

Donor 5662

Genetic Testing Summary

Fairfax Cryobank recommends reviewing this genetic testing summary with your healthcare provider to determine suitability.

Last Updated: 05/13/19

Donor Reported Ancestry: English, German, Russian, Ukrainian

Jewish Ancestry: No

Genetic Test*	Result	Comments/Donor's Residual Risk**

Chromosome analysis (karyotype)	Normal male karyotype	No evidence of clinically significant chromosome abnormalities
Hemoglobin evaluation	Normal hemoglobin fractionation and MCV/MCH results	Reduced risk to be a carrier for sickle cell anemia, beta thalassemia, alpha thalassemia trait (aa/ and a-/a-) and other hemoglobinopathies
Cystic Fibrosis (CF) carrier screening	Negative by gene sequencing in the CFTR gene	1/440
Spinal Muscular Atrophy (SMA) carrier screening	Negative for deletions of exon 7 in the SMN1 gene	1/894
Expanded Genetic Disease Carrier Screening Panel attached- 283 diseases by gene sequencing	Carrier: Congenital Neutropenia (HAX1) Negative for other genes sequenced.	Partner testing is recommended before using this donor.
Special Testing		
Oculocutaneous Albinism Type 1A (TYR)	Possible Carrier: Indeterminate result for gene sequencing of the TYR gene- see attached	Partner testing is recommended before using this donor.

*No single test can screen for all genetic disorders. A negative screening result significantly reduces, but cannot eliminate, the risk for these conditions in a pregnancy.

**Donor residual risk is the chance the donor is still a carrier after testing negative.

CARRIER SCREENING REPORT

Patient	Sample	Referring Doctor
Patient Name: Donor 5662 Date of Birth: FFAXCB-S45662-180724 Indication: Carrier Testing Test Type: Expanded Carrier Screen (283) Minus TSE	Specimen Type: Blood Lab #: Date Collected: 7/24/2018 Date Received: 7/25/2018 Final Report: 8/8/2018	Fairfax Cryobank, Inc.

RESULT SUMMARY

THIS PATIENT WAS TESTED FOR 283 DISEASES.

Please see Table 1 for list of diseases tested.

POSITIVE for congenital neutropenia (HAX1-related)

A heterozygous (one copy) pathogenic variant, c.91delG, p.E31KfsX54, was detected in the HAX1 gene

NEGATIVE for the remaining diseases

Recommendations

Testing the partner for the above positive disorder(s) and genetic counseling are recommended.

Please note that for female carriers of X-linked diseases, follow-up testing of a male partner is not indicated. In addition, CGG repeat analysis of *FMR1* for fragile X syndrome is not performed on males as repeat expansion of premutation alleles is not expected in the male germline.

Individuals of Asian, African, Hispanic and Mediterranean ancestry should also be screened for hemoglobinopathies by CBC and hemoglobin electrophoresis.

Consideration of residual risk by ethnicity after a negative carrier screen is recommended for the other diseases on the panel, especially in the case of a positive family history for a specific disorder.

Interpretation for congenital neutropenia (HAX1-related)

A heterozygous (one copy) pathogenic frameshift variant, c.91delG, p.E31KfsX54, was detected in the *HAX1* gene (NM_006118.3). When this variant is present in trans with a pathogenic variant, it is considered to be causative for congenital neutropenia (*HAX1*-related). Therefore, this individual is expected to be at least a carrier for congenital neutropenia (*HAX1*-related). Heterozygous carriers are not expected to exhibit symptoms of this disease.

What is congenital neutropenia (HAX1-related)?

Congenital neutropenia (*HAX1*-related) is an autosomal recessive disorder caused by pathogenic variants in the gene *HAX1*, which has an increased incidence in Asia and the Middle East. This disorder is characterized by

Page 1 of 11

DOB: Lab #

Lab #:

bone marrow failure with reduced neutrophils, presenting in infancy. Patients have multiple bacterial and fungal infections and are at risk for developing acute myeloid leukemia or myelodysplastic syndrome. Some patients develop neurological symptoms, such as psychomotor retardation and/or seizures. Life expectancy may be reduced due to sepsis or malignancy. A genotype-phenotype correlation has been proposed where pathogenic variants that affect only one of the two *HAX1* isoforms may result in neutropenia without neurological symptoms.

This patient was tested for a panel of diseases using a combination of sequencing, targeted genotyping and copy number analysis. Please note that negative results reduce but do not eliminate the possibility that this individual is a carrier for one or more of the disorders tested. Please see Table 1 for a list of genes and diseases tested, and http://go.sema4.com/residualrisk for specific detection rates and residual risk by ethnicity. With individuals of mixed ethnicity, it is recommended to use the highest residual risk estimate. Only variants determined to be pathogenic or likely pathogenic are reported in this carrier screening test.

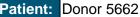
TEST SPECIFIC RESULTS

Alpha-thalassemia

NEGATIVE for alpha-thalassemia

HBA1 copy number: 2 HBA2 copy number: 2 No pathogenic copy number variants detected HBA1 and HBA2 sequence analysis: No pathogenic or likely pathogenic variants identified Reduced risk of being an alpha-thalassemia carrier (aa/aa)

Genes analyzed: *HBA1* (NM_000558.4) and *HBA2* (NM_000517.4) **Inheritance:** Autosomal Recessive


Recommendations

Individuals of Asian, African, Hispanic and Mediterranean ancestry should also be screened for hemoglobinopathies by CBC and hemoglobin electrophoresis.

Interpretation

No pathogenic or likely pathogenic copy number variants or sequence variants were detected in this patient, suggesting that four copies of the alpha-globin gene are present (aa/aa). Typically, individuals have four functional alpha-globin genes: 2 copies of *HBA1* and 2 copies of *HBA2*, whose expression is regulated by a cisacting regulatory element HS-40. Alpha-thalassemia carriers have three (silent carrier) or two (carrier of the alpha-thalassemia trait) functional alpha-globin genes with or without a mild phenotype. Individuals with only

onor 5662 DOB: Lab #:

one functional alpha-globin gene have HbH disease with microcytic, hypochromic hemolytic anemia and hepatosplenomegaly. Loss of all four alpha-globin genes results in Hb Barts syndrome with the accumulation of Hb Barts in red blood cells and hydrops fetalis, which is fatal in utero or shortly after birth.

This individual was negative for all *HBA* deletions, duplications and variants that were tested. These negative results reduce but do not eliminate the possibility that this individual is a carrier. See *Table of Residual Risks Based on Ethnicity*. With individuals of mixed ethnicity, it is recommended to use the highest residual risk estimate.

Table of Residual Risks Based on Ethnicity

Ethnicity	Carrier Frequency	Detection Rate	Residual Risk
Caucasian	1 in 500	95%	1 in 10,000
African American	1 in 30	95%	1 in 580
Asian	1 in 20	95%	1 in 380
Worldwide	1 in 25	95%	1 in 480

Congenital Adrenal Hyperplasia (21-Hydroxylase Deficiency)

NEGATIVE for congenital adrenal hyperplasia (due to 21-hydroxylase deficiency) CYP21A2 copy number: 2

No pathogenic copy number variants detected No pathogenic sequence variants detected in *CYP21A2* Reduced risk of being a congenital adrenal hyperplasia carrier

Genes analyzed: *CYP21A2* (NM_000500.6) **Inheritance:** Autosomal Recessive

Recommendations

Consideration of residual risk by ethnicity (see below) after a negative carrier screen is recommended, especially in the case of a positive family history of congenital adrenal hyperplasia.

Interpretation

This individual was negative for all pathogenic *CYP21A2* copy number variants that were tested, and no pathogenic or likely pathogenic variants were identified by sequence analysis. These negative results reduce but do not eliminate the possibility that this individual is a carrier. See *Table of Residual Risks Based on Ethnicity*. With individuals of mixed ethnicity, it is recommended to use the highest residual risk estimate.

DOB:

Lab #:

Table of Residual Risk Based On Ethnicity - Classic Congenital Adrenal Hyperplasia Due to 21-Hydroxylase Deficiency

Ethnicity	Carrier Frequency	Detection Rate	Residual Risk
Ashkenazi Jewish	1 in 40	>95%	1 in 780
Caucasian	1 in 67	>95%	1 in 1300
Worldwide	1 in 60	>95%	1 in 1200

Table of Residual Risk Based On Ethnicity - Non-Classic Congenital Adrenal Hyperplasia Due to 21-Hydroxylase Deficiency

Ethnicity	Carrier Frequency	Detection Rate	Residual Risk
Ashkenazi Jewish	1 in 7	>95%	1 in 120
Caucasian	1 in 11	>95%	1 in 200
Worldwide	1 in 16	>95%	1 in 300

Fragile X syndrome

Fragile X CGG triplet repeat expansion testing was not performed at this time, as the patient has either been previously tested or is a male. Sequencing of the *FMR1* gene by next generation sequencing did not identify any clinically significant variants.

Spinal Muscular Atrophy

NEGATIVE for spinal muscular atrophy *SMN1* Copy Number: 2 *SMN2* Copy Number: 0 c.*3+80T>G: Negative

Negative copy number result Decreased risk of being an *SMN1* silent (2+0) carrier (see *SMA Table*)

Genes analyzed: *SMN1* (NM_000344.3) and *SMN2* (NM_017411.3) **Inheritance:** Autosomal Recessive

DOB:

Lab #:

Recommendations

Consideration of residual risk by ethnicity after a negative carrier screen is recommended, especially in the case of a positive family history for spinal muscular atrophy.

Interpretation

This patient is negative for loss of *SMN1* copy number. Complete loss of *SMN1* is causative in spinal muscular atrophy (SMA). Two copies of *SMN1* were detected in this individual, which significantly reduces the risk of being an SMA carrier. Parallel testing to assess the presence of an *SMN1* duplication allele was also performed to detect a single nucleotide polymorphism (SNP), c.*3+80T>G, in intron 7 of the *SMN1* gene. This individual was found to be negative for this change and is therefore, at a decreased risk of being a silent (2+0) carrier, see *SMA Table* for residual risk estimates based on ethnicity.

SMA Table: Carrier detection and residual risk estimates before and after testing for c.*3+80T>G

Ethnicity	Carrier Frequency	Detection rate	Residual risk after negative result*	Detection rate with <i>SMN1</i> c.*3+80T>G	Residual risk c.*3+80T>G negative	Residual risk c.*3+80T>G positive
African American	1 in 85	71%	1 in 160	91%	1 in 455	1 in 49
Ashkenazi Jewish	1 in 76	90%	1 in 672	93%	1 in 978	1 in 10
East Asian	1 in 53	94%	1 in 864	95%	1 in 901	1 in 12
Caucasian	1 in 48	95%	1 in 803	95%	1 in 894	1 in 23
Latino	1 in 63	91%	1 in 609	94%	1 in 930	1 in 47
South Asian	1 in 103	87%	1 in 637	87%	1 in 637	1 in 608
Sephardic Jewish	1 in 34	96%	1 in 696	97%	1 in 884	1 in 12

*Residual risk with two copies *SMN1* detected using dosage sensitive methods. The presence of three or more copies of *SMN1* reduces the risk of being an *SMN1* carrier between 5 - 10 fold, depending on ethnicity. *FOR INDIVIDUALS WITH MIXED ETHNICITY, USE HIGHEST RESIDUAL RISK ESTIMATE* ^ Parental follow-up will be requested for confirmation

This case has been reviewed and electronically signed by Rebekah Zimmerman, Ph.D., FACMG, Laboratory Director

Laboratory Medical Consultant: George A. Diaz, M.D., Ph.D.

DOB:

Test Methods and Comments

Genomic DNA isolated from this patient was analyzed by one or more of the following methodologies, as applicable:

Fragile X CGG Repeat Analysis (Analytical Detection Rate >99%)

PCR amplification using Asuragen, Inc. AmplideX[®] *FMR1* PCR reagents followed by capillary electrophoresis for allele sizing was performed. Samples positive for *FMR1* CGG repeats in the premutation and full mutation size range were further analyzed by Southern blot analysis to assess the size and methylation status of the *FMR1* CGG repeat.

Genotyping (Analytical Detection Rate >99%)

Multiplex PCR amplification and allele specific primer extension analyses using the MassARRAY[®] System were used to identify variants that are complex in nature or are present in low copy repeats. Rare sequence variants may interfere with assay performance.

Multiplex Ligation-Dependent Probe Amplification (MLPA) (Analytical Detection Rate >99%)

MLPA[®] probe sets and reagents from MRC-Holland were used for copy number analysis of specific targets versus known control samples. False positive or negative results may occur due to rare sequence variants in target regions detected by MLPA probes. Analytical sensitivity and specificity of the MLPA method are both 99%.

For alpha thalassemia, the copy numbers of the *HBA1* and *HBA2* genes were analyzed. Alpha-globin gene deletions, triplications, and the Constant Spring (CS) mutation are assessed. This test is expected to detect approximately 90% of all alpha-thalassemia mutations, varying by ethnicity. Carriers of alpha-thalassemia with three or more *HBA* copies on one chromosome, and one or no copies on the other chromosome, may not be detected. With the exception of triplications, other benign alpha-globin gene polymorphisms will not be reported. Analyses of *HBA1* and *HBA2* are performed in association with long-range PCR of the coding regions followed by short-read sequencing.

For Duchenne muscular dystrophy, the copy numbers of all *DMD* exons were analyzed. Potentially pathogenic single exon deletions and duplications are confirmed by a second method. Analysis of *DMD* is performed in association with sequencing of the coding regions.

For congenital adrenal hyperplasia, the copy number of the *CYP21A2* gene was analyzed. This analysis can detect large deletions due to unequal meiotic crossing-over between *CYP21A2* and the pseudogene *CYP21A1P*. These 30-kb deletions make up approximately 20% of *CYP21A2* pathogenic alleles. This test may also identify certain point mutations in *CYP21A2* caused by gene conversion events between *CYP21A2* and *CYP21A1P*. Some carriers may not be identified by dosage sensitive methods as this testing cannot detect individuals with two copies (duplication) of the *CYP21A2* gene on one chromosome and loss of *CYP21A2* (deletion) on the other chromosome. Analysis of *CYP21A2* is performed in association with long-range PCR of the coding regions followed by short-read sequencing.

For spinal muscular atrophy (SMA), the copy numbers of the *SMN1* and *SMN2* genes were analyzed. The individual dosage of exons 7 and 8 as well as the combined dosage of exons 1, 4, 6 and 8 of *SMN1* and *SMN2* were assessed. Copy number gains and losses can be detected with this assay. Depending on ethnicity, 6 - 29 % of carriers will not be identified by dosage sensitive methods as this testing cannot detect individuals with two copies (duplication) of the *SMN1* gene on one chromosome and loss of *SMN1* (deletion) on the other chromosome (silent 2+0 carrier) or individuals that carry an intragenic mutation in *SMN1*. Please also note that 2% of individuals with SMA have an *SMN1* mutation that occurred *de novo*. Typically in these cases, only one parent is an SMA carrier.

The presence of the c.*3+80T>G (chr5:70,247,901T>G) variant allele in an individual with Ashkenazi Jewish or Asian ancestry is typically indicative of a duplication of *SMN1*. When present in an Ashkenazi Jewish or Asian individual with two copies of *SMN1*, c.*3+80T>G is likely indicative of a silent (2+0) carrier. In individuals with two copies of *SMN1* with African American, Hispanic or Caucasian ancestry, the presence or absence of c.*3+80T>G significantly increases or decreases, respectively, the likelihood of being a silent 2+0 silent carrier.

Pathogenic or likely pathogenic sequence variants in exon 7 may be detected during testing for the c.*3+80T>G variant allele; these will be reported if confirmed to be located in SMN1 using locus-specific Sanger primers

Pathogenic or likely pathogenic sequence variants in exon 7 may be detected during testing for the c.*3+80T>G variant allele; these will be reported if confirmed to be located in SMN1 using locus-specific Sanger primers.

MLPA for Gaucher disease (*GBA*), cystic fibrosis (*CFTR*), and non-syndromic hearing loss (*GJB2/GJB6*) will only be performed if indicated for confirmation of detected CNVs. If *GBA* analysis was performed, the copy numbers of exons 1, 3, 4, and 6 - 10 of the *GBA* gene (of 11 exons total) were analyzed. If *CFTR* analysis was performed, the copy numbers of all 27 *CFTR* exons were analyzed. If *GJB2/GJB6* analysis was

Lab #:

a mount Sinai venti

Patient: Donor 5662

performed, the copy number of the two *GJB*2 exons were analyzed, as well as the presence or absence of the two upstream deletions of the *GJB*2 regulatory region, del(*GJB*6-D13S1830) and del(*GJB*6-D13S1854).

Next Generation Sequencing (NGS) (Analytical Detection Rate >95%)

NGS was performed on a panel of genes for the purpose of identifying pathogenic or likely pathogenic variants.

DOB:

Agilent SureSelectTMQXT technology was used with a custom capture library to target the exonic regions and intron/exon splice junctions of the relevant genes, as well as a number of UTR, intronic or promoter regions that contain previously reported mutations. Samples were pooled and sequenced on the Illumina HiSeq 2500 platform in the Rapid Run mode or the Illumina NovaSeq platform in the Xp workflow, using 100 bp paired-end reads. The sequencing data was analyzed using a custom bioinformatics algorithm designed and validated in house.

The coding exons and splice junctions of the known protein-coding RefSeq genes were assessed for the average depth of coverage (minimum of 20X) and data quality threshold values. Most exons not meeting a minimum of >20X read depth across the exon are further analyzed by Sanger sequencing. Please note that several genomic regions present difficulties in mapping or obtaining read depth >20X. The exons contained within these regions are noted within Table 1 (as "Exceptions") and will not be reflexed to Sanger sequencing if the mapping quality or coverage is poor. Any variants identified during testing in these regions are confirmed by a second method and reported if determined to be pathogenic or likely pathogenic. However, as there is a possibility of false negative results within these regions, detection rates and residual risks for these genes have been calculated with the presumption that variants in these exons will not be detected, unless included in the MassARRAY[®] genotyping platform.

This test will detect variants within the exons and the intron-exon boundaries of the target regions. Variants outside these regions may not be detected, including, but not limited to, UTRs, promoters, and deep intronic areas, or regions that fall into the Exceptions mentioned above. This technology may not detect all small insertion/deletions and is not diagnostic for repeat expansions and structural genomic variation. In addition, a mutation(s) in a gene not included on the panel could be present in this patient.

Variant interpretation and classification was performed based on the American College of Medical Genetics Standards and Guidelines for the Interpretation of Sequence Variants (Richards et al, 2015). All potentially pathogenic variants may be confirmed by either a specific genotyping assay or Sanger sequencing, if indicated. Any benign variants, likely benign variants or variants of uncertain significance identified during this analysis will not be reported.

Copy Number Variant Analysis (Analytical Detection Rate >95%)

Large duplications and deletions were called from the relative read depths on an exon-by-exon basis using a custom exome hidden Markov model (XHMM) algorithm. Deletions or duplications determined to be pathogenic or likely pathogenic were confirmed by either a custom arrayCGH platform, quantitative PCR, or MLPA (depending on CNV size and gene content). While this algorithm is designed to pick up deletions and duplications of 2 or more exons in length, potentially pathogenic single-exon CNVs will be confirmed and reported, if detected.

Exon Array (Confirmation method) (Accuracy >99%)

The customized oligonucleotide microarray (Oxford Gene Technology) is a highly-targeted exon-focused array capable of detecting medically relevant microdeletions and microduplications at a much higher resolution than traditional aCGH methods. Each array matrix has approximately 180,000 60-mer oligonucleotide probes that cover the entire genome. This platform is designed based on human genome NCBI Build 37 (hg19) and the CGH probes are enriched to target the exonic regions of the genes in this panel.

Quantitative PCR (Confirmation method) (Accuracy >99%)

The relative quantification PCR is utilized on a Roche Universal Library Probe (UPL) system, which relates the PCR signal of the target region in one group to another. To test for genomic imbalances, both sample DNA and reference DNA is amplified with primer/probe sets that specific to the target region and a control region with known genomic copy number. Relative genomic copy numbers are calculated based on the standard $\Delta\Delta$ Ct formula.

Long-Range PCR (Analytical Detection Rate >99%)

Long-range PCR was performed to generate locus-specific amplicons for *CYP21A2*, *HBA1* and *HBA2* and *GBA*. The PCR products were then prepared for short-read NGS sequencing and sequenced. Sequenced reads were mapped back to the original genomic locus and run through the bioinformatics pipeline. If indicated, copy number from MLPA was correlated with the sequencing output to analyze the results. For *CYP21A2*, a certain percentage of healthy individuals carry a duplication of the *CYP21A2* gene, which has no clinical consequences. In cases where two copies of a gene are located on the same chromosome in tandem, only the second copy will be amplified and assessed for potentially pathogenic

Lab #:

Patient: Donor 5662

variants, due to size limitations of the PCR reaction. However, because these alleles contain at least two copies of the *CYP21A2* gene in tandem, it is expected that this patient has at least one functional gene in the tandem allele and this patient is therefore less likely to be a carrier. When an individual carries both a duplication allele and a pathogenic variant, or multiple pathogenic variants, the current analysis may not be able to determine the phase (cis/trans configuration) of the *CYP21A2* alleles identified. Family studies may be required in certain scenarios where phasing is required to determine the carrier status.

DOB:

Residual Risk Calculations

Carrier frequencies and detection rates for each ethnicity were calculated through the combination of internal curations of >28,000 variants and genomic frequency data from >138,000 individuals across seven ethnic groups in the gnomAD database. Additional variants in HGMD and novel deleterious variants were also incorporated into the calculation. Residual risk values are calculated using a Bayesian analysis combining the *a priori* risk of being a pathogenic mutation carrier (carrier frequency) and the detection rate. They are provided only as a guide for assessing approximate risk given a negative result, and values will vary based on the exact ethnic background of an individual. This report does not represent medical advice but should be interpreted by a genetic counselor, medical geneticist or physician skilled in genetic result interpretation and the relevant medical literature.

Sanger Sequencing (Confirmation method) (Accuracy >99%)

Sanger sequencing, as indicated, was performed using BigDye Terminator chemistry with the ABI 3730 DNA analyzer with target specific amplicons. It also may be used to supplement specific guaranteed target regions that fail NGS sequencing due to poor quality or low depth of coverage (<20 reads) or as a confirmatory method for NGS positive results. False negative results may occur if rare variants interfere with amplification or annealing.

Please note these tests were developed and their performance characteristics were determined by Mount Sinai Genomics, Inc. They have not been cleared or approved by the FDA. These analyses generally provide highly accurate information regarding the patient's carrier or affected status. Despite this high level of accuracy, it should be kept in mind that there are many potential sources of diagnostic error, including misidentification of samples, polymorphisms, or other rare genetic variants that interfere with analysis. Families should understand that rare diagnostic errors may occur for these reasons.

SELECTED REFERENCES

Carrier Screening

Grody W et al. ACMG position statement on prenatal/preconception expanded carrier screening. Genet Med. 2013 15:482-3.

Fragile X syndrome:

Chen L et al. An information-rich CGG repeat primed PCR that detects the full range of Fragile X expanded alleles and minimizes the need for Southern blot analysis. *J Mol Diag* 2010 12:589-600.

Spinal Muscular Atrophy:

Luo M et al. An Ashkenazi Jewish SMN1 haplotype specific to duplication alleles improves pan-ethnic carrier screening for spinal muscular atrophy. *Genet Med.* 2014 16:149-56.

Ashkenazi Jewish Disorders:

Scott SA et al. Experience with carrier screening and prenatal diagnosis for sixteen Ashkenazi Jewish Genetic Diseases. *Hum. Mutat.* 2010 31:1-11.

Duchenne Muscular Dystrophy:

Flanigan KM et al. Mutational spectrum of DMD mutations in dystrophinopathy patients: application of modern diagnostic techniques to a large cohort. *Hum Mutat.* 2009 30:1657-66.

Variant Classification:

Richards S et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. *Genet Med.* 2015 May;17(5):405-24

Additional disease-specific references available upon request.

Table 1. List of genes and diseases tested.

Please see http://go.sema4.com/residualrisk for specific detection rates and residual risk by ethnicity.

DOB:

Lab #:

Gene	Disease
ACADM	Medium Chain Acyl-CoA Dehydrogenase Deficiency
ABCB11	Progressive Familial Intrahepatic Cholestasis, Type 2
ABCC8	Familial Hyperinsulinism (ABCC8-Related)
ABCD1	Adrenoleukodystrophy, X-Linked
ACAD9	Mitochondrial Complex I Deficiency (ACAD9-Related)
ACADVL	Very Long Chain Acyl-CoA Dehydrogenase Deficiency
ACAT1	Beta-Ketothiolase Deficiency
ACOX1	Acyl-CoA Oxidase I Deficiency
ACSF3	Combined Malonic and Methylmalonic Aciduria
ADA	Adenosine Deaminase Deficiency
ADAMTS2	Ehlers-Danlos Syndrome, Type VIIC
AGA	Aspartylglycosaminuria
AGL	Glycogen Storage Disease, Type III
AGPS	Rhizomelic Chondrodysplasia Punctata, Type 3
AGXT	Primary Hyperoxaluria, Type 1
AIRE	Polyglandular Autoimmune Syndrome, Type 1
ALDH3A2	Sjogren-Larsson Syndrome
ALDOB	Hereditary Fructose Intolerance
ALG6	Congenital Disorder of Glycosylation, Type Ic
ALMS1	Alstrom Syndrome
ALPL	Hypophosphatasia
AMT	Glycine Encephalopathy (AMT-Related)
AQP2	Nephrogenic Diabetes Insipidus, Type II
ARSA	Metachromatic Leukodystrophy
ARSB	Mucopolysaccharidosis type VI
ASL	Argininosuccinic Aciduria
ASNS	Asparagine Synthetase Deficiency
ASPA	Canavan Disease
ASS1	Citrullinemia, Type 1
ΑΤΜ	Ataxia-Telangiectasia
ATP6V1B1	Renal Tubular Acidosis and Deafness
ΑΤΡΤΑ	Menkes Disease
ATP7B	Wilson Disease
ATRX	Alpha-Thalassemia Mental Retardation Syndrome
BBS1	Bardet-Biedl Syndrome (BBS1-Related)
BBS10	Bardet-Biedl Syndrome (BBS10-Related)
BBS12	Bardet-Biedl Syndrome (BBS12-Related)
BBS2	Bardet-Biedl Syndrome (BBS2-Related)
BCKDHA	Maple Syrup Urine Disease, Type 1a
BCKDHB	Maple Syrup Urine Disease, Type 1b
BCS1L	GRACILE Syndrome and Other BCS1L-Related Disorders
BLM	Bloom Syndrome
BSND	Bartter Syndrome, Type 4A
BTD	Biotinidase Deficiency
CAPN3	Limb-Girdle Muscular Dystrophy, Type 2A
CBS	Homocystinuria (CBS-Related)
CDH23	Usher Syndrome, Type ID
CEP290	Leber Congenital Amaurosis 10 and Other CEP290-Related Ciliopathies
CERKL	Retinitis Pigmentosa 26

Gene	Disease
CFTR	Cystic Fibrosis
СНМ	Choroideremia
CHRNE	Congenital Myasthenic Syndrome (CHRNE-Related)
CIITA	Bare Lymphocyte Syndrome, Type II
CLN3	Neuronal Ceroid-Lipofuscinosis (CLN3-Related)
CLN5	Neuronal Ceroid-Lipofuscinosis (CLN5-Related)
CLN6	Neuronal Ceroid-Lipofuscinosis (CLN6-Related)
CLN8	Neuronal Ceroid-Lipofuscinosis (CLN8-Related)
CLRN1	Usher Syndrome, Type III
CNGB3	Achromatopsia
COL27A1	Steel Syndrome
COL4A3	Alport Syndrome (COL4A3-Related)
COL4A4	Alport Syndrome (COL4A4-Related)
COL4A5	Alport Syndrome (COL4A5-Related)
COL7A1	Dystrophic Epidermolysis Bullosa
CPS1	Carbamoylphosphate Synthetase I Deficiency
CPT1A	Carnitine Palmitoyltransferase IA Deficiency
CPT2	Carnitine Palmitoyltransferase II Deficiency
CRB1	Leber Congenital Amaurosis 8 / Retinitis Pigmentosa 12 / Pigmented Paravenous Chorioretinal Atrophy
CTNS	Cystinosis
CTSK	Pycnodysostosis
СҮВА	Chronic Granulomatous Disease (CYBA-related)
СҮВВ	Chronic Granulomatous Disease (CYBB-related)
CYP11B2	Corticosterone Methyloxidase Deficiency
CYP17A1	Congenital Adrenal Hyperplasia due to 17-Alpha-Hydroxylase Deficiency
CYP21A2	Classic Congenital Adrenal Hyperplasia due to 21- Hydroxylase Deficiency
CYP19A1	Aromatase Deficiency
CYP27A1	Cerebrotendinous Xanthomatosis
DCLRE1C	Omenn Syndrome / Severe Combined Immunodeficiency, Athabaskan-Type
DHCR7	Smith-Lemli-Opitz Syndrome
DHDDS	Retinitis Pigmentosa 59
DLD	Lipoamide Dehydrogenase Deficiency
DMD	Duchenne Muscular Dystrophy / Becker Muscular Dystrophy
DNAH5	Primary Ciliary Dyskinesia (DNAH5-Related)
DNAI1	Primary Ciliary Dyskinesia (DNAI1-Related)
DNAI2	Primary Ciliary Dyskinesia (DNAI2-related)
DYSF	Limb-Girdle Muscular Dystrophy, Type 2B
EDA	Hypohidrotic Ectodermal Dysplasia 1
EIF2B5	Leukoencephalopathy with Vanishing White Matter
EMD	Emery-Dreifuss Myopathy 1
ESCO2	Roberts Syndrome
ETFA	Glutaric Acidemia, Type IIa
ETFDH	Glutaric Acidemia, Type IIc
ETHE1	Ethylmalonic Encephalopathy
EVC	Ellis-van Creveld Syndrome (EVC-Related)
EYS	Retinitis Pigmentosa 25
F11	Factor XI Deficiency
F9	Factor IX Deficiency
FAH	Tyrosinemia, Type I

Gene Disease

Mail: One Gustave L. Levy Place, Box 1497 Specimens: 1428 Madison Ave, Atran Bldg, Rm 2-25 New York, NY 10029

Disease

Gene

CLIA #: 33D2097541 T: 800-298-6470 F: 212-241-0139 www.sema4genomics.com

a Mount Sinai venture

Patient: Donor 5662

DOB:

.ab #:	

טשו	Nucopolysacchanuosis i ype il
IDS	Mucopolysaccharidosis Type II
HYLS1	Hydrolethalus Syndrome
HYAL1	Mucopolysaccharidosis type IX
HSD3B2	3-Beta-Hydroxysteroid Dehydrogenase Type II Deficiency
HSD17B4	D-Bifunctional Protein Deficiency
HPS3	Hermansky-Pudlak Syndrome, Type 3
HPS1	Hermansky-Pudlak Syndrome, Type 1
HOGA1	Primary Hyperoxaluria, Type 3
HMGCL	HMG-CoA Lyase Deficiency
HLCS	Holocarboxylase Synthetase Deficiency
HFEZ	Mucopolysaccharidosis Type IIIC
HEXB HFE2	Hemochromatosis, Type 2A
HEXA	Tay-Sachs Disease Sandhoff Disease
HBB HEXA	Beta-Globin-Related Hemoglobinopathies
	•
HBA1/HBA2	Alpha-Thalassemia
HAX1	Congenital Neutropenia (HAX1-Related)
HADHA	Long-Chain 3-Hydroxyacyl-CoA Dehydrogenase Deficiency
GRHPR	Primary Hyperoxaluria, Type 2
GPR56	Bilateral Frontoparietal Polymicrogyria
GP9	Bernard-Soulier Syndrome, Type C
GP1BA	Bernard-Soulier Syndrome, Type A1
GNS	Mucopolysaccharidosis Type IIID
GNPTAD	Mucolipidosis II / IIIA Mucolipidosis III Gamma
GNE	Mucolipidosis II / IIIA
GNE	Arthrogryposis with Anterior Horn Cell Disease Inclusion Body Myopathy 2
GLE1	Lethal Congenital Contracture Syndrome 1 / Lethal
GLDC	Glycine Encephalopathy (GLDC-Related)
GLB1	Mucopolysaccharidosis Type IVb / GM1 Gangliosidosis
GLA	Fabry Disease
GJB2†	Non-Syndromic Hearing Loss (GJB2-Related)
GJB1	Charcot-Marie-Tooth Disease, X-Linked
GFM1	Combined Oxidative Phosphorylation Deficiency 1
GCDH	Glutaric Acidemia, Type I
GBE1	Body Disease
GBA	Gaucher Disease Glycogen Storage Disease, Type IV / Adult Polyglucosan
GAMT	Cerebral Creatine Deficiency Syndrome 2
GALT	Galactosemia
GALK1	Galactokinase Deficiency
GALC	Krabbe Disease
GAA	Glycogen Storage Disease, Type II
G6PC	Glycogen Storage Disease, Type la
FMR1	Fragile X Syndrome
FKTN	Dystrophies
FKRP	Limb-Girdle Muscular Dystrophy, Type 2I Walker-Warburg Syndrome and Other FKTN-Related
FH	Fumarase Deficiency
FANCG	Fanconi Anemia, Group G
FANCC	Fanconi Anemia, Group C
FANCA	Fanconi Anemia, Group A
FAM161A	Retinitis Pigmentosa 28

IDUA	Mucopolysaccharidosis Type I
IKBKAP	Familial Dysautonomia
IL2RG	X-Linked Severe Combined Immunodeficiency
IVD	Isovaleric Acidemia
KCNJ11	Familial Hyperinsulinism (KCNJ11-Related)
LAMA3	Junctional Epidermolysis Bullosa (LAMA3-Related)
LAMB3	Junctional Epidermolysis Bullosa (LAMB3-Related)
LAMC2	Junctional Epidermolysis Bullosa (LAMC2-Related)
LCA5	Leber Congenital Amaurosis 5
LDLR	Familial Hypercholesterolemia
LDLRAP1	Familial Autosomal Recessive Hypercholesterolemia
LHX3	Combined Pituitary Hormone Deficiency 3
LIFR	Stuve-Wiedemann Syndrome
LIPA	Wolman Disease / Cholesteryl Ester Storage Disease
LOXHD1	Deafness, Autosomal Recessive 77
LPL	Lipoprotein Lipase Deficiency
LRPPRC	Leigh Syndrome, French-Canadian Type
MAN2B1	Alpha-Mannosidosis
MCCC1	3-Methylcrotonyl-CoA Carboxylase Deficiency (MCCC1-Related)
MCCC2	3-Methylcrotonyl-CoA Carboxylase Deficiency (MCCC2-Related)
MCOLN1	Mucolipidosis IV
MED17	Infantile Cerebral and Cerebellar Atrophy
MEFV	Familial Mediterranean Fever
MESP2	Spondylothoracic Dysostosis
MFSD8	Neuronal Ceroid-Lipofuscinosis (MFSD8-Related)
MKS1	Meckel syndrome 1 / Bardet-Biedl Syndrome 13
MLC1	Megalencephalic Leukoencephalopathy with Subcortical Cysts
ММАА	Methylmalonic Acidemia (MMAA-Related)
MMAB	Methylmalonic Acidemia (MMAB-Related)
ММАСНС	Methylmalonic Aciduria and Homocystinuria, Cobalamin C Type
MMADHC	Methylmalonic Aciduria and Homocystinuria, Cobalamin D Type
MPI	Congenital Disorder of Glycosylation, Type Ib
MPL	Congenital Amegakaryocytic Thrombocytopenia
MPV17	Mitochondrial DNA Depletion Syndrome 6 / Navajo Neurohepatopathy
MTHFR	Homocystinuria due to MTHFR Deficiency
MTM1	Myotubular Myopathy 1
MTRR	Homocystinuria, cblE Type
MTTP	Abetalipoproteinemia
МИТ	Methylmalonic Acidemia (MUT-Related)
MYO7A	Usher Syndrome, Type IB
NAGLU	Mucopolysaccharidosis Type IIIB
NAGS	N-Acetylglutamate Synthase Deficiency
NBN	Nijmegen Breakage Syndrome
NDRG1	Charcot-Marie-Tooth Disease, Type 4D
NDUFAF5	Mitochondrial Complex I Deficiency (NDUFAF5-Related)
NDUFS6	Mitochondrial Complex I Deficiency (NDUFS6-Related)
NEB	Nemaline Myopathy 2
NPC1	Niemann-Pick Disease, Type C (NPC1-Related)
NPC2	Niemann-Pick Disease, Type C (NPC2-Related)
NPHS1	Nephrotic Syndrome (NPHS1-Related) / Congenital Finnish
	Nephrosis

CARRIER SCREENING REPORT

Patient: Donor 5662

DOB:

Lab #:

Gene	Disease		
NPHS2	Nephrotic Syndrome (NPHS2-Related) / Steroid-Resistant Nephrotic Syndrome		
NR2E3	Enhanced S-Cone Syndrome		
NTRK1	Congenital Insensitivity to Pain with Anhidrosis		
OAT	Ornithine Aminotransferase Deficiency		
OPA3	3-Methylglutaconic Aciduria, Type III		
отс	Ornithine Transcarbomylase Deficiency		
PAH	Phenylalanine Hydroxylase Deficiency		
PCCA	Propionic Acidemia (PCCA-Related)		
PCCB	Propionic Acidemia (PCCB-Related)		
PCDH15	Usher Syndrome, Type IF		
PDHA1	Pyruvate Dehydrogenase E1-Alpha Deficiency		
PDHB	Pyruvate Dehydrogenase E1-Beta Deficiency		
PEX1	Zellweger Syndrome Spectrum (PEX1-Related)		
PEX10	Zellweger Syndrome Spectrum (PEX10-Related)		
PEX2	Zellweger Syndrome Spectrum (PEX2-Related)		
PEX6	Zellweger Syndrome Spectrum (PEX6-Related)		
PEX7	Rhizomelic Chondrodysplasia Punctata, Type 1		
PFKM	Glycogen Storage Disease, Type VII		
PHGDH	3-Phosphoglycerate Dehydrogenase Deficiency		
PKHD1	Polycystic Kidney Disease, Autosomal Recessive		
PMM2	Congenital Disorder of Glycosylation, Type la		
POMGNT1	Muscle-Eye-Brain Disease and Other POMGNT1-Related Congenital Muscular Dystrophy-Dystroglycanopathies		
PPT1	Neuronal Ceroid-Lipofuscinosis (PPT1-Related)		
PROP1	Combined Pituitary Hormone Deficiency 2		
PRPS1	Charcot-Marie-Tooth Disease, Type 5 / Arts syndrome		
PSAP	Combined SAP Deficiency		
PTS	6-Pyruvoyl-Tetrahydropterin Synthase Deficiency		
PUS1	Mitochondrial Myopathy and Sideroblastic Anemia 1		
PYGM	Glycogen Storage Disease, Type V		
RAB23	Carpenter Syndrome		
RAG2	Omenn Syndrome (RAG2-Related)		
RAPSN	Congenital Myasthenic Syndrome (RAPSN-Related)		
RARS2	Pontocerebellar Hypoplasia, Type 6		
RDH12	Leber Congenital Amaurosis 13		
RMRP	Cartilage-Hair Hypoplasia		
RPE65	Leber Congenital Amaurosis 2 / Retinitis pigmentosa 20		
RPGRIP1L	Joubert Syndrome 7 / Meckel Syndrome 5 / COACH Syndrome		
RS1	X-Linked Juvenile Retinoschisis		
RTEL1	Dyskeratosis Congenita (RTEL1-Related)		
SACS	Autosomal Recessive Spastic Ataxia of Charlevoix-Saguenay		
SAMHD1	Aicardi-Goutières Syndrome (SAMHD1-Related)		
SEPSECS	Progressive Cerebello-Cerebral Atrophy		

Gene	Disease		
SGCA	Limb-Girdle Muscular Dystrophy, Type 2D		
SGCB	Limb-Girdle Muscular Dystrophy, Type 2E		
SGCG	Limb-Girdle Muscular Dystrophy, Type 2C		
SGSH	Mucopolysaccharidosis Type IIIA		
SLC12A3	Gitelman Syndrome		
SLC12A6	Andermann Syndrome		
SLC17A5	Salla Disease		
SLC22A5	Primary Carnitine Deficiency		
SLC25A13	Citrin Deficiency		
SLC25A15	Hyperornithinemia-Hyperammonemia-Homocitrullinuria Syndrome		
SLC26A2	Sulfate Transporter-Related Osteochondrodysplasia		
SLC26A4	Pendred Syndrome		
SLC35A3	Arthrogryposis, Mental Retardation, and Seizures		
SLC37A4	Glycogen Storage Disease, Type Ib		
SLC39A4	Acrodermatitis Enteropathica		
SLC4A11	Corneal Dystrophy and Perceptive Deafness		
SLC6A8	Cerebral Creatine Deficiency Syndrome 1		
SLC7A7	Lysinuric Protein Intolerance		
SMARCAL1	Schimke Immunoosseous Dysplasia		
SMN1	Spinal Muscular Atrophy		
SMPD1	Niemann-Pick Disease (SMPD1-Related)		
STAR	Lipoid Adrenal Hyperplasia		
SUMF1	Multiple Sulfatase Deficiency		
TCIRG1	Osteopetrosis 1		
TECPR2	Hereditary Spastic Paraparesis 49		
TFR2	Hemochromatosis, Type 3		
TGM1	Lamellar Ichthyosis, Type 1		
ТН	Segawa Syndrome		
TMEM216	Joubert Syndrome 2		
TPP1	Neuronal Ceroid-Lipofuscinosis (TPP1-Related)		
TRMU	Acute Infantile Liver Failure		
TSFM	Combined Oxidative Phosphorylation Deficiency 3		
ΤΤΡΑ	Ataxia With Isolated Vitamin E Deficiency		
ТҮМР	Myoneurogastrointestinal Encephalopathy		
USH1C	Usher Syndrome, Type IC		
USH2A	Usher Syndrome, Type IIA		
VPS13A	Choreoacanthocytosis		
VPS13B	Cohen Syndrome		
VPS45	Congenital Neutropenia (VPS45-Related)		
VRK1	Pontocerebellar Hypoplasia, Type 1A		
VSX2	Microphthalmia / Anophthalmia		
WNT10A	Odonto-Onycho-Dermal Dysplasia / Schopf-Schulz-Passarge Syndrome		

† Please note that GJB2 testing includes testing for the two upstream deletions, del(GJB6-D13S1830) and del(GJB6-D13S1854) (PMID: 11807148 and 15994881)

NAME 5662, Donor

PATIENT INFORMATION	SPECIMEN INFORMATION	PROVIDER INFORMATION
5662, Donor ID#: 5662 DOB: Sex: Male	Type: Whole Blood Collected: April 09, 2019 Received: April 11, 2019 PG ID: 2019-101-163	Harvey Stern, MD, PhD Suzanne Seitz, MS Fairfax Cryobank

MOLECULAR GENETICS REPORT: Carrier Testing via TYR Gene Sequencing with CNV Detection

```
SUMMARY OF RESULTS
```

INDETERMINATE

Gene, Transcript	Mode of Inheritance, Gene OMIM	DNA Variations, Predicted Effects, Zygosity	dbSNP ID Number	Highest Allele Frequency in a gnomAD Population	In Silico Missense Predictions	Interpretation
<i>TYR</i> , NM_000372.4	AR, 606933	c.575C>A, p.Ser192Tyr, Heterozygous	rs1042602	45.055%, Ashkenazi Jewish	Conflicting	UNCERTAIN
<i>TYR</i> , NM_000372.4	AR, 606933	c.1205G>A, p.Arg402Gln, Heterozygous	rs1126809	27.25%, European (Non-Finnish)	Conflicting	UNCERTAIN

Mode of Inheritance: Autosomal Dominant=AD, Autosomal Recessive=AR, X-Linked=XL

Allele Frequency registered in a large population database (http://gnomad.broadinstitute.org/). Value listed is the highest allele frequency reported within one of seven population categories recognized in gnomAD v2.0 (The "Other" population is excluded). Missense Predictions via PolyPhen-2, SIFT, MutationTaster, and FATHMM (PMID: 26555599). Output summarized as Damaging, Conflicting, or Tolerated

RESULTS AND INTERPRETATIONS: The heterozygous TYR gene sequence variants c.575C>A

(p.Ser192Tyr) and c.1205G>A (p.Arg402Gln) identified in this patient are common variants in the general population. This patient is also heterozygous in the TYR gene for a sequence variant designated c.1205G>A (p.Arg402Gln). These variants were reported in 17.5% and 35% of patients with OCA, respectively (Ghodsinejad Kalahroudi et al. 2014. PubMed ID: 25216246, Table 3). The frequencies of these variants, c.1205G>A and c.575C>A, are nearly similar to the frequencies listed in a large population database ~27% and ~45%. respectively. Thousands of homozygote individuals have been registered in this database (http://gnomad.broadinstitute.org/variant/11-89017961-G-A; http://gnomad.broadinstitute.org/variant/11-88911696-C-A). These numbers are too high to be consistent with highly penetrant pathogenic variants. In another study, unaffected carriers of null TYR alleles have been reported to have either p.Arg402Gln or p.Ser192Tyr in trans, suggesting that these two variants individually may not be associated with albinism (Oetting et al. 2009. PubMed ID: 19208379, Table I). However, in the same study, two of the affected individuals had the **p.Arg402GIn-p.Ser192Tyr haplotype** in *trans* with another pathogenic TYR variant, suggesting that the p.Arq402Gln-p.Ser192Tyr haplotype, frequency 1.9%, may be associated with a hypopigmentation phenotype. In support of this, Jagirdar et al. 2014 concluded that the haplotype p.Arg402Gln-p.Ser192Tyr may be associated with a general hypopigmentation phenotype and may also complement other TYR alleles and may lead to incomplete albinism (Jagirdar et al. 2014. PubMed ID: 24739399, Table 3.). We are uncertain whether these

PREVENTION GENETICS

NAME 5662, Donor

variants are present as haplotype p.Arg402Gln-p.Ser192Tyr and the clinical significance of these variants is currently *uncertain*.

This patient is apparently negative for copy number variants (CNVs) within the genomic regions encompassing the genes of this panel.

These results should be interpreted in context of clinical findings, family history and other laboratory data. All genetic tests have limitations. Please see limitations and other information for this test on the following pages.

NOTES: 1) Targeted testing for the *TYR*: c.575C>A (p.Ser192Tyr) and c.1205G>A (p.Arg402Gln) variants in the parents, if available, is necessary to determine if the haplotype p.Arg402Gln-p.Ser192Tyr is present. **2)** Genetic counseling is recommended.

GENE ANALYZED: TYR

SUMMARY STATISTICS:

Pipeline	Version	Average NGS Coverage	Fraction Bases Covered with NGS
Titanium	1.1.0	106x	100.0%

Minimum NGS coverage is \geq 20x for all exons and +/-10bp of flanking DNA, and \geq 10x from 11-20bp of flanking DNA.

ENHANCED GENE (Transcript Number - 100% coverage): TYR (NM_000372)

Electronically signed on May 08, 2019 by: Madhulatha Pantrangi, PhD Human Molecular Geneticist Electronically signed and reported on May 09, 2019 by: Angela Gruber, PhD Human Molecular Geneticist

NAME 5662, Donor

SUPPLEMENTAL INFORMATION V.18.09 NEXTGEN SEQUENCING

Limitations and Other Test Notes

Interpretation of the test results is limited by the information that is currently available. Better interpretation should be possible in the future as more data and knowledge about human genetics and this specific disorder are accumulated.

When Next Gen or Sanger sequencing does not reveal any difference from the reference sequence, or when a sequence variant is homozygous, we cannot be certain that we were able to detect both patient alleles. Occasionally, a patient may carry an allele which does not capture or amplify, due for example to a large deletion or insertion.

Where applicable (see below), Copy Number Variants (CNVs) of four exons or more in size are detected through analysis of Next Gen sequence data with sensitivity approaching 100%. Sensitivity however varies from gene to gene based on exon size, depth of coverage, and characteristics of the region. Sensitivity for detection of CNVs smaller than four exons is lower (we estimate ~80%).

We sequence coding exons for all available transcripts plus 10 bp of flanking non-coding DNA for each exon. We also sequence other regions within or near genes in which pathogenic variants have been identified at PreventionGenetics or reported elsewhere. Unless specifically indicated, test reports contain no information about other portions of genes.

In most cases, we are unable to determine the phase of sequence variants. In particular, when we find two likely causative mutations for recessive disorders, we cannot be certain that the mutations are on different chromosomes.

Our ability to detect minor sequence variants due to somatic mosaicism is limited. Sequence variants that are present in less than 50% of the patient's nucleated cells may not be detected.

Runs of mononucleotide repeats (eg (A)_n or (T)_n) with n > 8 in the reference sequence are generally not analyzed because of strand slippage during amplification.

Unless otherwise indicated, DNA sequence data is obtained from a specific cell-type (often leukocytes from whole blood). Test reports contain no information about the DNA sequence in other cell-types.

We cannot be certain that the reference sequences are correct. Genome build hg19, GRCh37 (Feb2009) is used as our reference in nearly all cases.

We have confidence in our ability to track a specimen once it has been received by PreventionGenetics. However, we take no responsibility for any specimen labeling errors that occur before the sample arrives at PreventionGenetics.

Genetic counseling to help to explain test results to the patients and to discuss reproductive options is recommended.

Test Methods

We use a combination of Next Generation Sequencing (NGS) and Sanger sequencing technologies to cover the full coding regions of the listed genes plus ~10 bases of non-coding DNA flanking each exon. As required,

PREVENTION GENETICS

genomic DNA is extracted from the patient specimen. For NGS, patient DNA corresponding to these regions is captured using an optimized set of DNA hybridization probes. Captured DNA is sequenced using Illumina's Reversible Dye Terminator (RDT) platform (Illumina, San Diego, CA, USA). Regions with insufficient coverage by NGS are often covered by Sanger sequencing.

For Sanger sequencing, Polymerase Chain Reaction (PCR) is used to amplify targeted regions. After purification of the PCR products, cycle sequencing is carried out using the ABI Big Dye Terminator v.3.1 kit. PCR products are resolved by electrophoresis on an ABI 3730xl capillary sequencer. In nearly all cases, cycle sequencing is performed separately in both the forward and reverse directions.

Copy number variants (CNVs) are detected from NGS data for tests which utilize the exome backbone. Many but not all of our NGS panels use Exome-based probes; please see the test description on the PreventionGenetics website for details. We utilize a CNV calling algorithm that compares mean read depth and distribution for each target in the test sample against multiple matched controls. Neighboring target read depth and distribution and zygosity of any variants within each target region are used to reinforce CNV calls. All reported CNVs are confirmed using another technology such as aCGH, MLPA, or PCR. On occasion, it will not be technically possible to confirm a smaller CNV called by NGS. In these instances, the CNV will not be included on the report.

Human Genome Variation Society (HGVS) recommendations are used to describe sequence variants (http://www.hgvs.org). All differences from the reference sequences are assigned to one of five interpretation categories (Pathogenic, Likely Pathogenic, Variant of Uncertain Significance, Likely Benign and Benign) per ACMG Guidelines (Richards et al. 2015. PubMed ID: 25741868). Rare variants and undocumented variants are nearly always classified as Likely Benign if there is no indication that they alter protein sequence or disrupt splicing. Depending on panel size, Benign or both Benign and Likely Benign variants are not listed in the reports, but are available upon request.

Data Transfer

PreventionGenetics recommends that DNA sequence information from this test be stored in the patient's electronic medical record. This will facilitate reinterpretation of the sequence in future, and will best benefit the patient and family members. Upon request, we will be pleased to transfer the sequence data.

FDA Notes

These results should be used in the context of available clinical findings, and should not be used as the sole basis for treatment. This test was developed and its performance characteristics determined by PreventionGenetics. US Food and Drug Administration (FDA) does not require this test to go through premarket FDA review. This test is used for clinical purposes. It should not be regarded as investigational or for research. This laboratory is certified under the Clinical Laboratory Improvement Amendments of 1988 (CLIA) as qualified to perform high complexity clinical laboratory testing.

SUPPLEMENTAL INFORMATION V.18.11 OCULOCUTANEOUS ALBINISM TYPE 1 (OCAI) VIA THE *TYR* GENE SEQUENCING WITH CNV DETECTION

Clinical Features: Oculocutaneous albinism (OCA) is an inherited disorder caused by deficiency in melanin synthesis that results in hypopigmentation of the skin, eyes, and hair. If the phenotype is mainly restricted to the eyes and the optic system, it is referred to as ocular albinism (OA) (Gargiulo et al. 2011). The reduction or complete absence of melanin pigment in the developing eye leads to foveal hypoplasia and misrouting of the optic nerves in the affected individuals (Oetting and King 1999). The eye and optic system abnormalities that are common to all types of albinism are nystagmus, photophobia, strabismus, moderate to severe impairment of visual acuity, reduced iris pigment with iris translucency, reduced retinal pigment with visualization of the choroidal blood vessels on ophthalmoscopic examination, refractive errors and altered visual evoked potentials (VEP). The degree of skin and hair hypopigmentation varies with the type of OCA (Lewis 2012). To date, four types of non-syndromic OCA (type I-IV) have been described, and their prevalence varies among different populations (Lewis 1993).

Genetics: OCA is genetically heterogeneous. One of the major autosomal recessive forms, OCAI (sub types OCAIA and OCAIB), is caused by variations in the *TYR* gene. *TYR* encodes tyrosinase, the enzyme that catalyzes the first 2 steps in the melanin pigment biosynthetic pathway. In the most severe type, OCAIA (tyrosinase-negative), affected individuals completely lack melanin production throughout life due to absent tyrosinase activity, whereas in the milder form, OCAIB (yellow/light off-white), melanin production is reduced due to significant decrease in tyrosinase activity (Tripathi et al. 1992; Karaman 2008). So far, over 300 causative sequence variations (missense, nonsense, splicing, small insertions and deletions) have been associated with OCAI (Human Gene Mutation Database). Gross deletions are quite rare in the *TYR* gene (Albinism Database; Lewis 1993).

Testing Strategy: For this Next Generation Sequencing (NGS) test, sequencing is accomplished by capturing specific regions with an optimized solution-based hybridization kit, followed by massively parallel sequencing of the captured DNA fragments. Additional Sanger sequencing is performed for regions not captured or with insufficient number of sequence reads.

For Sanger sequencing, polymerase chain reaction (PCR) is used to amplify targeted regions. After purification of the PCR products, cycle sequencing is carried out using the ABI Big Dye Terminator v.3.0 kit. PCR products are resolved by electrophoresis on an ABI 3730xl capillary sequencer. In nearly all cases, cycle sequencing is performed separately in both the forward and reverse directions.

Copy number variants (CNVs) are also detected from NGS data. We utilize a CNV calling algorithm that compares mean read depth and distribution for each target in the test sample against multiple matched controls. Neighboring target read depth and distribution and zygosity of any variants within each target region are used to reinforce CNV calls. All CNVs are confirmed using another technology such as aCGH, MLPA, or PCR before they are reported.

This test provides full coverage of all coding exons of the TYR gene, plus ~10 bases of flanking noncoding DNA. We define full coverage as >20X NGS reads or Sanger sequencing.

Since this test is performed using exome capture probes, a reflex to any of our exome based tests is available (PGxome, PGxome Custom Panels).

PREVENTION GENETICS

NAME 5662, Donor

Indications for Testing: All patients with symptoms suggestive of Oculocutaneous albinism type 1 (OCAI) are candidates.

Sensitivity of Test: A mutational screening in 127 unrelated Chinese OCA patients identified *TYR* mutations in 70.1% of the patients (89/127) and *OCA2* mutations in 10.2% of the patients (13 of 127) (Wei et al. 2009). *TYR* is the major OCA gene in the Danish population (26%) (Gronskov et al. 2008). DNA sequence analysis of thirty-six unrelated Caucasian patients diagnosed with autosomal recessive ocular albinism (AROA) revealed *TYR* mutations in 56% (20/36), *OCA2* mutations in 8% (3/36) and both *TYR* and *OCA2* mutations in 6% (2/36) (Hutton and Spritz 2008). Another molecular analysis of Albinism in a large cohort of Italian patients identified that *TYR* was the most frequently mutated gene (33/45; 73.3%), followed by *OCA2* (6/45; 13.3%) (Gargiulo et al. 2011).

References: Please see the test description for this test on our website (www.preventiongenetics.com) for a full list of complete citations.

