

Donor 5463

Genetic Testing Summary

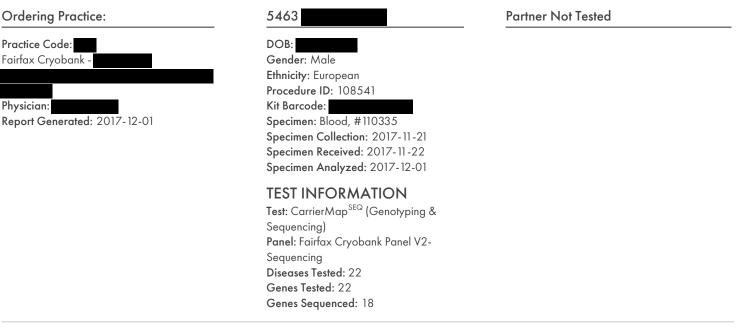
Fairfax Cryobank recommends reviewing this genetic testing summary with your healthcare provider to determine suitability.

Last Updated: 03/22/19

Donor Reported Ancestry: German, Dutch, French, English, Irish

Jewish Ancestry: No

+		
Genetic Test*	Result	Comments/Donor's Residual Risk**


Chromosome analysis (karyotype)	Normal male karyotype	No evidence of clinically significant chromosome abnormalities
Hemoglobin evaluation	Normal hemoglobin fractionation and MCV/MCH results	Reduced risk to be a carrier for sickle cell anemia, beta thalassemia, alpha thalassemia trait (aa/ and a-/a-) and other hemoglobinopathies
Cystic Fibrosis (CF) carrier screening	Negative by gene sequencing in the CFTR gene	1/1250
Spinal Muscular Atrophy (SMA) carrier screening	Negative for deletions of exon 7 in the SMN1 gene	1/632
Standard testing attached- 22 diseases by gene sequencing	Non-carrier for genes sequenced	
Special testing		
Aicardi-Goutieres Syndrome	Negative by gene sequencing in the SAMHD1 gene	
Non-syndromic Hearing Loss and	Negative by gene sequencing in the	
Deafness (GJB2)	GJB2 gene	
Non-syndromic Hearing Loss and	Negative by gene sequencing in the	
Deafness (GJB6)	GJB6 gene	

*No single test can screen for all genetic disorders. A negative screening result significantly reduces, but cannot eliminate, the risk for these conditions in a pregnancy.

**Donor residual risk is the chance the donor is still a carrier after testing negative.

Carrier Map™

SUMMARY OF RESULTS: NO MUTATIONS IDENTIFIED

5463

was not identified to carry any pathogenic mutations in the gene(s) tested.

No pathogenic mutations were identified in the genes tested, reducing but not eliminating the chance to be a carrier for the associated genetic diseases. CarrierMap assesses carrier status for genetic disease via molecular methods including targeted mutation analysis and/ or next-generation sequencing; other methodologies such as CBC and hemoglobin electrophoresis for hemoglobinopathies and enzyme analysis for Tay-Sachs disease may further refine risks for these conditions. Results should be interpreted in the context of clinical findings, family history, and/or other testing. A list of all the diseases and mutations screened for is included at the end of the report. This test does not screen for every possible genetic disease.

For additional disease information, please visit recombine.com/diseases. To speak with a Genetic Counselor, call 855.OUR.GENES.

Assay performed by Reprogenetics CLIA ID: 31D1054821 3 Regent Street, Livingston, NJ 07039 Lab Technician: Bo Chu

Recombine CLIA # 31D2100763 Reviewed by Pere Colls, PhD, HCLD, Lab Director

ADDITIONAL RESULTS: NO INCREASED REPRODUCTIVE RISK

The following results are not associated with an increased reproductive risk.

Disease (Gene)	5463	Partner Not Tested
Spinal Muscular Atrophy: SMN1 Linked (SMN1)*	SMN1 Copy Number: 2 or more copies Method: dPCR & Genotyping	

*SMA Risk Information for Individuals with No Family History of SMA

	Detection Rate	Pre-Test Carrier Risk	Post-Test Carrier Risk (2 SMN1 copies)	Post-Test Carrier Risk (3 SMN1 copies)
European	95%	1/35	1/632	1/3,500
Ashkenazi Jewish	90%	1/41	1/350	1/4,000
Asian	93%	1/53	1/628	1/5,000
African American	71%	1/66	1/121	1/3,000
Hispanic	91%	1/117	1/1,061	1/11,000

For other unspecified ethnicities, post-test carrier risk is assumed to be <1%. For individuals with multiple ethnicities, it is recommended to use the most conservative risk estimate.

Methods and Limitations

Genotyping: Genotyping is performed using the Illumina Infinium Custom HD Genotyping assay to identify mutations in the genes tested. The assay is not validated for homozygous mutations, and it is possible that individuals affected with disease may not be accurately genotyped.

Sequencing: Sequencing is performed using a custom next-generation sequencing (NGS) platform. Only the described exons for each gene listed are sequenced. Variants outside of these regions may not be identified. Some splicing mutations may not be identified. Triplet repeat expansions, intronic mutations, and large insertions and deletions may not be detected. All identified variants are curated, and determination of the likelihood of their pathogenicity is made based on examining allele frequency, segregation studies, predicted effect, functional studies, case/control studies, and other analyses. All variants identified via sequencing that are reported to cause disease in the primary scientific literature will be reported. Variants considered to be benign and variants of unknown significance (VUS) are NOT reported. In the sequencing process, interval drop-out may occur, leading to intervals of insufficient coverage. Intervals of insufficient coverage will be reported if they occur.

Spinal Muscular Atrophy: Carrier status for SMA is assessed via copy number analysis by dPCR and via genotyping. Some

individuals with a normal number of SMN1 copies (2 copies) may carry both copies of the gene on the same allele/chromosome; this analysis is not able to detect these individuals. Thus, a normal SMN1 result significantly reduces but does not eliminate the risk of being a carrier. Additionally, SMA may be caused by non-deletion mutations in the SMN1 gene; CarrierMap tests for some, but not all, of these mutations. Some SMA cases arise as the result of de novo mutation events which will not be detected by carrier testing.

Limitations: In some cases, genetic variations other than that which is being assayed may interfere with mutation detection, resulting in

false-negative or false-positive results. Additional sources of error include, but are not limited to: sample contamination, sample mix-up, bone marrow transplantation, blood transfusions, and technical errors. The test does not test for all forms of genetic disease, birth defects, and intellectual disability. All results should be interpreted in the context of family history; additional evaluation may be indicated based on a history of these conditions. Additional testing may be necessary to determine mutation phase in individuals identified to carry more than one mutation in the same gene. All mutations included within the genes assayed may not be detected, and additional testing may be appropriate for some individuals.

This test was developed and its performance determined by Recombine, Inc., and it has not been cleared or approved by the U.S. Food and Drug Administration (FDA). The FDA has determined that such clearance or approval is not necessary.

CarrierMap™

Diseases & Mutations Assayed

Alpha Thalassemia (HBA1, HBA2): Mutations (9): d^o Genotyping | SEA deletion, c.207C>A (p.N69K), c.223G>C (p.D75H), c.2T>C, c.207C>G (p.N69K), c.340_351 delCTCCCCGCCGAG (p.L114_E117del), c.377T>C (p.L126P), c.427T>C (p.X143Qext32), c.*+94A>G

Beta Thalassemia (HBB): Mutations (81): 5^a Genotyping | c.124_127delTTCT (p.F42Lfs), c.17_18delCT, c.20delA (p.E7Gfs), c.217insA (p.S73Kfs),

c.223+702_444+342deld20insAAGTAGA, c.230delC, c.25_26delAA, c.315+1G>A,
c.315+2T>C, c.316-197C>T, c.316-146T>G, c.315+745C>G, c.316-1G>A, c.316-1G>C, c.316-2A>G, c.316-3C>A, c.316-3C>G, c.4delG (p.V2Cfs), c.51delC (p.K18Rfs), c.93-21G>A,
c.92+1G>A, c.92+5G>A, c.92+5G>C, c.92+5G>T, c.92+6T>C, c.93-1G>A, c.93-1G>T, c.-50A>C, c.-78a>g, c.-79A>G, c.-81A>G, c.52A>T (p.K18X), c.-137c>g, c.-138c>t, c.-151C>T,
c.118C>T (p.Q40X), c.169G>C (p.G57R), c.295G>A (p.V99M), c.415G>C (p.A139P), c.47G>A
(p.W16X), c.48G>A (p.W16X), c.-80I>a, c.27C (p.M1T), c.75T>A (p.G25G), c.444+111A>G,
c.-29G>A, c.68_74delAAGTIGG, c.92G>C (p.R31T), c.92+1G>T, c.93-15T>G, c.93-1G>C,
c.112delT, c.113G>A (p.W38X), c.114G>A (p.W38X), c.126delC, c.444+113A>G, c.250delG,
c.225delC, c.383_385delAGG (p.Q128_A129delQAinsP), c.321_322insG (p.N109fs), c.316-1G>T, c.316-2A>C, c.287_288insA (p.L97fs), c.271G>T (p.E91X), c.203_204delTG (p.V68Afs),
c.154delC (p.F25fs), c.133delC (p.F46fs), c.92+2T>A, c.92+2T>C, c.90C>T (p.G30G),
c.84_85insC (p.L29fs), c.59A>G (p.N20S), c.46delT (p.W16Gfs), c.45_46insG (p.L16fs),
c.36delT (p.T13fs), c.2T>G (p.M1R), c.1A>G (p.M1V), c.-137c>t, c.-136C>G, c.-142C>T, c.-140c>t Sequencing | NM_000518:1-3

Bloom Syndrome (BLM): Mutations (25): of Genotyping |

c.2207_2212delATCTGAinsTAGATTC (p.Y736Lfs), c.2407insT, c.557_559delCAA (p.S186X), c.1284G>A (p.W428X), c.1701G>A (p.W567X), c.1933C>T (p.Q645X), c.2528C>T (p.T843I), c.2695C>T (p.R899X), c.3107G>T (p.C1036F), c.2923delC (p.Q975K), c.3558+1G>T, c.3875-2A>G, c.2074+2T>A, c.2343_2344dupGA (p.781EfsX), c.318_319insT (p.L107fs), c.380delC (p.127Tfs), c.3564delC (p.1188Dfs), c.4008delG (p.1336Rfs), c.947C>G (p.S316X), c.2193+1_2193+9del9, c.1642C>T (p.Q548X), c.3143delA (p.1048NfsX), c.356_357delTA (p.C120Hfs), c.4076+1delG, c.3281C>A (p.S1094X) Sequencing | NM_000057:2-22

Canavan Disease (ASPA): Mutations (8): of Genotyping | c.433-2A>G, c.854A>C (p.E285A), c.693C>A (p.Y231X), c.914C>A (p.A305E), c.71A>G (p.E24G), c.654C>A (p.C218X), c.2T>C (p.M1T), c.79G>A (p.G27R) Sequencing | NM_000049:1-6

Cystic Fibrosis (CFTR): Mutations (149): d' Genotyping | c.1029delC, c.1153_1154insAT, c.1477delCA, c.1519_1521delATC (p.507dell), c.1521_1523delCTT (p.508delF), c.1545_1546delTA (p.Y515Xfs), c.1585-1G>A, c.164+12T>C, c.1680-886A>G, c.1680-1G>A, c. 1766+1G>A, c. 1766+1G>T, c. 1766+5G>T, c. 1818del84, c. 1911delG, c. 1923delCTCAAAACTinsA, c. 1973delGAAATTCAATCCTinsAGAAA, c. 2052delA (p.K684fs), c.2052insA (p.Q685fs), c.2051_2052delAAinsG (p.K684SfsX38), c.2174insA, c.261delTT, c.2657+5G>A, c.273+1G>A, c.273+3A>C, c.274-1G>A, c.2988+1G>A, c.3039delC, c.3140-26A>G, c.325delTATinsG, c.3527delC, c.3535delACCA, c.3691delT, c.3717+12191C>T, c.3744delA, c.3773_3774insT (p.L1258fs), c.442delA, c.489+1G>T, c.531delT, c.579+1G>T, c.579+5G>A (IVS4+5G>A), c.803delA (p.N268fs), c.805_806delAT (p.I269fs), c.933_935delCTT (p.311delF), c.946delT, c.1645A>C (p.S549R), c.2128A>T (p.K710X), c.1000C>T (p.R334W), c.1013C>T (p.T338I), c.1364C>A (p.A455E), c.1477C>T (p.Q493X), c.1572C>A (p.C524X), c.1654C>T (p.Q552X), c.1657C>T (p.R553X), c.1721C>A (p.P574H), c.2125C>T (p.R709X), c.223C>T (p.R75X), c.2668C>T (p.Q890X), c.3196C>T (p.R1066C), c.3276C>G (p.Y1092X), c.3472C>T (p.R1158X), c.3484C>T (p.R1162X), c.349C>T (p.R117C), c.3587C>G (p.S1196X), c.3712C>T (p.Q1238X), c.3764C>A (p.S1255X), c.3909C>G (p.N1303K), c.1040G>A (p.R347H), c.1040G>C (p.R347P), c.1438G>T (p.G480C), c.1558G>T (p.V520F), c.1624G>T (p.G542X), c.1646G>A (p.S549N), c.1646G>T (p.S549I), c.1652G>A (p.G551D), c.1675G>A (p.A559T), c.1679G>C (p.R560T), c.178G>T (p.E60X), c.254G>A (p.G85E), c.271G>A (p.G91R), c.274G>T (p.E92X), c.3209G>A (p.R1070Q), c.3266G>A (p.W1089X), c.3454G>C (p.D1152H), c.350G>A (p.R117H), c.3611G>A (p.W1204X), c.3752G>A (p.S1251N), c.3846G>A (p.W1282X), c.3848G>T (p.R1283M), c.532G>A (p.G178R), c.988G>T (p.G330X), c.1090T>C (p.S364P), c.3302T>A (p.M1101K), c.617T>G (p.L206W), c.14C>T (p.P5L), c.19G>T (p.E7X), c.171G>A (p.W57X), c.313delA (p.1105fs), c.328G>C (p.D110H), c.580-1G>T, c.1055G>A (p.R352Q), c.1075C>A (p.Q359K), c.1079C>A (p.T360K), c.1647T>G (p.S549R), c.1976delA (p.N659fs), c.2290C>T (p.R764X), c.2737_2738insG (p.Y913X), c.3067_3072delATAGTG (p.I1023_V1024delT), c.3536_3539delCCAA (p.T1179fs), c.3659delC (p.T1220fs), c.54-5940_273+10250del21080bp (p.S18fs), c.4364C>G (p.S1455X), c.4003C>T (p.L1335F), c.2538G>A (p.W846X), c.200C>T (p.P67L), c.4426C>T (p.Q1476X), c.1116+1G>A, c. 1986_1989delAACT (p.T663R), c.2089_2090insA (p.R697Kfs), c.2215delG (p.V739Y), c.263T>G (p.L196X), c.3022delG (p.V1008S), c.3908dupA (p.N1303Kfs), c.658C>T (p.Q220X), c.868C>T (p.Q290X), c.1526delG (p.G509fs), c.2908+1085-3367+260del7201, c.11C>A (p.S4X), c.3878_3881 delTATT (p.V1293fs), c.3700A>G (p.11234V), c.416A>T (p.H139L), c.366T>A (p.Y122X), c.3767_3768insC (p.A1256fs), c.613C>T (p.P205S), c.293A>G (p.Q98R), c.3731G>A (p.G1244E), c.535C>A (p.Q179K), c.3368-2A>G, c.455T>G (p.M152R), c.1610_1611delAC (p.D537fs), c.3254A>G (p.H1085R), c.496A>G (p.K166E), c.1408_1417delGTGATTATGG (p.V470fs), c.1585-8G>A, c.2909G>A (p.G970D), c.653T>A (p.L218X), c.1175T>G (p.V392G), c.3139_3139+1delGG, c.3717+4A>G (IVS22+4A>G) Sequencing | NM_000492:1-27

Familial Dysautonomia (IKBKAP): Mutations (4): d' Genotyping | c.2204+6T>C, c.2741C>T

(p.P914L), c.2087G>C (p.R696P), c.2128C>T (p.Q710X) Sequencing | NM_003640:2-37 **Familial Hyperinsulinism: Type 1: ABCC8 Related (ABCC8):** Mutations (11): σ^a Genotyping | c.3989-9G>A, c.4159_4161delTTC (p.1387delF), c.4258C>T (p.R1420C), c.4477C>T (p.R1493W), c.2147G>T (p.G716V), c.4055G>C (p.R1352P), c.560T>A (p.V187D), c.4516G>A (p.E1506K), c.2506C>T (p.Q836X), c.579+2T>A, c.1333-1013A>G (IVS8-1013A>G) Sequencing | NM_000352:1-39

Fanconi Anemia: Type C (FANCC): Mutations (8): d^{*} Genotyping | c.456+4A>T, c.67delG, c.37C>T (p.Q13X), c.553C>T (p.R185X), c.1661T>C (p.L554P), c.1642C>T (p.R548X), c.66G>A (p.W22X), c.65G>A (p.W22X) Sequencing | NM_000136:2-15

Gaucher Disease (GBA): Mutations (6): 0^a Genotyping | c.84_85insG, c.1226A>G (p.N409S), c.1343A>T (p.D448V), c.1504C>T (p.R502C), c.1297G>T (p.V433L), c.1604G>A (p.R535H)

Glycogen Storage Disease: Type IA (G6PC): Mutations (13): 0^a Genotyping | c.376_377insTA, c.79delC, c.979_981delTTC (p.327delF), c.1039C>T (p.Q347X), c.247C>T (p.R83C), c.724C>T (p.Q242X), c.248G>A (p.R83H), c.562G>C (p.G188R), c.648G>T, c.809G>T (p.G270V), c.113A>T (p.D38V), c.975delG (p.L326fs), c.724delC Sequencing | NM_000151:1-5

Joubert Syndrome (TMEM216): Mutations (2): 3^a Genotyping | c.218G>T (p.R73L), c.218G>A (p.R73H) Sequencing | NM_001173991:1-5

Maple Syrup Urine Disease: Type 1B (BCKDHB): Mutations (6): d^o Genotyping | c.1114G>T (p.E372X), c.548G>C (p.R183P), c.832G>A (p.G278S), c.970C>T (p.R324X), c.487G>T (p.E163X), c.853C>T (p.R285X) Sequencing | NM_183050:1-10

Maple Syrup Urine Disease: Type 3 (DLD): Mutations (8): d^{*} Genotyping | c.104_105insA, c.685G>T (p.G229C), c.214A>G (p.K72E), c.1081A>G (p.M361V), c.1123G>A (p.E375K), c.1178T>C (p.I393T), c.1463C>T (p.P488L), c.1483A>G (p.R495G) Sequencing | NM_000108:1-14

Mucolipidosis: Type IV (MCOLN1): Mutations (5): d^a Genotyping | c.-1015_788del6433, c.406-2A>G, c.1084G>T (p.D362Y), c.304C>T (p.R102X), c.244delC (p.L82fsX) Sequencing | NM_020533:1-14

Nemaline Myopathy: NEB Related (NEB): Mutations (2): ♂ Genotyping | c.7434_7536del2502bp, c.8890-2A>G (IVS63-2A>G) Sequencing | NM_001164508:63-66,86,95-96,103,105,143,168-172, NM_004543:3-149

Niemann-Pick Disease: Type A (SMPD1): Mutations (6): 5^a Genotyping | c.996delC, c.1493G>T (p.R498L), c.911T>C (p.L304P), c.1267C>T (p.H423Y), c.1734G>C (p.K578N), c.1493G>A (p.R498H) Sequencing | NM_000543:1-6

Sickle-Cell Anemia (HBB): Mutations (1): σ^{a} Genotyping | c.20A>T (p.E7V) Sequencing | NM_000518:1-3

Spinal Muscular Atrophy: SMN1 Linked (SMN1): Mutations (19): d^a Genotyping | DEL EXON 7, c.22_23insA, c.43C>T (p.Q15X), c.91_92insT, c.305G>A (p.W102X), c.400G>A (p.E134K), c.439_443delGAAGT, c.558delA, c.585_586insT, c.683T>A (p.L228X), c.734C>T (p.P245L), c.768_778dupTGCTGATGCTT, c.815A>G (p.Y272C), c.821C>T (p.T274I), c.823G>A (p.G275S), c.834+2T>G, c.835-18_835-12delCCTTTAT, c.835G>T, c.836G>T dPCR | DEL EXON 7

```
Tay-Sachs Disease (HEXA): Mutations (78): of Genotyping | c.1073+1G>A,
c.1277_1278insTATC, c.1421+1G>C, c.805+1G>A, c.532C>T (p.R178C), c.533G>A (p.R178H),
c.805G>A (p.G269S), c.1510C>T (p.R504C), c.1496G>A (p.R499H), c.509G>A (p.R170Q),
c.1003A>T (p.I335F), c.910_912delTTC (p.305delF), c.749G>A (p.G250D), c.632T>C (p.F211S),
c.629C>T (p.S210F), c.613delC, c.611A>G (p.H204R), c.598G>A (p.V200M), c.590A>C
(p.K197T), c.571-1G>T, c.540C>G (p.Y180X), c.538T>C (p.Y180H), c.533G>T (p.R178L),
c.508C>T (p.R170W), c.409C>T (p.R137X), c.380T>G (p.L127R), c.346+1G>C, c.116T>G
(p.L39R), c.78G>A (p.W26X), c.1A>G (p.M1V), c.1495C>T (p.R499C), c.459+5G>A
(IVS4+5G>A), c.1422-2A>G, c.535C>T (p.H179Y), c.1141 delG (p.V381 fs), c.796T>G
(p.W266G), c.155C>A (p.S52X), c.426delT (p.F142fs), c.413-2A>G, c.570+3A>G, c.536A>G
(p.H179R), c.1146+1G>A, c.736G>A (p.A246T), c.1302C>G (p.F434L), c.778C>T (p.P260S),
c.1008G>T (p.Q336H), c.1385A>T (p.E462V), c.964G>A (p.D322N), c.340G>A (p.E114K),
c.1432G>A (p.G478R), c.1178G>C (p.R393P), c.805+1G>C, c.1426A>T (p.R476X), c.623A>T
(p.D208V), c.1537C>T (p.Q513X), c.1511G>T (p.R504L), c.1307_1308delTA (p.1436fs), c.571-
8A>G, c.624_627delTCCT (p.D208fs), c.1211_1212delTG (p.L404fs), c.621T>G (p.D207E),
c.1511G>A (p.R504H), c.1177C>T (p.R393X), c.2T>C (p.M1T), c.1292G>A (p.W431X),
c.947_948insA (p.Y316fs), c.607T>G (p.W203G), c.1061_1063delTCT (p.F354_Y355delinsX),
c.615delG (p.L205fs), c.805+2T>C, c.1123delG (p.E375fs), c.1121A>G (p.Q374R),
c.1043_1046delTCAA (p.F348fs), c.1510delC (p.R504fs), c.1451T>C (p.L484P), c.964G>T
(p.D322Y), c.1351C>G (p.L451V), c.571-2A>G (IVS5-2A>G) Sequencing | NM_000520:1-14
Usher Syndrome: Type 1F (PCDH15): Mutations (7): Or Genotyping | c.733C>T (p.R245X),
```

c.2806/C/A (p.Y684X), c.7C>T (p.R3X), c.1942C>T (p.R648X), c.1101delT (p.A367fsX), c.2800C>T (p.R94X), c.4272delA (p.L1425fs) Sequencing | NM_001142763:2-35

Usher Syndrome: Type 3 (CLRN1): Mutations (5): 0^a Genotyping | c.144T>G (p.N48K), c.131T>A (p.M120K), c.567T>G (p.Y189X), c.634C>T (p.Q212X), c.221T>C (p.L74P) Sequencing | NM_001195794:1-4

Walker-Warburg Syndrome (FKTN): Mutations (5): d^{*} Genotyping | c.1167insA (p.F390fs), c.139C>T (p.R47X), c.748T>G (p.C250G), c.648-1243G>T (IVS5-1243G>T), c.515A>G (p.H172R) Sequencing | NM_006731:2-10

💥 Recombine

Residual Risk Information

Detection rates are calculated from the primary literature and may not be available for all ethnic populations. The values listed below are for genotyping. Sequencing provides higher detection rates and lower residual risks for each disease. More precise values for sequencing may become available in the future.

Disease	Carrier Rate	Detection Rate	Residual Risk
Alpha Thalassemia	o' General: 1/48	50.67%	1/97
Beta Thalassemia	o" African American: 1/75	84.21%	1/475
	o " Indian: 1/24	74.12%	1/93
	o" Sardinians: 1/23	97.14%	1/804
	o" Spaniard: 1/51	93.10%	1/739
Bloom Syndrome	o" Ashkenazi Jewish: 1/134	96.67%	1/4,020
	o' European: Unknown	66.22%	Unknown
	o ^a Japanese: Unknown	50.00%	Unknown
Canavan Disease	o" Ashkenazi Jewish: 1/55	98.86%	1/4,840
	o' European: Unknown	53.23%	Unknown
Cystic Fibrosis	ơ' African American: 1/62	69.99%	1/207
	o" Ashkenazi Jewish: 1/23	96.81%	1/721
	ơ" Asian: 1/94	65.42%	1/272
	o [*] European: 1/25	94.96%	1/496
	o" Hispanic American: 1/48	77.32%	1/212
	o [*] Native American: 1/53	84.34%	1/338
Familial Dysautonomia	o" Ashkenazi Jewish: 1/31	>99%	<1/3,100
Familial Hyperinsulinism: Type 1: ABCC8 Related	♂ Ashkenazi Jewish: 1/52	98.75%	1/4,160
	o " Finnish: 1/101	45.16%	1/184
Fanconi Anemia: Type C	o" Ashkenazi Jewish: 1/101	>99%	<1/10,10 0
	o'' General: Unknown	30.00%	Unknown
Gaucher Disease	♂ Ashkenazi Jewish: 1/15	87.16%	1/117
	o" General: 1/112	31.60%	1/164
	o" Spaniard: Unknown	44.29%	Unknown
	o ^a Turkish: 1/236	59.38%	1/581
Glycogen Storage Disease: Type IA	♂ Ashkenazi Jewish: 1/71	>99%	<1/7,100
	♂ Chinese: 1/159	80.00%	1/795
	o' European: 1/177	76.88%	1/765
	0 7 Hispanic American: 1/177	27.78%	1/245
	o ^r Japanese: 1/177	89.22%	1/1,641
Joubert Syndrome	o ^r Ashkenazi Jewish: 1/92	>99%	<1/9,200
Maple Syrup Urine Disease: Type 1B	o ^r Ashkenazi Jewish: 1/97	>99%	<1/9,700
Maple Syrup Urine Disease: Type 3	o ^r Ashkenazi Jewish: 1/94	>99%	<1/9,400
	o ^r General: Unknown	68.75%	Unknown
Mucolipidosis: Type IV	o ^r Ashkenazi Jewish: 1/97	96.15%	1/2,522
Nemaline Myopathy: NEB Related	♂ Ashkenazi Jewish: 1/108	>99%	<1/10,80 0

CarrierMap[™]

Disease	Carrier Rate	Detection Rate	Residual Risk
Niemann-Pick Disease: Type A	♂ Ashkenazi Jewish: 1/101	95.00%	1/2,020
Sickle-Cell Anemia	o" African American: 1/10	>99%	<1/1,000
	o" Hispanic American: 1/95	>99%	<1/9,500
Tay-Sachs Disease	o" Argentinian: 1/280	82.35%	1/1,587
	o" Ashkenazi Jewish: 1/29	99.53%	1/6,177
	o" Cajun: 1/30	>99%	<1/3,000
	o" European: 1/280	25.35%	1/375
	o' General: 1/280	32.09%	1/412
	o" Indian: Unknown	85.71%	Unknown
	o" Iraqi Jewish: 1/140	56.25%	1/320
	o" Japanese: 1/127	82.81%	1/739
	o" Moroccan Jewish: 1/110	22.22%	1/141
	o [*] Portuguese: 1/280	92.31%	1/3,640
	o" Spaniard: 1/280	67.65%	1/865
	o" United Kingdom: 1/161	71.43%	1/564
Usher Syndrome: Type 1F	o" Ashkenazi Jewish: 1/126	93.75%	1/2,016
Usher Syndrome: Type 3	♂ Ashkenazi Jewish: 1/120	>99%	<1/12,00 0
	o" Finnish: 1/134	>99%	<1/13,40 0
Walker-Warburg Syndrome	o ^a Ashkenazi Jewish: 1/150	>99%	<1/15,00 0

NAME 5463, Donor PATIENT ID

PATIENT INFORMATION	SPECIMEN INFORMATION	PROVIDER INFORMATION
5463, Donor ID#: None Listed DOB: Sex: Male	Type: DNA Collected: January 17, 2019 Received: February 25, 2019 PG ID:	Suzanne Seitz, MS Fairfax Cryobank

MOLECULAR GENETICS REPORT: GJB2, GJB6, and SAMHD1 Gene Sequencing with CNV Detection

RESULTS AND INTERPRETATIONS: In this patient, for the *GJB2, GJB6,* and *SAMHD1* genes, we found no sequence variants.

This patient is also apparently negative for copy number variants (CNVs) within the genomic regions encompassing the *GJB2, GJB6,* and *SAMHD1* genes.

These results should be interpreted in context of clinical findings, family history and other laboratory data. All genetic tests have limitations. Please see limitations and other information for this test on the following pages.

NOTE: Since this test is performed using exome capture probes, a reflex to any of our exome-based tests is available (PGxome, PGxome Custom Panels).

GENES ANALYZED: GJB2, GJB6, SAMHD1

SUMMARY STATISTICS:

Pipeline	Version	Average NGS Coverage	Fraction Bases Covered with NGS
Titanium	1.1.0	171x	99.3%

Minimum NGS coverage is ≥20x for all exons and +/-10bp of flanking DNA, and ≥10x from 11-20bp of flanking DNA.

Electronically signed on March 14, 2019 by: Ben Dorshorst, PhD Human Molecular Geneticist Electronically signed and reported on March 15, 2019 by: Anthony D. Krentz, PhD, HCLD(ABB) Human Molecular Geneticist

5463, Donor

SUPPLEMENTAL INFORMATION V.17.12 SEQUENCING WITH CNV DETECTION

NAME

Limitations and Other Test Notes

Interpretation of the test results is limited by the information that is currently available. Better interpretation should be possible in the future as our knowledge about human genetics and the patient's condition improve.

When Next Gen or Sanger sequencing does not reveal any difference from the reference sequence, or when a sequence variant is homozygous, we cannot be certain that we were able to detect both patient alleles. Occasionally, a patient may carry an allele which does not capture or amplify due for example to a large deletion or insertion.

Copy number variants (CNVs) of four exons or more in size are detected with sensitivity approaching 100% through analysis of Next Gen sequence data. However, sensitivity for detection of CNVs smaller than four exons is lower (we estimate ~75%).

We sequence coding exons for most given transcripts, plus ~10 bp of flanking non-coding DNA for each exon. Unless specifically indicated, test reports contain no information about other portions of the gene, such as regulatory domains, deep intronic regions, uncharacterized alternative exons, chromosomal rearrangements, and repeat expansions.

In most cases, we are unable to determine the phase of sequence variants. In particular, when we find two likely causative variants for recessive disorders, we cannot be certain that the variants are on different chromosomes.

Our ability to detect minor sequence variants due to somatic mosaicism is limited. Sequence variants that are present in less than 50% of the patient's nucleated cells may not be detected.

Unless present within coding regions, runs of mononucleotide repeats (eg $(A)_n$ or $(T)_n$) with n >8 in the reference sequence) are generally not analyzed because of strand slippage during amplification.

Unless otherwise indicated, DNA sequence data is obtained from a specific cell type (often leukocytes from whole blood). Test reports contain no information about the DNA sequence in other cell types.

We cannot be certain that the reference sequences are correct. Genome build hg19, GRCh37 (Feb2009) is currently used as our reference in nearly all cases.

We have confidence in our ability to track a specimen once it has been received by PreventionGenetics. However, we take no responsibility for any specimen labeling errors that occur before the sample arrives at PreventionGenetics.

Genetic counseling to help to explain test results to the patients and to discuss reproductive options is recommended.

Test Methods

We use Next Generation Sequencing (NGS) technologies to cover the coding regions of the targeted genes plus 10 bases of non-coding DNA flanking each exon. As required, genomic DNA is extracted from the specimen. The DNA corresponding to these regions is captured using Agilent Clinical Research Exome hybridization probes. Captured DNA is sequenced using Illumina's Reversible Dye Terminator (RDT) platform NovaSeq 6000 using 150 by 150 bp paired end reads (Illumina, San Diego, CA, USA).

PREVENTION GENETICS

NAME 5463, Donor

The following quality control metrics are generally achieved: >98% of target bases are covered at >20x, and mean coverage of target bases >120x. Data analysis is performed using the internally developed software Titanium-Exome. Specified genes for which the enhance option is selected are backfilled with Sanger sequencing to achieve 100% coverage.

For Sanger sequencing, Polymerase Chain Reaction (PCR) is used to amplify the necessary exons plus additional flanking non-coding sequence. After purification of the PCR products, cycle sequencing is carried out using the ABI Big Dye Terminator v.3.1 kit. PCR products are resolved by electrophoresis on an ABI 3730xl capillary sequencer. In most cases, cycle sequencing is performed separately in both the forward and reverse directions; in some cases, sequencing is performed twice in either the forward or reverse directions.

Copy number variants (CNVs) are also detected from NGS data. We utilize a CNV calling algorithm that compares mean read depth and distribution for each target in the test sample against multiple matched controls. Neighboring target read depth and distribution and zygosity of any variants within each target region are used to reinforce CNV calls. All reported CNVs are confirmed using another technology such as aCGH, MLPA, or PCR. On occasion, it will not be technically possible to confirm a smaller CNV called by NGS. In these instances, the CNV will not be included on the report.

All differences from the reference sequences (sequence variants) are assigned to one of five interpretation categories (Pathogenic, Likely Pathogenic, Variant of Uncertain Significance, Likely Benign and Benign) per ACMG Guidelines (Richards et al. 2015). Rare and undocumented synonymous variants are nearly always classified as likely benign if there is no indication that they alter protein sequence or disrupt splicing. Benign variants are not listed in the reports, but are available upon request.

Human Genome Variation Society (HGVS) recommendations are used to describe sequence variants (http://www.hgvs.org).

FDA Notes

These results should be used in the context of available clinical findings, and should not be used as the sole basis for treatment. This test was developed and its performance characteristics determined by PreventionGenetics. US Food and Drug Administration (FDA) does not require this test to go through premarket FDA review. This test is used for clinical purposes. It should not be regarded as investigational or for research. This laboratory is certified under the Clinical Laboratory Improvement Amendments of 1988 (CLIA) as qualified to perform high complexity clinical laboratory testing.

