

Donor 5708

Genetic Testing Summary

Fairfax Cryobank recommends reviewing this genetic testing summary with your healthcare provider to determine suitability.

Last Updated: 11/13/23

Donor Reported Ancestry: Mongolian Jewish Ancestry: No

Genetic Test*	Result	Comments/Donor's Residual Risk**
---------------	--------	----------------------------------

Chromosome analysis (karyotype)	Normal male karyotype	No evidence of clinically significant chromosome abnormalities
Hemoglobin evaluation	Normal hemoglobin fractionation and MCV/MCH results	Reduced risk to be a carrier for sickle cell anemia, beta thalassemia, alpha thalassemia trait (aa/ and a-/a-) and other hemoglobinopathies
Cystic Fibrosis (CF) carrier screening	Negative by gene sequencing in the CFTR gene	1/4545
Spinal Muscular Atrophy (SMA) carrier screening	Negative for deletions of exon 7 in the SMN1 gene	1/628
Standard testing attached- 22 diseases by gene sequencing	Negative for genes sequenced	
Special Testing		
Gene: ASS1	Negative by gene sequencing	

^{*}No single test can screen for all genetic disorders. A negative screening result significantly reduces, but cannot eliminate, the risk for these conditions in a pregnancy.

^{**}Donor residual risk is the chance the donor is still a carrier after testing negative.

Carrier Map™

Partner Not Tested

Ordering Practice:

Practice Code: Fairfax Cryobank

Physician:

Report Generated: 2017-08-09

Donor 5708

DOB:
Gender: Male
Ethnicity: Other
Procedure ID: 100102

Kit Barcode:

Specimen: Blood, #101477 Specimen Collection: 2017-07-25 Specimen Received: 2017-07-26 Specimen Analyzed: 2017-08-09

TEST INFORMATION

Test: CarrierMap^{SEQ} (Genotyping &

Sequencing)

Panel: Fairfax Cryobank Panel V2-

Sequencing
Diseases Tested: 22
Genes Tested: 22
Genes Sequenced: 18

SUMMARY OF RESULTS: NO MUTATIONS IDENTIFIED

Donor 5708 was not identified to carry any pathogenic mutations in the gene(s) tested.

No pathogenic mutations were identified in the genes tested, reducing but not eliminating the chance to be a carrier for the associated genetic diseases. CarrierMap assesses carrier status for genetic disease via molecular methods including targeted mutation analysis and/or next-generation sequencing; other methodologies such as CBC and hemoglobin electrophoresis for hemoglobinopathies and enzyme analysis for Tay-Sachs disease may further refine risks for these conditions. Results should be interpreted in the context of clinical findings, family history, and/or other testing. A list of all the diseases and mutations screened for is included at the end of the report. This test does not screen for every possible genetic disease.

For additional disease information, please visit recombine.com/diseases. To speak with a Genetic Counselor, call 855.OUR.GENES.

Assay performed by Reprogenetics
CLIA ID: 31 D 1054821

3 Regent Street, Livingston, NJ 07039

Lab Technician: Bo Chu

Recombine CLIA # 31D2100763
Reviewed by Pere Colls, PhD, HCLD, Lab Director

ADDITIONAL RESULTS: NO INCREASED REPRODUCTIVE RISK

The following results are not associated with an increased reproductive risk.

Disease (Gene)	Donor 5708	Partner Not Tested
Spinal Muscular Atrophy: SMN1 Linked (SMN1)*	SMN1 Copy Number: 2 or more copies Method: dPCR & Genotyping	

*SMA Risk Information for Individuals with No Family History of SMA

	Detection Rate	Pre-Test Carrier Risk	Post-Test Carrier Risk (2 SMN1 copies)	Post-Test Carrier Risk (3 SMN1 copies)
European	95%	1/35	1/632	1/3,500
Ashkenazi Jewish	90%	1/41	1/350	1/4,000
Asian	93%	1/53	1/628	1/5,000
African American	71%	1/66	1/121	1/3,000
Hispanic	91%	1/117	1/1,061	1/11,000

For other unspecified ethnicities, post-test carrier risk is assumed to be <1%. For individuals with multiple ethnicities, it is recommended to use the most conservative risk estimate.

Methods and Limitations

Genotyping: Genotyping is performed using the Illumina Infinium Custom HD Genotyping assay to identify mutations in the genes tested. The assay is not validated for homozygous mutations, and it is possible that individuals affected with disease may not be accurately genotyped.

Sequencing: Sequencing is performed using a custom next-generation sequencing (NGS) platform. Only the described exons for each gene listed are sequenced. Variants outside of these regions may not be identified. Some splicing mutations may not be identified. Triplet repeat expansions, intronic mutations, and large insertions and deletions may not be detected. All identified variants are curated, and determination of the likelihood of their pathogenicity is made based on examining allele frequency, segregation studies, predicted effect, functional studies, case/control studies, and other analyses. All variants identified via sequencing that are reported to cause disease in the primary scientific literature will be reported. Variants considered to be benign and variants of unknown significance (VUS) are NOT reported. In the sequencing process, interval drop-out may occur, leading to intervals of insufficient coverage. Intervals of insufficient coverage will be reported if they occur.

Spinal Muscular Atrophy: Carrier status for SMA is assessed via copy number analysis by dPCR and via genotyping. Some individuals with a normal number of SMN1 copies (2 copies) may carry both copies of the gene on the same allele/chromosome; this analysis is not able to detect these individuals. Thus, a normal SMN1 result significantly reduces but does not eliminate the risk of being a carrier. Additionally, SMA may be caused by non-deletion mutations in the SMN1 gene; CarrierMap tests for some, but not all, of these mutations. Some SMA cases arise as the result of de novo mutation events which will not be detected by carrier testing.

Limitations: In some cases, genetic variations other than that which is being assayed may interfere with mutation detection, resulting in false-negative or false-positive results. Additional sources of error include, but are not limited to: sample contamination, sample mix-up, bone marrow transplantation, blood transfusions, and technical errors. The test does not test for all forms of genetic disease, birth defects, and intellectual disability. All results should be interpreted in the context of family history; additional evaluation may be indicated based on a history of these conditions. Additional testing may be necessary to determine mutation phase in individuals identified to carry more than one mutation in the same gene. All mutations included within the genes assayed may not be detected, and additional testing may be appropriate for some individuals.

This test was developed and its performance determined by Recombine, Inc., and it has not been cleared or approved by the U.S. Food and Drug Administration (FDA). The FDA has determined that such clearance or approval is not necessary.

Carrier Map™

Diseases & Mutations Assayed

Alpha Thalassemia (HBA1, HBA2): Mutations (9): O' Genotyping | SEA deletion, c.207C>A (p.N69K), c.223G>C (p.D75H), c.2T>C (p.M1T), c.207C>G (p.N69K), c.340_351 delCTCCCGGCGAG (p.L114_E117del), c.377T>C (p.L126P), c.427T>C (p.X143Qext32), c.*+94A>G

Beta Thalassemia (HBB): Mutations (81): O' Genotyping | c. 124_127delTTCT (p.F42Lfs), c.17_18delCT, c.20delA (p.E7Gfs), c.217insA (p.S73Kfs), c.223+702_444+342del620insAAGTAGA, c.230delC, c.25_26delAA, c.315+1G>A, c.315+2T>C, c.316-197C>T, c.316-146T>G, c.315+745C>G, c.316-1G>A, c.316-1G>C, c.316-2A>G, c.316-3C>A, c.316-3C>G, c.4delG (p.V2Cfs), c.51delC (p.K18Rfs), c.93-21G>A, c.92+1G>A, c.92+5G>A, c.92+5G>C, c.92+5G>T, c.92+6T>C, c.93-1G>A, c.93-1G>T, c.-50A>C, c.-78a>g, c.-79A>G, c.-81A>G, c.52A>T (p.K18X), c.-137c>g, c.-138c>t, c.-151C>T, c.118C>T (p.Q40X), c.169G>C (p.G57R), c.295G>A (p.V99M), c.415G>C (p.A139P), c.47G>A (p.W16X), c.48G>A (p.W16X), c.-80t>a, c.2T>C (p.M1T), c.75T>A (p.G25G), c.444+111A>G, c.-29g>a, c.68_74delAAGTTGG, c.92G>C (p.R31T), c.92+1G>T, c.93-15T>G, c.93-1G>C, c.112delT, c.113G>A (p.W38X), c.114G>A (p.W38X), c.126delC, c.444+113A>G, c.250delG, c.225delC, c.383_385delAGG (p.Q128_A129delQAinsP), c.321_322insG (p.N109fs), c.316-1G>T, c.316-2A>C, c.287_288insA (p.L97fs), c.271G>T (p.E91X), c.203_204delTG (p.V68Afs), c.154delC (p.P52fs), c.135delC (p.F46fs), c.92+2T>A, c.92+2T>C, c.90C>T (p.G30G), c.84_85insC (p.L29fs), c.59A>G (p.N20S), c.46delT (p.W16Gfs), c.45_46insG (p.L16fs), c.36delT (p.T13fs), c.2T>G (p.M1R), c.1A>G (p.M1V), c.-137c>t, c.-136C>G, c.-142c>t, c.-140c>t Sequencing | NM_000518:1-3

Bloom Syndrome (BLM): Mutations (25): ♂ Genotyping | c.2207_2212delATCTGAinsTAGATTC (p.Y736Lfs), c.2407insT, c.557_559delCAA (p.S186X), c.1284G>A (p.W428X), c.1701G>A (p.W567X), c.1933C>T (p.Q645X), c.2528C>T (p.T843I), c.2695C>T (p.R899X), c.3107G>T (p.C1036F), c.2923delC (p.Q975K), c.3558+1G>T, c.3875-2A>G, c.2074+2T>A, c.2343_2344dupGA (p.781EfsX), c.318_319insT (p.L107fs), c.380delC (p.127Tfs), c.3564delC (p.1188Dfs), c.4008delG (p.1336Rfs), c.947C>G (p.S316X), c.2193+1_2193+9del9, c.1642C>T (p.Q548X), c.3143delA (p.1048NfsX), c.356_357delTA (p.C120Hfs), c.4076+1delG, c.3281C>A (p.S1094X) Sequencing | NM_000057:2-22

Canavan Disease (ASPA): Mutations (8): of Genotyping | c.433-2A>G, c.854A>C (p.E285A), c.693C>A (p.Y231X), c.914C>A (p.A305E), c.71A>G (p.E24G), c.654C>A (p.C218X), c.2T>C (p.M1T), c.79G>A (p.G27R) Sequencing | NM_000049:1-6

Cystic Fibrosis (CFTR): Mutations (150): O' Genotyping | c.1029delC, 1153_1154insAT, c.1477delCA, c.1519_1521delATC (p.507dell), c.1521_1523delCTT (p.508delF), c.1545_1546delTA (p.Y515Xfs), c.1585-1G>A, c.164+12T>C, c.1680-886A>G, c.1680-1G>A, c. 1766+1G>A, c. 1766+1G>T, c. 1766+5G>T, c. 1818del84, c. 1911delG, c. 1923 del CTCAAAACTinsA, c. 1973 del GAAATTCAATCCTinsAGAAA, c. 2052 del A (p. K684 fs), c.2052insA (p.Q685fs), c.2051_2052delAAinsG (p.K684SfsX38), c.2174insA, c.261delTT, c.2657+5G>A, c.273+1G>A, c.273+3A>C, c.274-1G>A, c.2988+1G>A, c.3039delC, c.3140-26A>G, c.325delTATinsG, c.3527delC, c.3535delACCA, c.3691delT, c.3717+12191C>T, c.3744delA, c.3773_3774insT (p.L1258fs), c.442delA, c.489+1G>T, c.531delT, c.579+1G>T, c.579+5G>A (IVS4+5G>A), c.803delA (p.N268fs), c.805_806delAT (p.I269fs), c.933_935delCTT (p.311delF), c.946delT, c.1645A>C (p.S549R), c.2128A>T (p.K710X), c.1000C>T (p.R334W), c.1013C>T (p.T338I), c.1364C>A (p.A455E), c.1477C>T (p.Q493X), c.1572C>A (p.C524X), c.1654C>T (p.Q552X), c.1657C>T (p.R553X), c.1721C>A (p.P574H), c.2125C>T (p.R709X), c.223C>T (p.R75X), c.2668C>T (p.Q890X), c.3196C>T (p.R1066C), c.3276C>G (p.Y1092X), c.3472C>T (p.R1158X), c.3484C>T (p.R1162X), c.349C>T (p.R117C), c.3587C>G (p.S1196X), c.3712C>T (p.Q1238X), c.3764C>A (p.S1255X), c.3909C>G (p.N1303K), c.1040G>A (p.R347H), c.1040G>C (p.R347P), c.1438G>T (p.G480C), c.1558G>T (p.V520F), c.1624G>T (p.G542X), c.1646G>A (p.S549N), c.1646G>T (p.S549I), c.1652G>A (p.G551D), c.1675G>A (p.A559T), c.1679G>C (p.R560T), c.178G>T (p.E60X), c.1865G>A (p.G622D), c.254G>A (p.G85E), c.271G>A (p.G91R), c.274G>T (p.E92X), c.3209G>A (p.R1070Q), c.3266G>A (p.W1089X), c.3454G>C (p.D1152H), c.350G>A (p.R117H), c.3611 G>A (p.W 1204X), c.3752 G>A (p.S 1251 N), c.3846 G>A (p.W 1282X), c.3848 G>T (p.R1283M), c.532G>A (p.G178R), c.988G>T (p.G330X), c.1090T>C (p.S364P), c.3302T>A (p.M1101K), c.617T>G (p.L206W), c.14C>T (p.P5L), c.19G>T (p.E7X), c.171G>A (p.W57X), c.313delA (p.I105fs), c.328G>C (p.D110H), c.580-1G>T, c.1055G>A (p.R352Q), c.1075C>A (p.Q359K), c.1079C>A (p.T360K), c.1647T>G (p.S549R), c.1976delA (p.N659fs), c.2290C>T (p.R764X), c.2737_2738insG (p.Y913X), c.3067_3072delATAGTG (p.I1023_V1024delT), c.3536_3539delCCAA (p.T1179fs), c.3659delC (p.T1220fs), c.54-5940_273+10250del21080bp (p.S18fs), c.4364C>G (p.S1455X), c.4003C>T (p.L1335F), c.2538G>A (p.W846X), c.200C>T (p.P67L), c.4426C>T (p.Q1476X), c.1116+1G>A, c.1986_1989delAACT (p.T663R), c.2089_2090insA (p.R697Kfs), c.2215delG (p.V739Y), c.263T>G (p.L196X), c.3022delG (p.V1008S), c.3908dupA (p.N1303Kfs), c.658C>T (p.Q220X), c.868C>T (p.Q290X), c.1526delG (p.G509fs), c.2908+1085-3367+260del7201, c.11C>A (p.S4X), c.3878_3881 delTATT (p.V1293fs), c.3700A>G (p.11234V), c.416A>T (p.H139L), $c.366T > A \; (p.Y122X), \; c.3767_3768 ins C \; (p.A1256fs), \; c.613C > T \; (p.P205S), \; c.293A > G \; (p.Q98R), \; c.293A$ c.3731 G>A (p.G 1244E), c.535C>A (p.Q 179K), c.3368-2A>G, c.455T>G (p.M 152R), c.1610_1611 delAC (p.D537fs), c.3254A>G (p.H1085R), c.496A>G (p.K166E), c.1408_1417delGTGATTATGG (p.V470fs), c.1585-8G>A, c.2909G>A (p.G970D), c.653T>A (p.L218X), c.1175T>G (p.V392G), c.3139_3139+1 delGG, c.3717+4A>G (IVS22+4A>G) Sequencing | NM_000492:1-27

Familial Dysautonomia (IKBKAP): Mutations (4): & Genotyping | c.2204+6T>C, c.2741C>T (p.P914L), c.2087G>C (p.R696P), c.2128C>T (p.Q710X) Sequencing | NM_003640:2-37

Familial Hyperinsulinism: Type 1: ABCC8 Related (ABCC8): Mutations (11): of Genotyping | c.3989-9G>A, c.4159_4161 delTTC (p.1387 delF), c.4258C>T (p.R1420C), c.4477C>T (p.R1493W), c.2147G>T (p.G716V), c.4055G>C (p.R1352P), c.560T>A (p.V187D), c.4516G>A (p.E1506K), c.2506C>T (p.Q836X), c.579+2T>A, c.1333-1013A>G (IVS8-1013A>G) Sequencing | NM_000352:1-39

Fanconi Anemia: Type C (FANCC): Mutations (8): & Genotyping | c.456+4A>T, c.67delG, c.37C>T (p.Q13X), c.553C>T (p.R185X), c.1661T>C (p.L554P), c.1642C>T (p.R548X), c.66G>A (p.W22X), c.65G>A (p.W22X) Sequencing | NM_000136:2-15

Gaucher Disease (GBA): Mutations (6): ♂ Genotyping | c.84_85insG, c.1226A>G (p.N409S), c.1343A>T (p.D448V), c.1504C>T (p.R502C), c.1297G>T (p.V433L), c.1604G>A (p.R535H)

Glycogen Storage Disease: Type IA (G6PC): Mutations (13): of Genotyping | c.376_377insTA, c.79delC, c.979_981delTTC (p.327delF), c.1039C>T (p.Q347X), c.247C>T (p.R83C), c.724C>T (p.Q242X), c.248G>A (p.R83H), c.562G>C (p.G188R), c.648G>T, c.809G>T (p.G270V), c.113A>T (p.D38V), c.975delG (p.L326fs), c.724delC Sequencing | NM 000151:1-5

Joubert Syndrome (TMEM216): Mutations (2): O* Genotyping | c.218G>T (p.R73L), c.218G>A (p.R73H) Sequencing | NM_001173991:1-5

Maple Syrup Urine Disease: Type 1B (BCKDHB): Mutations (6): 6 Genotyping c.1114G>T (p.E372X), c.548G>C (p.R183P), c.832G>A (p.G278S), c.970C>T (p.R324X), c.487G>T (p.E163X), c.853C>T (p.R285X) Sequencing | NM_183050:1-10

Maple Syrup Urine Disease: Type 3 (DLD): Mutations (8): 07 Genotyping | c.104_105insA, c.685G>T (p.G229C), c.214A>G (p.K72E), c.1081A>G (p.M361V), c.1123G>A (p.E375K), c.1178T>C (p.I393T), c.1463C>T (p.P488L), c.1483A>G (p.R495G) Sequencing | NM_000108:1-14

Mucolipidosis: Type IV (MCOLN1): Mutations (5): σ^2 Genotyping | c.-1015_788del6433, c.406-2A>G, c.1084G>T (p.D362Y), c.304C>T (p.R102X), c.244delC (p.L82fsX) Sequencing NM_020533:1-14

Nemaline Myopathy: NEB Related (NEB): Mutations (2): ♂ Genotyping | c.7434_7536del2502bp, c.8890-2A>G (IVS63-2A>G) Sequencing | NM_001164508:63-66,86,95-96,103,105,143,168-172, NM_004543:3-149

Niemann-Pick Disease: Type A (SMPD1): Mutations (6): of Genotyping | c.996delC, c.1493G>T (p.R498L), c.911T>C (p.L304P), c.1267C>T (p.H423Y), c.1734G>C (p.K578N), c.1493G>A (p.R498H) Sequencing | NM_000543:1-6

Sickle-Cell Anemia (HBB): Mutations (1): of Genotyping | c.20A>T (p.E7V) Sequencing | NM_000518:1-3

Spinal Muscular Atrophy: SMN1 Linked (SMN1): Mutations (19): of Genotyping | DEL EXON 7, c.22_23insA, c.43C>T (p.Q15X), c.91_92insT, c.305G>A (p.W102X), c.400G>A (p.E134K), c.439_443delGAAGT, c.558delA, c.585_586insT, c.683T>A (p.L228X), c.734C>T (p.P245L), c.768_778dupTGCTGATGCTT, c.815A>G (p.Y272C), c.821C>T (p.T274I), c.823G>A (p.G275S), c.834+2T>G, c.835-18_835-12delCCTTTAT, c.835G>T, c.836G>T dPCR | DEL

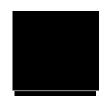
Tay-Sachs Disease (HEXA): Mutations (78): O' Genotyping | c.1073+1G>A, c.1277_1278insTATC, c.1421+1G>C, c.805+1G>A, c.532C>T (p.R178C), c.533G>A (p.R178H), c.805G>A (p.G269S), c.1510C>T (p.R504C), c.1496G>A (p.R499H), c.509G>A (p.R170Q), c.1003A>T (p.1335F), c.910_912delTTC (p.305delF), c.749G>A (p.G250D), c.632T>C (p.F211S), c.629C>T (p.S210F), c.613delC, c.611A>G (p.H204R), c.598G>A (p.V200M), c.590A>C (p.K197T), c.571-1G>T, c.540C>G (p.Y180X), c.538T>C (p.Y180H), c.533G>T (p.R178L), c.508C>T (p.R170W), c.409C>T (p.R137X), c.380T>G (p.L127R), c.346+1G>C, c.116T>G (p.L39R), c.78G>A (p.W26X), c.1A>G (p.M1V), c.1495C>T (p.R499C), c.459+5G>A (IVS4+5G>A), c.1422-2A>G, c.535C>T (p.H179Y), c.1141 delG (p.V381fs), c.796T>G (p.W266G), c.155C>A (p.S52X), c.426delT (p.F142fs), c.413-2A>G, c.570+3A>G, c.536A>G (p.H179R), c.1146+1G>A, c.736G>A (p.A246T), c.1302C>G (p.F434L), c.778C>T (p.P260S), c.1008G>T (p.Q336H), c.1385A>T (p.E462V), c.964G>A (p.D322N), c.340G>A (p.E114K), c.1432G>A (p.G478R), c.1178G>C (p.R393P), c.805+1G>C, c.1426A>T (p.R476X), c.623A>T (p.D208V), c.1537C>T (p.Q513X), c.1511G>T (p.R504L), c.1307_1308delTA (p.I436fs), c.571-8A>G, c.624_627delTCCT (p.D208fs), c.1211_1212delTG (p.L404fs), c.621T>G (p.D207E), c.1511G>A (p.R504H), c.1177C>T (p.R393X), c.2T>C (p.M1T), c.1292G>A (p.W431X), c.947_948insA (p.Y316fs), c.607T>G (p.W203G), c.1061_1063delTCT (p.F354_Y355delinsX), c.615delG (p.L205fs), c.805+2T>C, c.1123delG (p.E375fs), c.1121A>G (p.Q374R), c.1043_1046delTCAA (p.F348fs), c.1510delC (p.R504fs), c.1451T>C (p.L484P), c.964G>T (p.D322Y), c.1351C>G (p.L451V), c.571-2A>G (IVS5-2A>G) Sequencing | NM_000520:1-14 Usher Syndrome: Type 1F (PCDH15): Mutations (7): of Genotyping | c.733C>T (p.R245X),

c.2067C>A (p.Y684X), c.7C>T (p.R3X), c.1942C>T (p.R648X), c.1101 delT (p.A367fsX), c.2800C>T (p.R934X), c.4272delA (p.L1425fs) Sequencing | NM_001142763:2-35

Usher Syndrome: Type 3 (CLRN1): Mutations (5): 07 Genotyping | c.144T>G (p.N48K), c.131T>A (p.M120K), c.567T>G (p.Y189X), c.634C>T (p.Q212X), c.221T>C (p.L74P) Sequencing | NM_001195794:1-4

Walker-Warburg Syndrome (FKTN): Mutations (5): & Genotyping | c.1167insA (p.F390fs), c. 139C>T (p.R47X), c.748T>G (p.C250G), c.648-1243G>T (IVS5-1243G>T), c.515A>G (p.H172R) Sequencing | NM_006731:2-10

Residual Risk Information


Detection rates are calculated from the primary literature and may not be available for all ethnic populations. The values listed below are for genotyping. Sequencing provides higher detection rates and lower residual risks for each disease. More precise values for sequencing may become available in the future.

Disease	Carrier Rate	Detection Rate	Residual Risk
Alpha Thalassemia	♂ General: 1/48	50.67%	1/97
Beta Thalassemia	♂ African American: 1/75	84.21%	1/475
	♂ Indian: 1/24	<i>7</i> 4.12%	1/93
	♂ Sardinians: 1/23	97.14%	1/804
	♂ Spaniard: 1/51	93.10%	1/739
Bloom Syndrome	♂ Ashkenazi Jewish: 1/134	96.67%	1/4,020
	♂ European: Unknown	66.22%	Unknown
	♂ Japanese: Unknown	50.00%	Unknown
Canavan Disease	♂ Ashkenazi Jewish: 1/55	98.86%	1/4,840
	♂ European: Unknown	53.23%	Unknown
Cystic Fibrosis	♂ African American: 1/62	69.99%	1/207
	♂ Ashkenazi Jewish: 1/23	96.81%	1/721
	♂ Asian: 1/94	65.81%	1/275
	♂ European: 1/25	94.96%	1/496
	♂ Hispanic American: 1/48	77.32%	1/212
	♂ Native American: 1/53	84.34%	1/338
Familial Dysautonomia	♂ Ashkenazi Jewish: 1/31	>99%	<1/3,100
Familial Hyperinsulinism: Type 1: ABCC8 Related	♂ Ashkenazi Jewish: 1/52	98.75%	1/4,160
	♂ Finnish: 1/101	45.16%	1/184
Fanconi Anemia: Type C	♂ Ashkenazi Jewish: 1/101	>99%	<1/10,10
	♂ General: Unknown	30.00%	Unknown
Gaucher Disease	♂ Ashkenazi Jewish: 1/15	87.16%	1/117
	♂ General: 1/112	31.60%	1/164
	♂ Spaniard: Unknown	44.29%	Unknown
	♂ Turkish: 1/236	59.38%	1/581
Glycogen Storage Disease: Type IA	♂ Ashkenazi Jewish: 1/71	>99%	<1/7,100
	♂ Chinese: 1/159	80.00%	1/795
	♂ European: 1/177	76.88%	1/765
	o⁴ Hispanic American: 1/177	27.78%	1/245
	♂ Japanese: 1/177	89.22%	1/1,641
oubert Syndrome	♂ Ashkenazi Jewish: 1/92	>99%	<1/9,200
Maple Syrup Urine Disease: Type 1B	♂ Ashkenazi Jewish: 1/97	>99%	<1/9,700
Maple Syrup Urine Disease: Type 3	♂ Ashkenazi Jewish: 1/94	>99%	<1/9,400
	♂ General: Unknown	68.75%	Unknown
Mucolipidosis: Type IV	♂ Ashkenazi Jewish: 1/97	96.15%	1/2,522
Nemaline Myopathy: NEB Related	♂ Ashkenazi Jewish: 1/108	>99%	<1/10,80

Disease	Carrier Rate	Detection Rate	Residual Risk
Niemann-Pick Disease: Type A	♂ Ashkenazi Jewish: 1/101	95.00%	1/2,020
Sickle-Cell Anemia	♂ African American: 1/10	>99%	<1/1,000
	♂ Hispanic American: 1/95	>99%	<1/9,500
Tay-Sachs Disease	♂ Argentinian: 1/280	82.35%	1/1,587
	♂ Ashkenazi Jewish: 1/29	99.53%	1/6,177
	♂ Cajun: 1/30	>99%	<1/3,000
	or European: 1/280	25.35%	1/375
	♂ General: 1/280	32.09%	1/412
	♂ Indian: Unknown	85. <i>7</i> 1%	Unknown
	♂ Iraqi Jewish: 1/140	56.25%	1/320
	♂ Japanese: 1/127	82.81%	1/739
	♂ Moroccan Jewish: 1/110	22.22%	1/141
	♂ Portuguese: 1/280	92.31%	1/3,640
	of Spaniard: 1/280	67.65%	1/865
	♂ United Kingdom: 1/161	71.43%	1/564
Usher Syndrome: Type 1F	♂ Ashkenazi Jewish: 1/126	93.75%	1/2,016
Usher Syndrome: Type 3	♂ Ashkenazi Jewish: 1/120	>99%	<1/12,00 0
	♂ Finnish: 1/134	>99%	<1/13,40 0
Walker-Warburg Syndrome	♂ Ashkenazi Jewish: 1/150	>99%	<1/15,00 0

4399 Santa Anita Ave. El Monte, CA, 91731 (p) 626-350-0537 (f) 626-454-1667 info@fulgentgenetics.com www.fulgentgenetics.com

Patient Information:
5708, Donor
DOB:
Sex: M
MR#: 5708
Patient#:

Accession:

Test#:
Order#:
Ext Test#:
Ext Order#:
Specimen Type: DNA
Collected: Oct 12,2023

Collected: Oct 12,2023 Received Date: Oct 17,2023 Authorized Date: Oct 19,2023 Physician:
Seitz, Suzanne
ATTN: Seitz, Suzanne
Fairfax Cryobank
3015 Williams Drive
Fairfax, VA 22031
Phone:

Laboratory:
Fulgent Genetics
CAP#: 8042697
CLIA#: 05D2043189
Laboratory Director:
Dr. Hanlin (Harry) Gao
Report Date: Nov 03,2023

Final Report

Fax:

TEST PERFORMED

ASS1 Single Gene

(1 Gene Panel: ASS1; gene sequencing with deletion and duplication analysis)

RESULTS:

No clinically significant sequence or copy-number variants were identified in the submitted specimen.

A negative result does not rule out the possibility of a genetic predisposition nor does it rule out any pathogenic mutations of the sort not queried by this test or in areas not reliably assessed by this test.

INTERPRETATION:

Notes and Recommendations:

- As requested, this report only includes variants classified as Pathogenic, Likely Pathogenic, or Risk Allele at the time of analysis. If detected, this report does not include variants classified as of uncertain significance.
- · Gene specific notes and limitations may be present. See below.
- These results should be interpreted in the context of this individual's clinical findings, biochemical profile, and family history.
- Genetic counseling is recommended. Available genetic counselors and additional resources can be found at the National Society of Genetic Counselors (NSGC; https://www.nsgc.org)
- Guide to Interpreting Genomic Reports: A Genomics Toolkit (CSER Consortium; February 2017) (https://www.genome.gov/For-Health-Professionals/Provider-Genomics-Education-Resources#hep)

GENES TESTED:

ASS1 Single Gene

1 genes tested (100.00% at >20x).

ASS1

Gene Specific Notes and Limitations

No gene specific limitations apply to the genes on the tested panel.

METHODS:

Patient: 5708, Donor; Sex: M; DOB: MR#: 5708 Accession#: FD Patient#:

DocID: PAGE 1 of 3

4399 Santa Anita Ave. El Monte, CA, 91731 (p) 626-350-0537 (f) 626-454-1667 info@fulgentgenetics.com www.fulgentgenetics.com

Genomic DNA was isolated from the submitted specimen indicated above (if cellular material was submitted). DNA was barcoded, and enriched for the coding exons of targeted genes using hybrid capture technology. Prepared DNA libraries were then sequenced using a Next Generation Sequencing technology. Following alignment to the human genome reference sequence (assembly GRCh37), variants were detected in regions of at least 10x coverage. For this specimen, 100.00% and 100.00% of coding regions and splicing junctions of genes listed had been sequenced with coverage of at least 10x and 20x, respectively, by NGS or by Sanger sequencing. The remaining regions did not have 10x coverage, and were not evaluated. Variants were interpreted manually using locus specific databases, literature searches, and other molecular biological principles. To minimize false positive results, any variants that do not meet internal quality standards are confirmed by Sanger sequencing. Variants classified as pathogenic, likely pathogenic, or risk allele which are located in the coding regions and nearby intronic regions (+/- 20bp) of the genes listed above are reported. Variants outside these intervals may be reported but are typically not guaranteed. When a single pathogenic or likely pathogenic variant is identified in a clinically relevant gene with autosomal recessive inheritance, the laboratory will attempt to ensure 100% coverage of coding sequences either through NGS or Sanger sequencing technologies ("fill-in"). All genes listed were evaluated for large deletions and/or duplications. However, single exon deletions or duplications will not be detected in this assay, nor will copy number alterations in regions of genes with significant pseudogenes. Putative deletions or duplications identified by NGS are confirmed by an orthogonal method (qPCR or MLPA), unless exceeding an internally specified and validated quality score, beyond which deletions and duplications are considered real without further confirmation. New York patients: diagnostic findings are confirmed by Sanger, MLPA, or qPCR; exception SNV variants in genes for which confirmation of NGS results has been performed >=10 times may not be confirmed if identified with high quality by NGS. Bioinformatics: The Fulgent Germline v2019.2 pipeline was used to analyze this specimen.

LIMITATIONS:

These test results and variant interpretation are based on the proper identification of the submitted specimen, accuracy of any stated familial relationships, and use of the correct human reference sequences at the queried loci. In very rare instances, errors may result due to mix-up or co-mingling of specimens. Positive results do not imply that there are no other contributors, genetic or otherwise, to this individual's phenotype, and negative results do not rule out a genetic cause for the indication for testing. Official gene names change over time. Fulgent uses the most up to date gene names based on HUGO Gene Nomenclature Committee (https://www.genenames.org) recommendations. If the gene name on report does not match that of ordered gene, please contact the laboratory and details can be provided. Result interpretation is based on the available clinical and family history information for this individual, collected published information, and Alamut annotation available at the time of reporting. This assay is designed and validated for detection of germline variants only. It is not designed or validated for the detection of low-level mosaicism or somatic mutations. This assay will not detect certain types of genomic aberrations such as translocations, inversions, or repeat expansions (eg. trinucleotide or hexanucleotide repeat expansion). DNA alterations in regulatory regions or deep intronic regions (greater than 20bp from an exon) may not be detected by this test. Unless otherwise indicated, no additional assays have been performed to evaluate genetic changes in this specimen. There are technical limitations on the ability of DNA sequencing to detect small insertions and deletions. Our laboratory uses a sensitive detection algorithm, however these types of alterations are not detected as reliably as single nucleotide variants. Rarely, due to systematic chemical, computational, or human error, DNA variants may be missed. Although next generation sequencing technologies and our bioinformatics analysis significantly reduce the confounding contribution of pseudogene sequences or other highly-homologous sequences, sometimes these may still interfere with the technical ability of the assay to identify pathogenic alterations in both sequencing and deletion/duplication analyses. Deletion/duplication analysis can identify alterations of genomic regions which are two or more contiguous exons in size: single exon deletions or duplications may occasionally be identified, but are not routinely detected by this test. When novel DNA duplications are identified, it is not possible to discern the genomic location or orientation of the duplicated segment, hence the effect of the duplication cannot be predicted. Where deletions are detected, it is not always possible to determine whether the predicted product will remain in-frame or not. Unless otherwise indicated, deletion/duplication analysis has not been performed in regions that have been sequenced by Sanger.

SIGNATURE:

Jeelu.

Geetu Mendiratta-Vij, PhD, FACMG, CGMBS on 11/3/2023 10:12 AM PDT

Electronically signed

Patient: 5708, Donor; Sex: M; DOB: MR#: 5708 Accession# FD Patient#:

DocID: PAGE 2 of 3

4399 Santa Anita Ave. El Monte, CA, 91731 (p) 626-350-0537 (f) 626-454-1667 info@fulgentgenetics.com www.fulgentgenetics.com

DISCLAIMER:

This test was developed and its performance characteristics determined by Fulgent Genetics. It has not been cleared or approved by the FDA. The laboratory is regulated under CLIA as qualified to perform high-complexity testing. This test is used for clinical purposes. It should not be regarded as investigational or for research. Since genetic variation, as well as systematic and technical factors, can affect the accuracy of testing, the results of testing should always be interpreted in the context of clinical and familial data. For assistance with interpretation of these results, healthcare professionals may contact us directly at (626) 350-0537 or info@fulgentgenetics.com. It is recommended that patients receive appropriate genetic counseling to explain the implications of the test result, including its residual risks, uncertainties and reproductive or medical options.

Patient: 5708, Donor; Sex: M;

DOB: MR#: 5708

Accession#: FD Patient#: PAGE 3 of 3