p.P52fs), c.135delC (p.F46fs), c.92+2T>A, c.92+2T>C, c.90C>T (p.G30G), c.84_85insC (p.129fs), c.59A>G (p.N20S), c.46delT (p.W16Gfs), c.45_46insG (p.L16fs), c.36delT (p.T13fs), c.2T>G (p.M1R), c.1A>G (p.M1V), c137c>t, c136c>g, c142c>t, c140c>t
• 0 0 0	Bloom Syndrome	24	of Genotyping c.2207_2212delATCTGAinsTAGATTC (p.Y736Lfs), c.2407insT, c.557_559delCAA (p.S186X), c.1284G>A (p.W428X), c.1701G>A (p.W567X), c.1933C>T (p.Q645X), c.2528C>T (p.T843I), c.2695C>T (p.R899X), c.3107G>T (p.C1036F), c.2923delC (p.Q975K), c.3558+1G>T, c.3875-2A>G, c.2074+2T>A, c.2343_2344dupGA (p.781EfsX), c.380delC (p.127Tfs), c.3564delC (p.1188Dfs), c.4008delG (p.1336Rfs), c.947C>G (p.S316X), c.2193+1_2193+9del9, c.1642C>T (p.Q548X), c.3143delA (p.1048NfsX), c.356_357delTA (p.C120Hfs), c.4076+1delG, c.3281C>A (p.S1094X)
• 0 0 0	Canavan Disease	8	of Genotyping c.433-2A>G, c.854A>C (p.E285A), c.693C>A (p.Y231X), c.914C>A (p.A305E), c.71A>G (p.E24G), c.654C>A (p.C218X), c.2T>C (p.M1T), c.79G>A (p.G27R)

нтх м			Mutations
	Cystic Fibrosis	149	Genotyping c.1029delC, 1153_1154insAT, c.1477delCA, c.1519_1521delATC (p.507dell), c.1521_1523delCTT (p.508delF), c.1545_1546delTA (p.Y515Xfs), c.1585-1G>A, c.164+12T>C, c.1680-886A>G, c.1664-1G>A, c.1766+1G>A, c.1766+1G>T, c.1766+5G>T, c.1818del84, c.1911delG, c.1923delCTCAAAACTinsA, c.1973delGAAATTCAATCCTinsAGAAA, c.2052delA (p.K684fs), c.2052insA (p.Q685fs), c.2051_2052delAAinsG (p.K6845fsX38), c.2174insA, c.261delTT, c.2657+5G>A, c.273+1G>A, c.273+3A>C, c.274-1G>A, c.2988+1G>A, c.3039delC, c.3140-26A>G, c.273+1G>A, c.273+3A>C, c.274-1G>A, c.2988+1G>A, c.3039delC, c.3140-26A>G, c.3525delTATinsG, c.3527delC, c.3535delACCA, c.3691delT, c.2657+5G>A, c.3774+12191C>T, c.374delA, c.3773_3774insT (p.11258fs), c.442delA, c.489+1G>T, c.531delT, c.579+1G>T, c.579+5G>A (IVS4+5G>A), c.803delA (p.N268fs), c.805_806delAT (p.1269fs), c.933_935delCTT (p.311delF), c.946delT, c.1645A>C (p.S549R), c.2128A>T (p.K70X), c.1000C>T (p.R334W), c.1013C>T (p.T338I), c.1364C>A (p.A455E), c.1477C>T (p.Q493X), c.1572C>A (p.C524X), c.1654C>T (p.Q552X), c.1657C>T (p.R553X), c.1721C>A (p.P574H), c.2125C>T (p.R709X), c.223C>T (p.R75X), c.2668C>T (p.Q890X), c.3196C>T (p.R1066C), c.3276C>G (p.Y1092X), c.3472C>T (p.R1158X), c.3484C>T (p.R1162X), c.349C>T (p.R117C), c.3587C>G (p.S1196X), c.3712C>T (p.G387X), c.1646G>A (p.S1255X), c.3909C>G (p.N1303K), c.1040G>A (p.R347H), c.1040G>C (p.R347P), c.14386>T (p.G480C), c.1558G>T (p.V520F), c.1624G>T (p.G542X), c.1646G>A (p.S549N), c.1646G>T (p.S549I), c.1652G>A (p.G551D), c.1675G>A (p.G652D), c.254G>A (p.G652D), c.254G>A (p.G652D), c.326G>A (p.G178R), c.988G>T (p.G330X), c.1090T>C (p.S364P), c.1076C>A (p.W57X), c.313delA (p.1058), c.3456C>A (p.G951R), c.390C>A (p.G178), c.390C>A (p.G178A), c.390C>A (p.G1
• 0 0 0	Familial Dysautonomia	4	of Genotyping c.2204+6T>C, c.2741C>T (p.P914L), c.2087G>C (p.R696P), c.2128C>T (p.Q710X)
• 0 0 0	Familial Hyperinsulinism: Type 1: ABCC8 Related	10	of Genotyping c.3989-9G>A, c.4159_4161delTTC (p.1387delF), c.4258C>T (p.R1420C), c.4477C>T (p.R1493W), c.2147G>T (p.G716V), c.4055G>C (p.R1352P), c.560T>A (p.V187D), c.4516G>A (p.E1506K), c.2506C>T (p.Q836X), c.579+2T>A
•••	Fanconi Anemia: Type C	8	of Genotyping c.456+4A>T, c.67delG, c.37C>T (p.Q13X), c.553C>T (p.R185X), c.1661T>C (p.L554P), c.1642C>T (p.R548X), c.66G>A (p.W22X), c.65G>A (p.W22X)
• • 0 0	Gaucher Disease	6	of Genotyping c.84_85insG, c.1226A>G (p.N409S), c.1343A>T (p.D448V), c.1504C>T (p.R502C), c.1297G>T (p.V433L), c.1604G>A (p.R535H)
	Glycogen Storage Disease: Type IA	13	d' Genotyping c.376_377insTA, c.79delC, c.979_981delTTC (p.327delF), c.1039C>T (p.Q347X), c.247C>T (p.R83C), c.724C>T (p.Q242X), c.248G>A (p.R83H), c.562G>C (p.G188R), c.648G>T, c.809G>T (p.G270V), c.113A>T (p.D38V), c.975delG (p.L326fs), c.724delC

нтх м			Mutations
•000	Joubert Syndrome	2	of Genotyping c.218G>T (p.R73L), c.218G>A (p.R73H)
••00	Maple Syrup Urine Disease: Type 1B	6	o [®] Genotyping c.1114G>T (p.E372X), c.548G>C (p.R183P), c.832G>A (p.G278S), c.970C>T (p.R324X), c.487G>T (p.E163X), c.853C>T (p.R285X)
••••	Maple Syrup Urine Disease: Type 3	8	o [®] Genotyping c.104_105insA, c.685G>T (p.G229C), c.214A>G (p.K72E), c.1081A>G (p.M361V), c.1123G>A (p.E375K), c.1178T>C (p.I393T), c.1463C>T (p.P488L), c.1483A>G (p.R495G)
• 0 0 0	Mucolipidosis: Type IV	5	of Genotyping c1015_788del6433, c.406-2A>G, c.1084G>T (p.D362Y), c.304C>T (p.R102X), c.244delC (p.L82fsX)
•000	Nemaline Myopathy: NEB Related	1	of Genotyping c.7434_7536del2502bp
•000	Niemann-Pick Disease: Type A	6	o ^a Genotyping c.996delC, c.1493G>T (p.R498L), c.911T>C (p.L304P), c.1267C>T (p.H423Y), c.1734G>C (p.K578N), c.1493G>A (p.R498H)
	Sickle-Cell Anemia	1	of Genotyping c.20A>T (p.E7V)
• 0 0 0	Spinal Muscular Atrophy: SMN1 Linked	19	© Genotyping DEL EXON 7, c.22_23insA, c.43C>T (p.Q15X), c.91_92insT, c.305G>A (p.W102X), c.400G>A (p.E134K), c.439_443delGAAGT, c.558delA, c.585_586insT, c.683T>A (p.L228X), c.734C>T (p.P245L), c.768_778dupTGCTGATGCTT, c.815A>G (p.Y272C), c.821C>T (p.T274I), c.823G>A (p.G275S), c.834+2T>G, c.835-18_835-12delCCTTTAT, c.835G>T, c.836G>T qPCR DEL EXON 7
	Tay-Sachs Disease	76	O* Genotyping c.1073+1G>A, c.1277_1278insTATC, c.1421+1G>C, c.805+1G>A, c.532C>T (p.R178C), c.533G>A (p.R178H), c.805G>A (p.G269S), c.1510C>T (p.R504C), c.1496G>A (p.R499H), c.509G>A (p.R170Q), c.1003A>T (p.1335F), c.910_912delTTC (p.305delF), c.749G>A (p.G250D), c.632T>C (p.F211S), c.629C>T (p.S210F), c.613delC, c.611A>G (p.H204R), c.598G>A (p.V200M), c.590A>C (p.K197T), c.571-1G>T, c.540C>G (p.Y180X), c.538T>C (p.Y180H), c.533G>T (p.R178L), c.508C>T (p.R170W), c.409C>T (p.R137X), c.380T>G (p.L127R), c.346+1G>C, c.116T>G (p.L39R), c.78G>A (p.W26X), c.1A>G (p.M1V), c.1495C>T (p.R499C), c.459+5G>A (lVS4+5G>A), c.1422-2A>G, c.535C>T (p.H179Y), c.1141delG (p.V381fs), c.796T>G (p.W266G), c.155C>A (p.S52X), c.426delT (p.F142fs), c.413-2A>G, c.570+3A>G, c.536A>G (p.H179R), c.1146+1G>A, c.736G>A (p.A246T), c.1302C>G (p.F434L), c.778C>T (p.P260S), c.1008G>T (p.Q336H), c.1385A>T (p.E462V), c.964G>A (p.D322N), c.340G>A (p.E114K), c.1432G>A (p.G478R), c.1178G>C (p.R393P), c.805+1G>C, c.1426A>T (p.R476X), c.623A>T (p.D208V), c.1537C>T (p.Q513X), c.1511G>T (p.R504L), c.1307_1308delTA (p.1436fs), c.571-8A>G, c.624_627delTCCT (p.D208fs), c.1211_1212delTG (p.L404fs), c.621T>G (p.D207E), c.1511G>A (p.R504H), c.1177C>T (p.R393X), c.2T>C (p.M1T), c.1292G>A (p.W431X), c.947_948insA (p.Y316fs), c.607T>G (p.W203G), c.1061_1063delTCT (p.F354_Y355delinsX), c.615delG (p.L205fs), c.805+2T>C, c.1123delG (p.E375fs), c.1121A>G (p.Q374R), c.1043_1046delTCAA (p.F348fs), c.1510delC (p.R504fs), c.1451T>C (p.L484P), c.964G>T (p.D322Y)
• 0 0 0	Usher Syndrome: Type 1F	7	of Genotyping c.733C>T (p.R245X), c.2067C>A (p.Y684X), c.7C>T (p.R3X), c.1942C>T (p.R648X), c.1101delT (p.A367fsX), c.2800C>T (p.R934X), c.4272delA (p.L1425fs)
• 0 0 0	Usher Syndrome: Type 3	5	o [®] Genotyping c.144T>G (p.N48K), c.359T>A (p.M120K), c.300T>G (p.Y176X), c.634C>T (p.Q212X), c.221T>C (p.L74P)
•000	Walker-Warburg Syndrome	1	od Genotyping c.1167insA (p.F390fs)