Fairfax
 Cryobank

The Trusted Choice for Donor Sperm

Donor 5241

Genetic Testing Summary

Fairfax Cryobank recommends reviewing this genetic testing summary with your healthcare provider to determine suitability.

Last Updated: 09/23/22

Donor Reported Ancestry: French, Dutch, Polish, Irish Jewish Ancestry: No

Genetic Test*	Result	Comments/Donor's Residual Risk**
Chromosome analysis (karyotype)	Normal male karyotype	No evidence of clinically significant chromosome abnormalities
Hemoglobin evaluation	Normal hemoglobin fractionation and MCV/MCH results	Reduced risk to be a carrier for sickle cell anemia, beta thalassemia, alpha thalassemia trait (aa/-- and a-/a-) and other hemoglobinopathies
Cystic Fibrosis (CF) carrier screening	Negative by genotyping of 149 mutations in the CFTR gene	$1 / 496$
Spinal Muscular Atrophy (SMA) carrier	Negative for deletions of exon 7 in the SMN1 gene	$1 / 632$
Tcreening	Non-carrier by Hexosaminidase A activity	Negative for mutations tested
Standard testing attached-	Nonzyme analysis	Non-carrier for 60 mutations tested in the PAH gene
Special testing	Non-carrier for 13 mutations in the MYO7A gene	$1 / 273$
Phenylalanine Hydroxylase Deficiency	Carrier	Variant is classified as a variant of unknown significance at the lab (Sema4) where the donor was tested and a likely pathogenic variant at GeneDx where the affected child was tested
Usher Syndrome Type 1 B	See attached results for residual risks	
Congenital Disorder of Glycosylation	Type 1a (PMM2)	Negative by gene sequencing

No single test can screen for all genetic disorders. A negative screening result significantly reduces, but cannot eliminate, the risk for these conditions in a pregnancy. ${ }^{ *}$ Donor residual risk is the chance the donor is still a carrier after testing negative.

Carrier screening report
Donor 5241
Date of Birth:
Patient Information
Name: Donor 5241
Date of Birth:
Sema4 ID:
Client ID:
Indication: Carrier Screening

Specimen Information

Specimen Type: Purified DNA
Date Collected: 12/22/2021
Date Received: 12/29/2021
Final Report: 01/11/2022
Revised On: 01/31/2022

Referring Provider

Fairfax Cryobank, Inc.

Custom Carrier Screen (1 gene)

with Personalized Residual Risk

SUMMARY OF RESULTS AND RECOMMENDATIONS

\ominus Negative
Negative for all genes tested: $P M M 2$
To view a full list of genes and diseases tested
please see Table 1 in this report

$A R=$ Autosomal recessive; $X L=X$-linked

Special Notes

AMENDED REPORT 1/31/2022 TO INDICATE ONE FAMILIAL VARIANT.

Please note that the patient is heterozygous for the reported familial PMM2 variant (NM_000303.2), c.707A>G, p.D236G, which we currently have classified as a variant of uncertain significance.

Recommendations

- Consideration of residual risk by ethnicity after a negative carrier screen is recommended for the other diseases on the panel, especially in the case of a positive family history for a specific disorder.

Test description

This patient was tested for the genes listed above using one or more of the following methodologies: target capture and short-read sequencing, long-range PCR followed by short-read sequencing, targeted genotyping, and/or copy number analysis. Please note that negative results reduce but do not eliminate the possibility that this individual is a carrier for one or more of the disorders tested. Please see Table 1 for a list of genes and diseases tested with the patient's personalized residual risk. If personalized residual risk is not provided, please see the complete residual risk table at go.sema4.com/residualrisk. Only known pathogenic or likely pathogenic variants are reported. This carrier screening test does not report likely benign variants and variants of uncertain significance (VUS). If reporting of likely benign variants and VUS are desired in this patient, please contact the laboratory at 800-298-6470, option 2 to request an amended report.

Anastasia Larmore, Ph.D., Associate Laboratory Director

Laboratory Medical Consultant: George A. Diaz, M.D., Ph.D

Genes and diseases tested

The personalized residual risks listed below are specific to this individual. The complete residual risk table is available at go.sema4.com/residualrisk

Table 1: List of genes and diseases tested with detailed results

Disease	Gene	Inheritance Pattern	Status	Detailed Summary	
Θ	Negative				
Congenital Disorder of Glycosylation, Type la	$P M M 2$	AR	Reduced Risk	Personalized Residual Risk: 1 in 540	

$A R=$ Autosomal recessive; $X L=X$-linked

Test methods and comments

Genomic DNA isolated from this patient was analyzed by one or more of the following methodologies, as applicable:
Fragile X CGG Repeat Analysis (Analytical Detection Rate >99\%)
PCR amplification using Asuragen, Inc. AmplideX ${ }^{\circledR}$ FMR1 PCR reagents followed by capillary electrophoresis for allele sizing was performed. Samples positive for FMR1 CGG repeats in the premutation and full mutation size range were further analyzed by Southern blot analysis to assess the size and methylation status of the FMR1 CGG repeat.

Genotyping (Analytical Detection Rate >99\%)

Multiplex PCR amplification and allele specific primer extension analyses using the MassARRAY ${ }^{\circledR}$ System were used to identify certain recurrent variants that are complex in nature or are present in low copy repeats. Rare sequence variants may interfere with assay performance.

Multiplex Ligation-Dependent Probe Amplification (MLPA) (Analytical Detection Rate >99\%)

MLPA ${ }^{\circledR}$ probe sets and reagents from MRC-Holland were used for copy number analysis of specific targets versus known control samples. False positive or negative results may occur due to rare sequence variants in target regions detected by MLPA probes. Analytical sensitivity and specificity of the MLPA method are both 99%.
For alpha thalassemia, the copy numbers of the $H B A 1$ and $H B A 2$ genes were analyzed. Alpha-globin gene deletions, triplications, and the Constant Spring (CS) mutation are assessed. This test is expected to detect approximately 90% of all alpha-thalassemia mutations, varying by ethnicity. carriers of alpha-thalassemia with three or more HBA copies on one chromosome, and one or no copies on the other chromosome, may not be detected. With the exception of triplications, other benign alpha-globin gene polymorphisms will not be reported. Analyses of HBA1 and HBA2 are performed in association with long-range PCR of the coding regions followed by short-read sequencing.
For Duchenne muscular dystrophy, the copy numbers of all DMD exons were analyzed. Potentially pathogenic single exon deletions and duplications are confirmed by a second method. Analysis of $D M D$ is performed in association with sequencing of the coding regions. For congenital adrenal hyperplasia, the copy number of the CYP21A2 gene was analyzed. This analysis can detect large deletions typically due to unequal meiotic crossing-over between CYP21A2 and the pseudogene CYP21A1P. Classic 30-kb deletions make up approximately 20% of CYP21A2 pathogenic alleles. This test may also identify certain point mutations in CYP21A2 caused by gene conversion events between CYP21A2 and CYP21A1P. Some carriers may not be identified by dosage sensitive methods as this testing cannot detect individuals with two copies (duplication) of the CYP21A2 gene on one chromosome and loss of CYP21A2 (deletion) on the other chromosome. Analysis of CYP21A2 is performed in association with long-range PCR of the coding regions followed by short-read sequencing.

For spinal muscular atrophy (SMA), the copy numbers of the SMN1 and SMN2 genes were analyzed. The individual dosage of exons 7 and 8 as well as the combined dosage of exons 1, 4, 6 and 8 of SMN1 and SMN2 were assessed. Copy number gains and losses can be detected with this assay. Depending on ethnicity, 6-29 \% of carriers will not be identified by dosage sensitive methods as this testing cannot detect individuals with two copies (duplication) of the SMN1 gene on one chromosome and loss of SMN1 (deletion) on the other chromosome (silent 2+0 carrier) or individuals that carry an intragenic mutation in SMN1. Please also note that 2\% of individuals diagnosed with SMA have a causative SMN1 variant that occurred de novo, and therefore cannot be picked up by carrier screening in the parents. Analysis of SMN1 is performed in association with short-read sequencing of exons $2 a-7$, followed by confirmation using long-range PCR (described below).

The presence of the c. ${ }^{*} 3+80 T>G$ (chr5:70,247,901T>G) variant allele in an individual with Ashkenazi Jewish or Asian ancestry is typically indicative of a duplication of SMN1. When present in an Ashkenazi Jewish or Asian individual with two copies of SMN1, c. ${ }^{*} 3+80 T>G$ is likely indicative of a silent (2+0) carrier. In individuals with two copies of SMN1 with African American, Hispanic or Caucasian ancestry, the presence or absence of c . ${ }^{*} 3+80 T>G$ significantly increases or decreases, respectively, the likelihood of being a silent $2+0$ silent carrier.
MLPA for Gaucher disease (GBA), cystic fibrosis (CFTR), and non-syndromic hearing loss (GJB2/GJB6) will only be performed if indicated for confirmation of detected CNVS. If GBA analysis was performed, the copy numbers of exons 1, 3, 4, and 6-10 of the GBA gene (of 11 exons total) were analyzed. If CFTR analysis was performed, the copy numbers of all 27 CFTR exons were analyzed. If GJB2/GJB6 analysis was performed, the copy number of the two GJBz exons were analyzed, as well as the presence or absence of the two upstream deletions of the GJB2 regulatory region, del(GJB6-D13S1830) and del(GJB6-D13S1854).

Next Generation Sequencing (NGS) (Analytical Detection Rate >95\%)

NGS was performed on a panel of genes for the purpose of identifying pathogenic or likely pathogenic variants.
Agilent SureSelect ${ }^{\top M} \times T$ Low Input technology was used with a custom capture library to target the exonic regions and intron/exon splice junctions of the relevant genes, as well as a number of UTR, intronic or promoter regions that contain previously reported mutations. Libraries were pooled and sequenced on the Illumina NovaSeq 9000 platform, using paired-end 100 bp reads. The sequencing data was analyzed using a custom bioinformatics algorithm designed and validated in house.
The coding exons and splice junctions of the known protein-coding RefSeq genes were assessed for the average depth of coverage (minimum of 20X) and data quality threshold values. Most exons not meeting a minimum of $>20 \mathrm{X}$ read depth across the exon are further analyzed by Sanger sequencing. Please note that several genomic regions present difficulties in mapping or obtaining read depth >20X. These regions, which are described below, will not be reflexed to Sanger sequencing if the mapping quality or coverage is poor. Any variants identified during testing in these regions are confirmed by a second method and reported if determined to be pathogenic or likely pathogenic. However, as there is a possibility of false negative results within these regions, detection rates and residual risks for these genes have been calculated with the presumption that variants in these exons will not be detected, unless included in the MassARRAY ${ }^{\circledR}$ genotyping platform.
Exceptions: ABCD1 (NM_000033.3) exons 8 and 9; $A C A D S B$ (NM_ 001609.3) chr10:124,810,695-124,810,707 (partial exon 9); ADA (NM_000022.2) exon 1; ADAMTS2 (NM_014244.4) exon 1; AGPS(NM_003659.3) chr2:178,257.512-178,257,649 (partial exon 1); ALDH7A1 (NM_001182.4) chr5:125,911,150-125.911,163 (partial exon 7) and chr5:125,896,807-125,896,821 (partial exon 10); ALMS1 (NM_015120.4) chr2:73,612,990-73,613,041 (partial exon 1): APOPT1 (NM_ 032374.4) chr14:104,040,437-104,040,455 (partial exon 3); CDAN1 (NM_138477.2) exon 2; CEP152 (NM_014985.3) chr15:49, 061,146-49,061,165 (partial exon 14) and exon 22; CEP290 (NM_025114.3) exon 5, exon 7, chr12:88,519,017-88,519,039 (partial exon 13), chr12:88,514,049-88,514,058 (partial exon 15), chr12:88,502,837-88,502,841 (partial exon 23), chr12:88,481,551-88,481,589 (partial exon 32), chr12:88,471,605-88,471,700 (partial exon 40); CFTR (NM_000492.3) exon 10; COL4A4 (NM_000092.4) chr2:227,942,604-227,942,619 (partial exon 25); COX10(NM_001303.3) exon 6; CYP11B1 (NM_000497.3) exons 3-7; CYP11B2 (NM_000498.3) exons 3-7; DNA12 (NM_023036.4) chr17:72,308,13672,308,147 (partial exon 12); DOK7(NM_173660.4) chr4:3,465,131-3,465,161 (partial exon 1) and exon 2; DUOX2 (NM_014080.4) exons 6-8; EIF2AK3 (NM_004836.5 exon 8; EVC(NM_153717.2) exon 1; F5 (NM_000130.4) chr1:169,551,662-169,551,679 (partial exon 2); FH (NM_000143.3) exon 1; GAMT (NM_000156.5 exon 1; GLDC (NM_000170.2) exon 1; GNPTAB (NM_024312.4) chr17:4,837,000-4,837,400 (partial exon 2); GNPTG (NM_032520.4) exon 1; GHR (NM_000163.4) exon 3; GYS2 (NM_021957.3) chr12:21,699,370-21,699,409 (partial exon 12); HGSNAT(NM_152419.2) exon 1; IDS(NM_000202.6 exon 3: ITGB4 (NM_000213.4) chr17:73,749,976-73.750,060 (partial exon 33); JAK3(NM_000215.3) chr19:17,950,462-17,950,483 (partial exon 10); LIFR (NM_002310.5 exon 19; LMBRD1 (NM_018368.3) chr6:70,459,226-70,459,257 (partial exon 5), chr6:70,447,828-70,447,836 (partial exon 7) and exon 12; LYST (NM_000081.3) chr1:235,944,158-235,944,176 (partial exon 16) and chr1:235,875.350-235,875.362 (partial exon 43); MLYCD (NM_012213.2) chr16:83,933,242-83,933,282 (partial exon 1); MTR (NM_000254.2) chr1 237,024,418-237,024,439 (partial exon 20) and chr1:237,038,019-237,038,029 (partial exon 24); NBEAL2 (NM_015175.2) chr3 47,021,385-47,021,407 (partial exon 1); NEB (NM_001271208.1 exons 82-105; NPC1 (NM_000271.4) chr18:21,123.519-21,123.538 (partial exon 14); NPHP1 (NM_000272.3) chr2:110,937,251-110,937,263 (partial exon 3); OCRL (NM_000276.3) chrX:128,674,450-128,674,460 (partial exon 1); PHKB (NM_000293.2) exon 1 and chr16:47,732,498-47,732,504 (partial exon 30); PIGN(NM_176787.4) chr18:59,815.547-59,815,576 (partial exon 8); PIP5K1C (NM_012398.2) exon 1 and chr19:3637602-3637616 (partial exon 17); POU1F1 (NM_000306.3) exon 5: PTPRC(NM_002838.4) exons 11 and 23: PUS1 (NM_025215.5 chr12:132,414,446-132,414.532 (partial exon 2); RPGRIP1L (NM_015272.2) exon 23: SGSH (NM_000199.3) chr17:78,194,022-78,194,072 (partial exon 1); SLC6A8(NM_005629.3) exons 3 and 4: ST3GAL5 (NM_003896.3) exon 1; SURF1 (NM_003172.3) chrg:136,223,269-136,223,307 (partial exon 1); TRPM6(NM_017662.4) chrg:77,362,800-77,362,811 (partial exon 31); TSEN54 (NM_207346.2) exon 1; TYR(NM_000372.4) exon 5; VWF(NM_000552.3) exons 24-26, chr12:6,125,675-6,125,684 (partial exon 30), chri2:6,121,244$6,121,265$ (partial exon 33), and exon 34.
This test will detect variants within the exons and the intron-exon boundaries of the target regions. Variants outside these regions may not be detected, including, but not limited to, UTRs, promoters, and deep intronic areas, or regions that fall into the Exceptions mentioned above. This technology may not detect all small insertion/deletions and is not diagnostic for repeat expansions and structural genomic variation. In addition, a mutation(s) in a gene not included on the panel could be present in this patient.

Variant interpretation and classification was performed based on the American College of Medical Genetics Standards and Guidelines for the Interpretation of Sequence Variants (Richards et al, 2015). All potentially pathogenic variants may be confirmed by either a specific genotyping assay or Sanger sequencing, if indicated. Any benign variants, likely benign variants or variants of uncertain significance identified during this analysis will not be reported.

Next Generation Sequencing for SMN1

Exonic regions and intron/exon splice junctions of SMN1 and SMN2 were captured, sequenced, and analyzed as described above. Any variants located within exons 2a-7 and classified as pathogenic or likely pathogenic were confirmed to be in either SMN1 or SMN2 using gene-specific long-range PCR analysis followed by Sanger sequencing. Variants located in exon 1 cannot be accurately assigned to either SMN1 or SMN2 using our current methodology, and so these variants are considered to be of uncertain significance and are not reported.

Copy Number Variant Analysis (Analytical Detection Rate >95\%)

Large duplications and deletions were called from the relative read depths on an exon-by-exon basis using a custom exome hidden Markov model (XHMM) algorithm. Deletions or duplications determined to be pathogenic or likely pathogenic were confirmed by either a custom arrayCGH platform, quantitative PCR, or MLPA (depending on CNV size and gene content). While this algorithm is designed to pick up deletions and duplications of 2 or more exons in length, potentially pathogenic single-exon CNVs will be confirmed and reported, if detected.

Exon Array (Confirmation method) (Accuracy >99\%)

The customized oligonucleotide microarray (Oxford Gene Technology) is a highly-targeted exon-focused array capable of detecting medically relevant microdeletions and microduplications at a much higher resolution than traditional aCGH methods. Each array matrix has approximately $180,00060-$ mer oligonucleotide probes that cover the entire genome. This platform is designed based on human genome NCBI Build 37 (hg1g) and the CGH probes are enriched to target the exonic regions of the genes in this panel.

Quantitative PCR (Confirmation method) (Accuracy >99\%)

Th relative quantification PCR is utilized on a Roche Universal Library Probe (UPL) system, which relates the PCR signal of the target region in one group to another. To test for genomic imbalances, both sample DNA and reference DNA is amplified with primer/probe sets that specific to the target region and a control region with known genomic copy number. Relative genomic copy numbers are calculated based on the standard $\Delta \triangle C t$ formula.

Long-Range PCR (Analytical Detection Rate >99\%)

Long-range PCR was performed to generate locus-specific amplicons for CYP21A2, HBA1 and HBA2 and GBA. The PCR products were then prepared for short-read NGS sequencing and sequenced. Sequenced reads were mapped back to the original genomic locus and run through the bioinformatics pipeline. If indicated, copy number from MLPA was correlated with the sequencing output to analyze the results. For CYP21A2, a certain percentage of healthy individuals carry a duplication of the CYP21A2 gene, which has no clinical consequences. In cases where two copies of a gene are located on the same chromosome in tandem, only the second copy will be amplified and assessed for potentially pathogenic variants, due to size limitations of the PCR reaction. However, because these alleles contain at least two copies of the CYP21A2 gene in tandem, it is expected that this patient has at least one functional gene in the tandem allele and this patient is therefore less likely to be a carrier. When an individual carries both a duplication allele and a pathogenic variant, or multiple pathogenic variants, the current analysis may not be able to determine the phase (cis/trans configuration) of the CYP21A2 alleles identified. Family studies may be required in certain scenarios where phasing is required to determine the carrier status.

Residual Risk Calculations

Carrier frequencies and detection rates for each ethnicity were calculated through the combination of internal curations of $>30,000$ variants and genomic frequency data from $>138,000$ individuals across seven ethnic groups in the gnomAD database. Additional variants in HGMD and novel deleterious variants were also incorporated into the calculation. Residual risk values are calculated using a Bayesian analysis combining the a priori risk of being a pathogenic mutation carrier (carrier frequency) and the detection rate. They are provided only as a guide for assessing approximate risk given a negative result, and values will vary based on the exact ethnic background of an individual. This report does not represent medical advice but should be interpreted by a genetic counselor, medical geneticist or physician skilled in genetic result interpretation and the relevant medical literature.

Personalized Residual Risk Calculations

Agilent SureSelect ${ }^{T M}$ XT Low-Input technology was utilized in order to create whole-genome libraries for each patient sample. Libraries were then pooled and sequenced on the Illumina NovaSeq platform. Each sequencing lane was multiplexed to achieve 0.4-2x genome coverage, using paired-end 100 bp reads. The sequencing data underwent ancestral analysis using a customized, licensed bioinformatics algorithm that was validated in house. Identified sub-ethnic groupings were binned into one of 7 continental-level groups (African, East Asian, South Asian, Non-Finnish European, Finnish, Native American, and Ashkenazi Jewish) or, for those ethnicities that matched poorly to the continental-level groups, an $8^{\text {th }}$ "unassigned" group, which were then used to select residual risk values for each gene. For individuals belonging to multiple high-
level ethnic groupings, a weighting strategy was used to select the most appropriate residual risk. For genes that had insufficient data to calculate ethnic-specific residual risk values, or for sub-ethnic groupings that fell into the "unassigned" group, a "worldwide" residual risk was used. This "worldwide" residual risk was calculated using data from all available continental-level groups.

Sanger Sequencing (Confirmation method) (Accuracy >99\%)

Sanger sequencing, as indicated, was performed using BigDye Terminator chemistry with the ABI 3730 DNA analyzer with target specific amplicons. It also may be used to supplement specific guaranteed target regions that fail NGS sequencing due to poor quality or low depth of coverage (<20 reads) or as a confirmatory method for NGS positive results. False negative results may occur if rare variants interfere with amplification or annealing.

Tay-Sachs Disease (TSD) Enzyme Analysis (Analytical Detection Rate $\geq 98 \%$)

Hexosaminidase activity and Hex A\% activity were measured by a standard heat-inactivation, fluorometric method using artificial 4-MU- β - N acetyl glucosaminide (4-MUG) substrate. This assay is highly sensitive and accurate in detecting Tay-Sachs carriers and individuals affected with TSD. Normal ranges of Hex A\% activity are 55.0-72.0 for white blood cells and 58.0-72.0 for plasma. It is estimated that less than 0.5% of Tay-Sachs carriers have non-carrier levels of percent Hex A activity, and therefore may not be identified by this assay. In addition, this assay may detect individuals that are carriers of or are affected with Sandhoff disease. False positive results may occur if benign variants, such as pseudodeficiency alleles, interfere with the enzymatic assay. False negative results may occur if both HEXA and HEXB pathogenic or pseudodeficiency variants are present in the same individual.
Please note these tests were developed and their performance characteristics were determined by Sema4 Opco, Inc. They have not been cleared or approved by the FDA. These analyses generally provide highly accurate information regarding the patient's carrier or affected status. Despite this high level of accuracy, it should be kept in mind that there are many potential sources of diagnostic error, including misidentification of samples, polymorphisms, or other rare genetic variants that interfere with analysis. Families should understand that rare diagnostic errors may occur for these reasons.

SELECTED REFERENCES

Carrier Screening

Grody W et al. ACMG position statement on prenatal/preconception expanded carrier screening. Genet Med. 2013 15:482-3.

Fragile X syndrome:

Chen L et al. An information-rich CGG repeat primed PCR that detects the full range of Fragile X expanded alleles and minimizes the need for Southern blot analysis. J Mol Diag 2010 12:589-600.

Spinal Muscular Atrophy:

Luo M et al. An Ashkenazi Jewish SMN1 haplotype specific to duplication alleles improves pan-ethnic carrier screening for spinal muscular atrophy. Genet Med. 2014 16:149-56.

Ashkenazi Jewish Disorders:

Scott SA et al. Experience with carrier screening and prenatal diagnosis for sixteen Ashkenazi Jewish Genetic Diseases. Hum. Mutat. 2010 31:111.

Duchenne Muscular Dystrophy:

Flanigan KM et al. Mutational spectrum of DMD mutations in dystrophinopathy patients: application of modern diagnostic techniques to a large cohort. Hum Mutat. 2009 30:1657-66.

Variant Classification:

Richards S et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015 May;17(5):405-24
Additional disease-specific references available upon request.

Ordering Practice:	Donor 5241	Partner Not Tested
Practice Code:	DOB:	
Fairfax Cryobank -	Gender: Male	
	Ethnicity: European	
	Procedure ID: 48091	
Physician:	Kit Barcode:	
Report Generated: 2016-03-30	Method: Genotyping	
	Specimen: Blood, \#50207	
	Specimen Collection: 2016-03-22	
	Specimen Received: 2016-03-23	
	Specimen Analyzed: 2016-03-30	

SUMMARY OF RESULTS

NO MUTATIONS IDENTIFIED

Donor 5241 was not identified to carry any of the mutations tested.

All mutations analyzed were not detected, reducing but not eliminating your chance to be a carrier for the associated genetic diseases. A list of all the diseases and mutations you were screened for is included later in this report. The test does not screen for every possible genetic disease.

For disease information, please visit www.recombine.com/diseases. To speak with a Genetic Counselor, call 855.OUR.GENES.
0^{7} Male
Panel: Fairfax Cryobank Panel V2, Diseases Tested: 22, Mutations Tested: 452, Genes Tested: 22, Null Calls: 0

Assay performed by
Reprogenetics
CIIA ID: 31D1054821
3 Regent Street, Livingston, NJ 07039
Lab Technician Bo Chu
This test was developed and its performance determined by Recombine Inc. and it has not been cleared or approved by the U.S. Food and Drug Administration.

Methods and Limitations

Genotyping: Genotyping is performed using the Illumina Infinium Custom HD Genotyping assay to identify mutations in >200 genes. The assay is not validated for homozygous mutations, and it is possible that individuals affected with disease may not be accurately genotyped.
Spinal Muscular Atrophy: Spinal Muscular Atrophy: Carrier status for SMA is assessed via genotyping and via copy number analysis by qPCR. Some individuals with a normal number of SMN1 copies (2 copies) may carry both copies of the gene on the same allele/chromosome; this analysis is not able to detect these individuals. Thus, a normal SMN1 result significantly reduces but does not eliminate the risk of being a carrier. Additionally, SMA may be caused by non-deletion mutations in the SMN1 gene; CarrierMap tests for some, but not all, of these mutations via genotyping. Some SMA cases arise as the result of de novo mutation events which will not be detected by carrier testing.
Limitations: In some cases, genetic variations other than that which is being assayed may interfere with mutation detection, resulting in false-negative or false-positive results. Additional sources of error include, but are not limited to: sample contamination, sample mixup, bone marrow transplantation, blood transfusions, and technical errors.
The test does not test for all forms of genetic disease, birth defects, and intellectual disability. All results should be interpreted in the context of family history; additional evaluation may be indicated based on a history of these conditions. Additional testing may be necessary to determine mutation phase in individuals identified to carry more than one mutation in the same gene. All mutations included within the genes assayed may not be detected, and additional testing may be appropriate for some individuals.

Diseases \& Mutations Assayed

H TX M	Disease
Alpha Thalassemia	
	Beta Thalassemia

$9 \quad \mathrm{O}^{7}$ Genoryping | SEA deletion, c.207C>A (p.N69K), c.223G>C (p.D75G), c.2T>C (p.M1T), c.207C>G (p.N69K), c.340_351delCTCCCCGCCGAG (p.L114_E117del), c.377T>C (p.L126P), c.427T>C (p.X143Qex+32), c. ${ }^{*}+94 \mathrm{~A}>\mathrm{G}$
 c.217insA (p.S73Kfs), c.223+702_444+342del620insAAGTAGA, c.230delC, c.25_26delAA, c.315+1G>A, c.315+2T>C, c.316-197C>T, c.316-146T>G, c. $315+745 C>G$, c. $316-1 \mathrm{G}>A, c .316-1 \mathrm{G}>\mathrm{C}, \mathrm{c} .316-2 \mathrm{~A}>\mathrm{G}, \mathrm{c} .316-3 \mathrm{C}>\mathrm{A}, \mathrm{c} .316-3 \mathrm{C}>\mathrm{G}$, c. 4 delG (p.V2Cfs), c. 51 delC (p.K 18Rfs), c. $93-21 \mathrm{G}>\mathrm{A}, \mathrm{c} .92+1 \mathrm{G}>\mathrm{A}, \mathrm{c} .92+5 \mathrm{G}>\mathrm{A}$, $\mathrm{c} .92+5 \mathrm{G}>\mathrm{C}, \mathrm{c} .92+5 \mathrm{G}>\mathrm{T}, \mathrm{c} .92+6 \mathrm{~T}>\mathrm{C}, \mathrm{c} .93-1 \mathrm{G}>\mathrm{A}, \mathrm{c} .93-1 \mathrm{G}>\mathrm{T}, \mathrm{c} .-50 \mathrm{~A}>\mathrm{C}, \mathrm{c} .-78 \mathrm{a}>\mathrm{g}, \mathrm{c} .-$ $79 \mathrm{a}>\mathrm{g}, \mathrm{c} .-81 \mathrm{a}>\mathrm{g}, \mathrm{c} .52 \mathrm{~A}>\mathrm{T}(\mathrm{p} . \mathrm{K} 18 \mathrm{X}$), c.-137c>g, c.-138c>t, c.-151c>t, c. $118 \mathrm{C}>\mathrm{T}$ (p.Q40X), c. $169 \mathrm{G}>\mathrm{C}(\mathrm{p} . \mathrm{G} 57 \mathrm{R}), \mathrm{c} .295 \mathrm{G}>\mathrm{A}(\mathrm{p} . V 99 \mathrm{M}), c .34 \mathrm{G}>\mathrm{A}(\mathrm{p} . \mathrm{V} 121), c .415 \mathrm{G}>\mathrm{C}$ (p.A139P), c. $47 \mathrm{G}>\mathrm{A}(\mathrm{p} . \mathrm{W16X}$), c.48G>A (p.W16X), c. $.801>\mathrm{a}, \mathrm{c} .2 \mathrm{~T}>\mathrm{C}(\mathrm{p} . \mathrm{M1T})$, c.75T>A (p.G25G), c.444+111A>G, c.-29g>a, c.68_74delAAGTTGG, c.92G>C (p.R31T), c. $27 _28$ ins $\mathrm{G}, \mathrm{c} .92+1 \mathrm{G}>$ T, c. $92+1 \mathrm{G}>\mathrm{C}$, c. 93 - $15 \mathrm{~T}>\mathrm{G}, \mathrm{c} .93-1 \mathrm{G}>\mathrm{C}, \mathrm{c} .112$ delT, c. $113 \mathrm{G}>\mathrm{A}$ (p.W38X), c.114G>A (p.W38X), c.126delC, c.444+113A>G, c.250delG, c.225delC, c.383_385delAGG (p.Q128_A129delQAinsP), c.321_322insG (p.N109fs), c.316-1G>T, c.316-2A>C, c.287_288insA (p.L97fs), c.271 G>T (p.E91X), c.203_204delTG (p.V68Afs), c. 154 delC (p.P52fs), c. 135 delC (p.F46fs), c. $92+2 \mathrm{~T}>\mathrm{A}, \mathrm{c} .92+2 \mathrm{~T}>\mathrm{C}, \mathrm{c} .90 \mathrm{C}>\mathrm{T}$ (p.G30G), c.84_85insC (p.L29fs), c.59A>G (p.N20S), c.46delT (p.W16Gfs), c.45_46insG (p.L16fs), c. 36 delT (p.T13fs), c.2T>G (p.MIR), c. $1 \mathrm{~A}>\mathrm{G}$ (p.MIV), c.-137c>t, c.-136c>g, c.-142c>t, c.-140c>t
$24 \sigma^{2}$ Genotyping |c.2207_2212delATCTGAinsTAGATTC (p.Y736Lfs), c.2407insT, c.557_559delCAA (p.S186X), c.1284G>A (p.W428X), c. 1701 G>A (p.W567X), c. $1933 \mathrm{C}>\mathrm{T}$ (p.Q645X), c.2528C>T (p.T8431), c.2695C>T (p.R899X), c.3107G>T (p.C1036F), c.2923delC (p.Q975K), c.3558+1G>T, c.3875-2A>G, c.2074+2T>A, c.2343_2344dupGA (p.781 Efs) , c.380delC (p. 127Tfs), c.3564delC (p. 1188Dfs), c.4008delG (p.1336Rfs), c.947C>G (p.S316X), c.2193+1_2193+9del9, c.1642C>T (p.Q548X), c.3143delA (p.1048NfsX), c.356_357delTA (p.Cl20Hfs), c.4076+1delG, c. $3281 \mathrm{C}>\mathrm{A}(\mathrm{p} . \mathrm{S} 1094 \mathrm{X})$
$8 \mathrm{O}^{7}$ Genotyping |c.433-2A>G, c.854A>C (p.E285A), c.693C>A (p.Y231X), c.914C>A (p.A305E), c. $71 \mathrm{~A}>\mathrm{G}(\mathrm{p} . \mathrm{E} 24 \mathrm{G}), \mathrm{c} .654 \mathrm{C}>\mathrm{A}(\mathrm{p} . \mathrm{C} 218 \mathrm{X}), \mathrm{c} .2 \mathrm{~T}>\mathrm{C}(\mathrm{p} . \mathrm{M1T}), \mathrm{c} .79 \mathrm{G}>\mathrm{A}$ (p.G27R)

H T X M	Disease	\#	Mutations
000	Cystic Fibrosis	149	O' Genotyping \| c. 1029delC, 1153_1154insAT, c.1477delCA, c. 1519_1521delATC (p.507dell), c.1521_1523delCTT (p.508delF), c.1545_1546delTA (p.Y515Xfs), c.15851G>A, c. 164+12T>C, c. 1680-886A>G, c. 1680-1G>A, c. $1766+1$ G>A, c. $1766+1 G>T$, c. $1766+5 \mathrm{G}>$ T, c. 1818 del84, c. 1911 delG, c. 1923 delCTCAAAACTinsA, c. 1973delGAAATTCAATCCTinsAGAAA, c.2052delA (p.K684fs), c.2052insA (p.Q685fs), c.2051_2052delAAinsG (p.K684SfsX38), c.2174insA, c.261delTT, c.2657+5G>A, c. $273+1$ G>A, c. $273+3$ A>C, c.274-1G>A, c.2988+1G>A, c.3039delC, c.3140-26A>G, c. 325 delTATinsG, c. 3527 delC, c. 3535 delACCA, c. 3691 delT, c. $3717+12191 \mathrm{C}>$ T, c.3744delA, c.3773_3774insT (p.L1258fs), c.442delA, c.489+1G>T, c. 531 delT, c. $579+1$ G>T, c. $579+5 \mathrm{G}>\mathrm{A}(\mathrm{IVS4+5G>A}), \mathrm{c} .803 \mathrm{delA}$ (p.N268fs), c.805_806delAT (p.1269fs), c.933_935delCTT (p.311delF), c.946delT, c.1645A>C (p.S549R), c.2128A>T (p.K710X), c.1000C>T (p.R334W), c.1013C>T (p.T338I), c.1364C>A (p.A455E), c.1477C>T (p.Q493X), c.1572C>A (p.C524X), c.1654C>T (p.Q552X), c.1657C>T (p.R553X), c. $1721 \mathrm{C}>\mathrm{A}($ p.P574H), c. $2125 \mathrm{C}>$ T (p.R709X), c.223C>T (p.R75X), c.2668C>T (p.Q890X), c.3196C>T (p.R1066C), c.3276C>G (p.Y1092X), c.3472C>T (p.R1158X), c.3484C>T (p.R1162X), c.349C>T (p.R117C), c.3587C>G (p.S1196X), c.3712C>T (p.Q1238X), c.3764C>A (p.S1255X), c.3909C>G (p.N1303K), c.1040G>A (p.R347H), c. 1040G>C (p.R347P), c.1438G>T (p.G480C), c.1558G>T (p.V520F), c.1624G>T (p.G542X), c.1646G>A (p.S549N), c.1646G>T (p.S549I), c.1652G>A (p.G551D), c. 1675G>A (p.A559T), c.1679G>C (p.R560T), c.178G>T (p.E60X), c.1865G>A (p.G622D), c.254G>A (p.G85E), c.271 G>A (p.G91R), c.274G>T (p.E92X), c.3209G>A (p.R1070Q), c.3266G>A (p.W1089X), c.3454G>C (p.D1152H), c.350G>A (p.R117H), c. 3611 G>A (p.W1204X), c.3752G>A (p.S1251N), c.3846G>A (p.W1282X), c.3848G>T (p.R1283M), c.532G>A (p.G178R), c.988G>T (p.G330X), c.1090T>C (p.S364P), c.3302T>A (p.M1101K), c.617T>G (p.L206W), c.14C>T (p.P5L), c.19G>T (p.E7X), c. $171 \mathrm{G}>\mathrm{A}(\mathrm{p} . W 57 \mathrm{X}), \mathrm{c} .313$ delA (p.1105fs), c.328G>C (p.D110H), c.580-1G>T, c. 1055G>A (p.R352Q), c. 1075C>A (p.Q359K), c.1079C>A (p.T360K), c.1647T>G (p.S549R), c.1976delA (p.N659fs), c.2290C>T (p.R764X), c.2737_2738insG (p.Y913X), c.3067_3072delATAGTG (p.I1023_V1024delT), c.3536_3539delCCAA (p.T1179fs), c.3659delC (p.T1220fs), c.54-5940_273+10250del21080bp (p.S18fs), c.4056G>C (p.Q1352H), c.4364C>G (p.S1455X), c.4003C>T (p.L1335F), c.2538G>A (p.W846X), c. 200C>T (p.P67L), c.4426C>T (p.Q1476X), c.1116+1G>A, c.1986_1989delAACT (p.T663R), c.2089_2090insA (p.R697Kfs), c.2215delG (p.V739Y), c.263T>G (p.L196X), c.3022delG (p.V1008S), c.3908dupA (p.N1303Kfs), c.658C>T (p.Q220X), c.868C>T (p.Q290X), c.1526delG (p.G509fs), c.2908+1085-3367+260del7201, c.11C>A (p.S4X), c.3700A>G (p.11234V), c.416A>T (p.H139L), c.366T>A (p.Y122X), c.3767_3768insC (p.A1256fs), c.613C>T (p.P205S), c.293A>G (p.Q98R), c. $3731 \mathrm{G}>\mathrm{A}$ (p.G1244E), c.535C>A (p.Q179K), c.3368-2A>G, c.455T>G (p.M152R), c. 1610_1611delAC (p.D537fs), c.3254A>G (p.H1085R), c.496A>G (p.K166E), c.1408_1417delGTGATTATGG (p.V470fs), c.1585-8G>A, c.2909G>A (p.G970D), c.653T>A (p.L218X), c.1175T>G (p.V392G), c.3139_3139+1 delGG
000	Familial Dysautonomia	4	O^{7} Genotyping \|c.2204+6T>C, c.2741C>T (p.P914L), c. $2087 \mathrm{G}>\mathrm{C}$ (p.R696P), c.2128C>T (p.Q710X)
000	Familial Hyperinsulinism: Type 1: ABCC8 Related	10	\mathbf{O}^{7} Genoryping \| c.3989-9G>A, c.4159_4161delTTC (p.1387delf), c.4258C>T (p.R1420C), c.4477C>T (p.R1493W), c.2147G>T (p.G716V), c.4055G>C (p.R1352P), c. $560 T>A($ p.V187D), c.4516G>A (p.E1506K), c.2506C>T (p.Q836X), c.579+2T>A
$\bigcirc \bigcirc$	Fanconi Anemia: Type C	8	c. $1661 \mathrm{~T}>\mathrm{C}$ (p.L554P), c. 1642C>T (p.R548X), c.66G>A (p.W22X), c.65G>A (p.W22X)
00	Gaucher Disease	6	O^{7} Genoryping \| c.84_85insG, c.1226A>G (p.N409S), c.1343A>T (p.D448V), c. 1504C>T (p.R502C), c. 1297G>T (p.V433L), c. 1604G>A (p.R535H)
$\bigcirc \bigcirc$	Glycogen Storage Disease: Type IA	13	Ơ Genotyping \| c.376_377insTA, c.79delC, c.979_981delTTC (p.327delf), c. 1039C>T (p.Q347X), c.247C>T (p.R83C), c. $724 \mathrm{C}>\mathrm{T}(\mathrm{p} . \mathrm{Q} 242 \mathrm{X})$, c. $248 \mathrm{G}>\mathrm{A}(\mathrm{p} . R 83 \mathrm{H})$, c. $562 \mathrm{G}>\mathrm{C}$ (p.G188R), c.648G>T, c.809G>T (p.G270V), c.113A>T (p.D38V), c.975delG (p.L326fs), c.724delC

H T X M	Disease	\#	Mutations	
00	Joubert Syndrome	2	$O^{\text {c }}$ Genotyping \| c.218G>T (p.R73L), c.218G>A (p.R73H)	
$\bigcirc \bigcirc$	Maple Syrup Urine Disease: Type 1B	6	O' $^{\text {G }}$ Genotyping \| c.1114G>T (p.E372X), c.548G>C (p.R183P), c.832G>A (p.G278S), c. $970 \mathrm{C}>\mathrm{T}(\mathrm{p} . \mathrm{R} 324 \mathrm{X}$), c.487G>T (p.E163X), c.853C>T (p.R285X)	
\bigcirc	Maple Syrup Urine Disease: Type 3	8	o^{7} Genotyping \| c.104_105insA, c.685G>T (p.G229C), c.214A>G (p.K72E), c. $1081 \mathrm{~A}>\mathrm{G}$ (p.M361V), c. $1123 \mathrm{G}>\mathrm{A}($ p.E375K), c. $1178 \mathrm{~T}>\mathrm{C}$ (p.1393T), c.1463C>T (p.P488L), c. $1483 \mathrm{~A}>\mathrm{G}$ (p.R495G)	
$\bigcirc \bigcirc$	Mucolipidosis: Type IV	5	Ơ Genotyping \| c.-1015_788del6433, c.406-2A>G, c.1084G>T (p.D362Y), c.304C>T (p.R102X), c. 244delC (p.L82fsX)	
$\bigcirc \bigcirc \bigcirc$	Nemaline Myopathy: NEB Related	1	$0^{\text {a }}$ Genotyping \| c.7434_7536del2502bp	
- 000	Niemann-Pick Disease: Type A	6	O' $^{\text {C }}$ Genotyping \| c.996delC, c.1493G>T (p.R498L), c.911T>C (p.L304P), c.1267C>T (p.H423Y), c. $1734 \mathrm{G}>\mathrm{C}$ (p.K578N), c.1493G>A (p.R498H)	
\bigcirc	Sickle-Cell Anemia	1	$O^{\text {a }}$ Genotyping \| c.20A>T (p.E7V)	
100	Spinal Muscular Atrophy: SMN1 Linked	19	Ơ Genotyping \| DEL EXON 7, c.22_23insA, c.43C>T (p.Q15X), c.91_92insT, c.305G>A (p.W102X), c.400G>A (p.E134K), c.439_443delGAAGT, c.558delA, c.585_586insT, c.683T>A (p.L228X), c.734C>T (p.P245L), c.768_778dupTGCTGATGCTT, c.815A>G (p.Y272C), c.821 C>T (p.T274I), c.823G>A (p.G275S), c.834+2T>G, c.835-18_83512delCCTTTAT, c.835G>T, c.836G>T qPCR	DEL EXON 7
000	Tay-Sachs Disease	76	ơ Genotyping \| c. 1073+1G>A, c. 1277_1278insTATC, c.1421+1G>C, c.805+1G>A, c.532C>T (p.R178C), c.533G>A (p.R178H), c.805G>A (p.G269S), c. 1510C>T (p.R504C), c.1496G>A (p.R499H), c.509G>A (p.R170Q), c.1003A>T (p.1335F), c. 910 _912delTTC (p.305delF), c.749G>A (p.G250D), c.632T>C (p.F211S), c.629C>T (p.S210F), c.613delC, c.611A>G (p.H204R), c.598G>A (p.V200M), c.590A>C (p.K197T), c.571-1G>T, c.540C>G (p.Y180X), c.538T>C (p.Y180H), c.533G>T (p.R178L), c.508C>T (p.R170W), c.409C>T (p.R137X), c.380T>G (p.L127R), c.346+1G>C, c. $116 \mathrm{~T}>\mathrm{G}(\mathrm{p} .139 \mathrm{R})$, c.78G>A (p.W26X), c.1A>G (p.M1V), c.1495C>T (p.R499C), c. $459+5 \mathrm{G}>\mathrm{A}(\mathrm{IVS} 4+5 \mathrm{G}>\mathrm{A})$, c. $1422-2 \mathrm{~A}>\mathrm{G}, \mathrm{c} .535 \mathrm{C}>$ T (p.H179Y), c. 1141 delG (p.V381 fs), c.796T>G (p.W266G), c. 155C>A (p.S52X), c.426delT (p.F142fs), c.413-2A>G, c. $570+3 A>G$, c.536A>G (p.H179R), c.1146+1G>A, c.736G>A (p.A246T), c.1302C>G (p.F434L), c.778C>T (p.P260S), c.1008G>T (p.Q336H), c.1385A>T (p.E462V), c. $964 \mathrm{G}>\mathrm{A}$ (p.D322N), c.340G>A (p.E114K), c.1432G>A (p.G478R), c. $1178 \mathrm{G}>\mathrm{C}$ (p.R393P), c.805+1G>C, c.1426A>T (p.R476X), c.623A>T (p.D208V), c.1537C>T (p.Q513X), c.1511 G>T (p.R504L), c.1307_1308delTA (p.1436fs), c.571-8A>G, c.624_627delTCCT (p.D208fs), c.1211_1212delTG (p.L404fs), c. 621 T>G (p.D207E), c. 1511 G>A (p.R504H), c.1177C>T (p.R393X), c.2T>C (p.M1T), c. $1292 \mathrm{G}>\mathrm{A}(\mathrm{p} . \mathrm{W} 431 \mathrm{X})$, c.947_948insA (p.Y316fs), c.607T>G (p.W203G), c. 1061_1063delTCT (p.F354_Y355delinsX), c.615delG (p.L205fs), c.805+2T>C, c. 1123 delG (p.E375fs), c. $1121 \mathrm{~A}>\mathrm{G}$ (p.Q374R), c. 1043 _1046delTCAA (p.F348fs), c. 1510delC (p.R504fs), c. $1451 \mathrm{~T}>\mathrm{C}$ (p.L484P), c.964G>T (p.D322Y)	
000	Usher Syndrome: Type 1F	7	ơ Genotyping \|c.733C>T (p.R245X), c.2067C>A (p.Y684X), c.7C>T (p.R3X), c. 1942C>T (p.R648X), c.1101delT (p.A367fsX), c.2800C>T (p.R934X), c.4272delA (p.L1425fs)	
000	Usher Syndrome: Type 3	5	ơ' Genoryping \| c.144T>G (p.N48K), c.359T>A (p.M 120K), c.300T>G (p.Y176X), $_{\text {(p. }}$ c. $634 \mathrm{C}>\mathrm{T}$ (p.Q212X), c.221 T>C (p.L74P)	
$\bigcirc \bigcirc 0$	Walker-Warburg Syndrome	1	$\mathrm{o}^{\text {a }}$ Genotyping \| c.1167insA (p.F390fs)	

Donor 5241
DOB: \square
Gender: Male
Ethnicity: European
Procedure ID: 48091
Kit Barcode:
Specimen: Blood, \#50207
Specimen Collection: 2016-03-22
Specimen Received: 2016-03-23
Specimen Analyzed: 2017-05-09
TEST INFORMATION
Test: CarrierMap ${ }^{\text {GEN }}$ (Genotyping)
Panel: Custom Panel
Diseases Tested: 2
Genes Tested: 2
Mutations Tested: 73

SUMMARY OF RESULTS: NO MUTATIONS IDENTIFIED

Donor 5241 was not identified to carry any of the mutation(s) tested.

No pathogenic mutations were identified in the genes tested, reducing but not eliminating the chance to be a carrier for the associated genetic diseases. CarrierMap assesses carrier status for genetic disease via molecular methods including targeted mutation analysis and/ or next-generation sequencing; other methodologies such as CBC and hemoglobin electrophoresis for hemoglobinopathies and enzyme analysis for Tay-Sachs disease may further refine risks for these conditions. Results should be interpreted in the context of clinical findings, family history, and/or other testing. A list of all the diseases and mutations screened for is included at the end of the report. This test does not screen for every possible genetic disease.

For additional disease information, please visit recombine.com/diseases. To speak with a Genetic Counselor, call 855.OUR.GENES.
Assay performed by

Reprogenetics
CLIA ID: 31 D 1054821
3 Regent Street, Livingston, NJ 07039
Lab Technician: Bo Chu

Methods and Limitations

Genotyping: Genotyping is performed using the Illumina Infinium Custom HD Genotyping assay to identify mutations in the genes tested. The assay is not validated for homozygous mutations, and it is possible that individuals affected with disease may not be accurately genotyped.

Limitations: In some cases, genetic variations other than that which is being assayed may interfere with mutation detection, resulting in false-negative or false-positive results. Additional sources of error include, but are not limited to: sample contamination, sample mix-up, bone marrow transplantation, blood transfusions, and technical errors. The test does not test for all forms of genetic disease, birth defects, and intellectual disability. All results should be interpreted in the context of family history; additional evaluation may be indicated based on a history of these conditions. Additional testing may be necessary to determine mutation phase in individuals identified to carry more than one mutation in the same gene. All mutations included within the genes assayed may not be detected, and additional testing may be appropriate for some individuals.

This test was developed and its performance determined by Recombine, Inc., and it has not been cleared or approved by the U.S. Food and Drug Administration (FDA). The FDA has determined that such clearance or approval is not necessary.

Diseases \& Mutations Assayed

Phenylalanine Hydroxylase Deficiency (PAH): Mutations (60): Ơ Genotyping | c. 106611 G>A (IVS 10-11G>A), c. 1315+1G>A (IVS 12+1G>A), c. 1241 A>G (p.Y414C), c.1222C>T (p.R408W), c.754C>T (p.R252W), c. 1223G>A (p.R408Q), c.473G>A (p.R158Q), c.782G>A (p.R261 Q), c.814G>T (p.G272X), c.143T>C (p.L48S), c.194T>C (p.165T), c.896T>G (p.F299C), c. $842 \mathrm{C}>$ T (p.P281L), c.838G>A (p.E280K), c.117C>G (p.F39L), c.3G>A (p.M1I), c.1A>G (p.M1V), c. $611 A>G(p . Y 204 C), c .721 \mathrm{C}>T$ (p.R241C), c. $727 \mathrm{C}>$ T (p.R243X), c. $1139 \mathrm{C}>T$ (p.T380M), c.926C>T (p.A309V), c.898G>T (p.A300S), c.734T>C (p.V245A), c.818C>T (p.S273F), c.997C>T (p.L333F), c.199T>C (p.S67P), c.1042C>G (p.L348V), c.136G>A (p.G46S), c.728G>A (p.R243Q), c.745C>T (p.L249F), c. $581 T>C$ (p.L194P), c.722G>T (p.R241L), c.829T>G (p.Y277D), c.899C>T (p.A300V), c.926C>A (p.A309D), c.1045T>C (p.S349P), c.1157A>G (p.Y386C), c. 1169A>G (p.E390G), c. 331 C>T (p.R111X), c.241_256delACCCATtTGGATAAAC (p.T81fs), c.442-1G>A (IVS4-1G>A), c.463_464insTGTGTACC (p.R155fs), c.569T>G (p.V190G), c.682G>T (p.E228X), c.755G>A (p.R252Q), c.770G>T (p.G257V), c.781 C>T (p.R261 X), c.800A>G (p.Q267R), c.842+5G>A (IVS7+5G>A), c.856G>A (p.E286K), c.904delT (p.F302fs), c. $913-7 A>G(I V S 8-7 A>G), c .935 G>T(p . G 312 V), c .1068 C>G(p . Y 356 X), c .1238 G>C(p . R 413 P)$), c. $1301 \mathrm{C}>\mathrm{A}(\mathrm{p} . \mathrm{A} 434 \mathrm{D})$, c. $842+2 \mathrm{~T}>\mathrm{A}(\mathrm{IVS7}+2 \mathrm{~T}>\mathrm{A})$, c.764T>C (p.L255S), c.722G>A (p.R241H)

Usher Syndrome: Type 1B (MYO7A): Mutations (13): Ot $^{\text {Gentyping | c.93C>A (p.C31X), }}$ c. $448 \mathrm{C}>\mathrm{T}$ (p.R150X), c.634C>T (p.R212C), c.635G>A (p.R212H), c.700C>T (p.Q234X), c. $1797 \mathrm{G}>\mathrm{A}(\mathrm{p} . \mathrm{M} 5991)$, c. 1996C>T (p.R666X), c.2476G>A (p.A826T), c.3719G>A (p.R1240Q), c. $5581 \mathrm{C}>$ T (p.R1861 X), c.6025delG (p.A2009fs), c.640G>A (p.G214R), c.1190C>A (p.A397D)

Residual Risk Information

Detection rates are calculated from the primary literature and may not be available for all ethnic populations. The values listed below are for genotyping. Sequencing provides higher detection rates and lower residual risks for each disease. More precise values for sequencing may become available in the future.

Disease	Carrier Rate	Detection Rate	Residual Risk
Phenylalanine Hydroxylase Deficiency	Ơ' Arab: Unknown	46.08\%	Unknown
	$\sigma^{\text {® }}$ Ashkenazi Jewish: 1/224	44.44\%	1/403
	O' Brazilian: 1/71	56.41\%	1/163
	$\sigma^{\text {a }}$ Chinese: 1/51	76.57\%	1/218
	O^{7} Cuban: 1/71	69.64\%	1/234
	$\mathrm{O}^{\prime \prime}$ European: 1/51	73.00\%	1/189
	O' French Canadian: 1/80	76.27\%	1/337
	$\mathrm{O}^{\mathbf{A}}$ Iranian: 1/31	66.94\%	1/94
	$\mathrm{O}^{\text {a }}$ Korean: 1/51	57.58\%	1/120
	σ^{7} Non-Ashkenazi Jewish: Unknown	63.64\%	Unknown
	$\sigma^{\text {a }}$ Slovakian Gypsy: 1/39	>99\%	<1/3,900
	$\sigma^{\text {a }}$ Spanish Gypsy: 1/4	93.75\%	1/64
	$O^{\prime \prime}$ Taiwanese: Unknown	83.10\%	Unknown
	$\mathrm{O}^{\text {T }}$ US Amish: $1 / 16$	86.84\%	1/122
Usher Syndrome: Type 1B	O' European: 1/166	39.29\%	1/273
	O' General: 1/143	12.89\%	1/164
	$\sigma^{\prime \prime}$ North African: Unknown	66.67\%	Unknown
	$\sigma^{\text {a }}$ Spaniard: 1/152	12.16\%	1/173

Carrier screening report
Donor 5241
Date of Birth
Sema4 ID

Patient Information

Name: Donor 5241

Sema4 ID:
Client ID: \square
Indication: Carrier Screening

Specimen Information

Specimen Type: Purified DNA
Date Collected: 12/22/2021
Date Received: 12/29/2021
Final Report: 08/10/2022

Referring Provider

Fairfax Cryobank, Inc.

Unmask Additional Gene(s) (3 genes)

with Personalized Residual Risk

SUMMARY OF RESULTS AND RECOMMENDATIONS

\ominus Negative
Negative for all genes tested: BTD, TGM1, and TPP1
To view a full list of genes and diseases tested
please see Table 1 in this report

$A R=$ Autosomal recessive; $X L=X$-linked

Recommendations

- Consideration of residual risk by ethnicity after a negative carrier screen is recommended for the other diseases on the panel, especially in the case of a positive family history for a specific disorder. Please note that residual risks for X-linked diseases (including full repeat expansions for Fragile X syndrome) may not be accurate for males and the actual residual risk is likely to be lower.

Test description

This patient was tested for the genes listed above using one or more of the following methodologies: target capture and short-read sequencing, long-range PCR followed by short-read sequencing, targeted genotyping, and/or copy number analysis. Please note that negative results reduce but do not eliminate the possibility that this individual is a carrier for one or more of the disorders tested. Please see Table 1 for a list of genes and diseases tested with the patient's personalized residual risk. If personalized residual risk is not provided, please see the complete residual risk table at go.sema4.com/residualrisk. Only known pathogenic or likely pathogenic variants are reported. This carrier screening test does not report likely benign variants and variants of uncertain significance (VUS). If reporting of likely benign variants and VUS are desired in this patient, please contact the laboratory at 800-298-6470, option 2 to request an amended report.

Anastasia Larmore, Ph.D., Associate Laboratory Director
Laboratory Medical Consultant: George A. Diaz, M.D., Ph.D

Genes and diseases tested

The personalized residual risks listed below are specific to this individual. The complete residual risk table is available at go.sema4.com/residualrisk

Table 1: List of genes and diseases tested with detailed results

Disease	Gene	Inheritance Pattern	Status	Detailed Summary
Negative				
Biotinidase Deficiency	BTD	AR	Reduced Risk	Personalized Residual Risk: 1 in 500
Lamellar Ichthyosis, Type 1	TGM1	AR	Reduced Risk	Personalized Residual Risk: 1 in 1,500
Neuronal Ceroid-Lipofuscinosis (TPP1-Related)	TPP1	AR	Reduced Risk	Personalized Residual Risk: 1 in 6,300

$A R=$ Autosomal recessive; $X L=X$-linked

Test methods and comments

Genomic DNA isolated from this patient was analyzed by one or more of the following methodologies, as applicable:
Fragile X CGG Repeat Analysis (Analytical Detection Rate >99\%)
PCR amplification using Asuragen, Inc. AmplideX ${ }^{\circledR}$ FMR1 PCR reagents followed by capillary electrophoresis for allele sizing was performed. Samples positive for FMR1 CGG repeats in the premutation and full mutation size range were further analyzed by Southern blot analysis to assess the size and methylation status of the FMR1 CGG repeat.

Genotyping (Analytical Detection Rate >99\%)

Multiplex PCR amplification and allele specific primer extension analyses using the MassARRAY ${ }^{\circledR}$ System were used to identify certain recurrent variants that are complex in nature or are present in low copy repeats. Rare sequence variants may interfere with assay performance.

Multiplex Ligation-Dependent Probe Amplification (MLPA) (Analytical Detection Rate >99\%)

MLPA ${ }^{\circledR}$ probe sets and reagents from MRC-Holland were used for copy number analysis of specific targets versus known control samples. False positive or negative results may occur due to rare sequence variants in target regions detected by MLPA probes. Analytical sensitivity and specificity of the MLPA method are both 99%.
For alpha thalassemia, the copy numbers of the HBA1 and HBA2 genes were analyzed. Alpha-globin gene deletions, triplications, and the Constant Spring (CS) mutation are assessed. This test is expected to detect approximately 90% of all alpha-thalassemia mutations, varying by ethnicity. carriers of alpha-thalassemia with three or more HBA copies on one chromosome, and one or no copies on the other chromosome, may not be detected. With the exception of triplications, other benign alpha-globin gene polymorphisms will not be reported. Analyses of HBA1 and HBA2 are performed in association with long-range PCR of the coding regions followed by short-read sequencing.
For Duchenne muscular dystrophy, the copy numbers of all $D M D$ exons were analyzed. Potentially pathogenic single exon deletions and duplications are confirmed by a second method. Analysis of $D M D$ is performed in association with sequencing of the coding regions. For congenital adrenal hyperplasia, the copy number of the CYP21A2 gene was analyzed. This analysis can detect large deletions typically due to unequal meiotic crossing-over between CYP21A2 and the pseudogene CYP21A1P. Classic 30-kb deletions make up approximately 20% of CYP21A2 pathogenic alleles. This test may also identify certain point mutations in CYP21A2 caused by gene conversion events between CYP21A2 and CYP21A1P. Some carriers may not be identified by dosage sensitive methods as this testing cannot detect individuals with two copies (duplication) of the CYP21A2 gene on one chromosome and loss of CYP21A2 (deletion) on the other chromosome. Analysis of CYP21A2 is performed in association with long-range PCR of the coding regions followed by short-read sequencing.
For spinal muscular atrophy (SMA), the copy numbers of the SMN1 and SMN2 genes were analyzed. The individual dosage of exons 7 and 8 as well as the combined dosage of exons 1, 4, 6 and 8 of SMN1 and SMN2 were assessed. Copy number gains and losses can be detected with this assay. Depending on ethnicity, 6-29\% of carriers will not be identified by dosage sensitive methods as this testing cannot detect individuals with two copies (duplication) of the SMN1 gene on one chromosome and loss of SMN1 (deletion) on the other chromosome (silent $2+0$ carrier) or individuals that carry an intragenic mutation in SMN1. Please also note that 2% of individuals diagnosed with SMA have a
causative SMN1 variant that occurred de novo, and therefore cannot be picked up by carrier screening in the parents. Analysis of SMN1 is performed in association with short-read sequencing of exons 2a-7, followed by confirmation using long-range PCR (described below). The presence of the c." ${ }^{+}+80 T>G$ (chr5:70,247,901T>G) variant allele in an individual with Ashkenazi Jewish or Asian ancestry is typically indicative of a duplication of SMN1. When present in an Ashkenazi Jewish or Asian individual with two copies of SMN1, c. ${ }^{*} 3+80 T>G$ is likely indicative of a silent ($2+0$) carrier. In individuals with two copies of SMN1 with African American, Hispanic or Caucasian ancestry, the presence or absence of $\mathrm{c} .{ }^{*} 3+80 \mathrm{~T}>\mathrm{G}$ significantly increases or decreases, respectively, the likelihood of being a silent $2+0$ silent carrier.
MLPA for Gaucher disease (GBA), cystic fibrosis (CFTR), and non-syndromic hearing loss (GJB2/GJB6) will only be performed if indicated for confirmation of detected CNVs. If GBA analysis was performed, the copy numbers of exons 1, 3, 4, and 6-10 of the GBA gene (of 11 exons total) were analyzed. If CFTR analysis was performed, the copy numbers of all 27 CFTR exons were analyzed. If GJB2/GJB6 analysis was performed, the copy number of the two GJB2 exons were analyzed, as well as the presence or absence of the two upstream deletions of the GJB2 regulatory region, del(GJB6-D13S1830) and del(GJB6-D13S1854).

Next Generation Sequencing (NGS) (Analytical Detection Rate >95\%)

NGS was performed on a panel of genes for the purpose of identifying pathogenic or likely pathogenic variants.
Agilent SureSelect ${ }^{\top M} \times T$ Low Input technology was used with a custom capture library to target the exonic regions and intron/exon splice junctions of the relevant genes, as well as a number of UTR, intronic or promoter regions that contain previously reported mutations. Libraries were pooled and sequenced on the Illumina NovaSeq 9000 platform, using paired-end 100 bp reads. The sequencing data was analyzed using a custom bioinformatics algorithm designed and validated in house.

The coding exons and splice junctions of the known protein-coding RefSeq genes were assessed for the average depth of coverage (minimum of 20X) and data quality threshold values. Most exons not meeting a minimum of $>20 \mathrm{X}$ read depth across the exon are further analyzed by Sanger sequencing. Please note that several genomic regions present difficulties in mapping or obtaining read depth >20X. These regions, which are described below, will not be reflexed to Sanger sequencing if the mapping quality or coverage is poor. Any variants identified during testing in these regions are confirmed by a second method and reported if determined to be pathogenic or likely pathogenic. However, as there is a possibility of false negative results within these regions, detection rates and residual risks for these genes have been calculated with the presumption that variants in these exons will not be detected, unless included in the MassARRAY ${ }^{\circledR}$ genotyping platform.
Exceptions: $A B C D 1$ (NM_000033.3) exons 8 and 9; $A C A D S B$ (NM_ 001609.3) chr10:124.810,695-124,810,707 (partial exon 9); ADA (NM_000022.2) exon 1; ADAMTS2 (NM_014244.4) exon 1; AGPS(NM_003659.3) chr2:178,257.512-178,257,649 (partial exon 1); ALDH7A1 (NM_001182.4) chr5:125,911,150-125,911,163 (partial exon 7) and chr5:125,896,807-125,896,821 (partial exon 10); ALMS1 (NM_015120.4) chr2:73,612,990-73,613,041 (partial exon 1); APOPT1 (NM_ 032374.4) chr14:104,040,437-104,040,455 (partial exon 3); CDAN1 (NM_138477.2) exon 2; CEP152 (NM_014985.3) chr15:49,061,146-49,061,165 (partial exon 14) and exon 22; CEP290 (NM_025114.3) exon 5, exon 7, chr12:88,519,017-88,519,039 (partial exon 13), chr12:88,514,049-88,514,058 (partial exon 15), chr12:88,502,837-88,502,841 (partial exon 23), chr12:88,481,551-88,481,589 (partial exon 32), chr12:88,471,605-88,471,700 (partial exon 40); CFTR (NM_000492.3) exon 10; COL4A4 (NM_000092.4) chr2:227,942,604-227,942,619 (partial exon 25); COX10(NM_001303.3) exon 6; CYP11B1 (NM_000497.3) exons 3-7; CYP11B2 (NM_000498.3) exons 3-7; DNAl2 (NM_023036.4) chr17:72,308,13672,308,147 (partial exon 12); DOK7(NM_173660.4) chr4:3,465,131-3,465,161 (partial exon 1) and exon 2; DUOX2 (NM_014080.4) exons 6-8; EIF2AK3 (NM_004836.5 exon 8; EVC(NM_153717.2) exon 1; F5 (NM_000130.4) chr1:169,551,662-169,551,679 (partial exon 2); FH (NM_000143.3) exon 1; GAMT (NM_000156.5 exon 1; GLDC(NM_000170.2) exon 1; GNPTAB (NM_024312.4) chr17:4,837,000-4,837,400 (partial exon 2); GNPTG (NM_032520.4) exon 1; GHR (NM_000163.4) exon 3; GYS2 (NM_021957.3) chr12:21,699,370-21,699,409 (partial exon 12); HGSNAT(NM_152419.2) exon 1; IDS(NM_000202.6 exon 3: ITGB4 (NM_000213.4) chr17:73,749,976-73.750,060 (partial exon 33); JAK3(NM_000215.3) chr19:17,950,462-17,950,483 (partial exon 10); LIFR (NM_002310.5 exon 19; LMBRD1 (NM_018368.3) chr6:70,459,226-70,459,257 (partial exon 5), chr6:70,447,828-70,447,836 (partial exon 7) and exon 12; LYST (NM_000081.3) chr1:235,944,158-235,944,176 (partial exon 16) and chr1:235,875.350-235,875.362 (partial exon 43); MLYCD (NM_012213.2) chr16:83,933,242-83,933,282 (partial exon 1); MTR (NM_000254.2) chr1 237,024,418-237,024,439 (partial exon 20) and chr1:237,038,019-237,038,029 (partial exon 24); NBEAL2 (NM_015175.2) chr3 47,021,385-47,021,407 (partial exon 1); NEB (NM_001271208.1 exons 82-105; NPC1 (NM_000271.4) chr18:21,123,519-21,123,538 (partial exon 14); NPHP1 (NM_000272.3) chr2:110,937,251-110,937,263 (partial exon 3); OCRL (NM_000276.3) chrX:128,674,450-128,674,460 (partial exon 1); PHKB (NM_000293.2) exon 1 and chr16:47,732,498-47,732,504 (partial exon 30); P/GN (NM_176787.4) chr18:59,815.547-59,815,576 (partial exon 8); PIP5K1C (NM_012398.2) exon 1 and chr19:3637602-3637616 (partial exon 17); POU1F1 (NM_000306.3) exon 5: PTPRC (NM_002838.4) exons 11 and 23: PUS1 (NM_025215.5 chr12:132,414,446-132,414.532 (partial exon 2); RPGRIP1L (NM_015272.2) exon 23: SGSH (NM_000199.3) chr17:78,194,022-78,194,072 (partial exon 1); SLC6A8 (NM_005629.3) exons 3 and 4; ST3GAL5 (NM_003896.3) exon 1; SURF1 (NM_003172.3) chrg:136,223,269-136,223,307 (partial exon 1); TRPM6 (NM_017662.4) chrg:77,362,800-77,362,811 (partial exon 31); TSEN54 (NM_207346.2) exon 1; TYR(NM_000372.4) exon 5; VWF(NM_000552.3) exons 24-26, chr12:6,125,675-6,125,684 (partial exon 30), chri2:6,121,2446,121,265 (partial exon 33), and exon 34.

This test will detect variants within the exons and the intron-exon boundaries of the target regions. Variants outside these regions may not be detected, including, but not limited to, UTRs, promoters, and deep intronic areas, or regions that fall into the Exceptions mentioned above. This
technology may not detect all small insertion/deletions and is not diagnostic for repeat expansions and structural genomic variation. In addition, a mutation(s) in a gene not included on the panel could be present in this patient.
Variant interpretation and classification was performed based on the American College of Medical Genetics Standards and Guidelines for the Interpretation of Sequence Variants (Richards et al, 2015). All potentially pathogenic variants may be confirmed by either a specific genotyping assay or Sanger sequencing, if indicated. Any benign variants, likely benign variants or variants of uncertain significance identified during this analysis will not be reported.

Next Generation Sequencing for SMN1

Exonic regions and intron/exon splice junctions of SMN1 and SMN2 were captured, sequenced, and analyzed as described above. Any variants located within exons 2a-7 and classified as pathogenic or likely pathogenic were confirmed to be in either SMN1 or SMN2 using gene-specific long-range PCR analysis followed by Sanger sequencing. Variants located in exon 1 cannot be accurately assigned to either SMN1 or SMN2 using our current methodology, and so these variants are considered to be of uncertain significance and are not reported.

Copy Number Variant Analysis (Analytical Detection Rate >95\%)

Large duplications and deletions were called from the relative read depths on an exon-by-exon basis using a custom exome hidden Markov model (XHMM) algorithm. Deletions or duplications determined to be pathogenic or likely pathogenic were confirmed by either a custom arrayCGH platform, quantitative PCR, or MLPA (depending on CNV size and gene content). While this algorithm is designed to pick up deletions and duplications of 2 or more exons in length, potentially pathogenic single-exon CNVs will be confirmed and reported, if detected.

Exon Array (Confirmation method) (Accuracy >99\%)

The customized oligonucleotide microarray (Oxford Gene Technology) is a highly-targeted exon-focused array capable of detecting medically relevant microdeletions and microduplications at a much higher resolution than traditional aCGH methods. Each array matrix has approximately 180,00060 -mer oligonucleotide probes that cover the entire genome. This platform is designed based on human genome NCBI Build 37 (hg19) and the CGH probes are enriched to target the exonic regions of the genes in this panel.

Quantitative PCR (Confirmation method) (Accuracy >99\%)

Th relative quantification PCR is utilized on a Roche Universal Library Probe (UPL) system, which relates the PCR signal of the target region in one group to another. To test for genomic imbalances, both sample DNA and reference DNA is amplified with primer/probe sets that specific to the target region and a control region with known genomic copy number. Relative genomic copy numbers are calculated based on the standard $\triangle \triangle C t$ formula.

Long-Range PCR (Analytical Detection Rate >99\%)

Long-range PCR was performed to generate locus-specific amplicons for CYP21A2, HBA1 and HBA2 and GBA. The PCR products were then prepared for short-read NGS sequencing and sequenced. Sequenced reads were mapped back to the original genomic locus and run through the bioinformatics pipeline. If indicated, copy number from MLPA was correlated with the sequencing output to analyze the results. For CYP21A2, a certain percentage of healthy individuals carry a duplication of the CYP21A2 gene, which has no clinical consequences. In cases where two copies of a gene are located on the same chromosome in tandem, only the second copy will be amplified and assessed for potentially pathogenic variants, due to size limitations of the PCR reaction. However, because these alleles contain at least two copies of the CYP21A2 gene in tandem, it is expected that this patient has at least one functional gene in the tandem allele and this patient is therefore less likely to be a carrier. When an individual carries both a duplication allele and a pathogenic variant, or multiple pathogenic variants, the current analysis may not be able to determine the phase (cis/trans configuration) of the CYP21A2 alleles identified. Family studies may be required in certain scenarios where phasing is required to determine the carrier status.

Residual Risk Calculations

Carrier frequencies and detection rates for each ethnicity were calculated through the combination of internal curations of >30,000 variants and genomic frequency data from $>138,000$ individuals across seven ethnic groups in the gnomAD database. Additional variants in HGMD and novel deleterious variants were also incorporated into the calculation. Residual risk values are calculated using a Bayesian analysis combining the a priori risk of being a pathogenic mutation carrier (carrier frequency) and the detection rate. They are provided only as a guide for assessing approximate risk given a negative result, and values will vary based on the exact ethnic background of an individual. This report does not represent medical advice but should be interpreted by a genetic counselor, medical geneticist or physician skilled in genetic result interpretation and the relevant medical literature.

Personalized Residual Risk Calculations

Agilent SureSelect ${ }^{\top M} \times T$ Low-Input technology was utilized in order to create whole-genome libraries for each patient sample. Libraries were then pooled and sequenced on the Illumina NovaSeq platform. Each sequencing lane was multiplexed to achieve 0.4-2x genome coverage, using paired-end 100 bp reads. The sequencing data underwent ancestral analysis using a customized, licensed bioinformatics algorithm that was validated in house. Identified sub-ethnic groupings were binned into one of 7 continental-level groups (African, East Asian, South Asian,

Non-Finnish European, Finnish, Native American, and Ashkenazi Jewish) or, for those ethnicities that matched poorly to the continental-level groups, an $8^{\text {th }}$ "unassigned" group, which were then used to select residual risk values for each gene. For individuals belonging to multiple highlevel ethnic groupings, a weighting strategy was used to select the most appropriate residual risk. For genes that had insufficient data to calculate ethnic-specific residual risk values, or for sub-ethnic groupings that fell into the "unassigned" group, a "worldwide" residual risk was used. This "worldwide" residual risk was calculated using data from all available continental-level groups.

Sanger Sequencing (Confirmation method) (Accuracy >99\%)

Sanger sequencing, as indicated, was performed using BigDye Terminator chemistry with the ABI 3730 DNA analyzer with target specific amplicons. It also may be used to supplement specific guaranteed target regions that fail NGS sequencing due to poor quality or low depth of coverage (<20 reads) or as a confirmatory method for NGS positive results. False negative results may occur if rare variants interfere with amplification or annealing.

Tay-Sachs Disease (TSD) Enzyme Analysis (Analytical Detection Rate $\geq 98 \%$)

Hexosaminidase activity and $\mathrm{Hex} \mathrm{A} \%$ activity were measured by a standard heat-inactivation, fluorometric method using artificial 4-MU- $\beta-\mathrm{N}$ acetyl glucosaminide (4-MUG) substrate. This assay is highly sensitive and accurate in detecting Tay-Sachs carriers and individuals affected with TSD. Normal ranges of Hex A\% activity are 55.0-72.0 for white blood cells and 58.0-72.0 for plasma. It is estimated that less than 0.5% of Tay-Sachs carriers have non-carrier levels of percent Hex A activity, and therefore may not be identified by this assay. In addition, this assay may detect individuals that are carriers of or are affected with Sandhoff disease. False positive results may occur if benign variants, such as pseudodeficiency alleles, interfere with the enzymatic assay. False negative results may occur if both $H E X A$ and $H E X B$ pathogenic or pseudodeficiency variants are present in the same individual.
Please note these tests were developed and their performance characteristics were determined by Sema4 Opco, Inc. They have not been cleared or approved by the FDA. These analyses generally provide highly accurate information regarding the patient's carrier or affected status. Despite this high level of accuracy, it should be kept in mind that there are many potential sources of diagnostic error, including misidentification of samples, polymorphisms, or other rare genetic variants that interfere with analysis. Families should understand that rare diagnostic errors may occur for these reasons.

SELECTED REFERENCES

Carrier Screening

Grody W et al. ACMG position statement on prenatal/preconception expanded carrier screening. Genet Med. 2013 15:482-3.

Fragile X syndrome:

Chen Let al. An information-rich CGG repeat primed PCR that detects the full range of Fragile X expanded alleles and minimizes the need for Southern blot analysis. J Mol Diag 2010 12:589-600.
Spinal Muscular Atrophy:
Luo M et al. An Ashkenazi Jewish SMN1 haplotype specific to duplication alleles improves pan-ethnic carrier screening for spinal muscular atrophy. Genet Med. 2014 16:149-56.

Ashkenazi Jewish Disorders:

Scott SA et al. Experience with carrier screening and prenatal diagnosis for sixteen Ashkenazi Jewish Genetic Diseases. Hum. Mutat. 2010 31:111.

Duchenne Muscular Dystrophy:

Flanigan KM et al. Mutational spectrum of DMD mutations in dystrophinopathy patients: application of modern diagnostic techniques to a large cohort. Hum Mutat. 2009 30:1657-66.

Variant Classification:

Richards S et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015 May;17(5):405-24
Additional disease-specific references available upon request.

