

Donor 6064

Genetic Testing Summary

Fairfax Cryobank recommends reviewing this genetic testing summary with your healthcare provider to determine suitability.

Last Updated: 6/10/22

Donor Reported Ancestry: German, Polish

Jewish Ancestry: No

Genetic Test*	Result	Comments/Donor's Residual Risk**

Chromosome analysis (karyotype)	Normal male karyotype	No evidence of clinically significant chromosome abnormalities
Hemoglobin evaluation	Normal hemoglobin fractionation and MCV/MCH results	Reduced risk to be a carrier for sickle cell anemia, beta thalassemia, alpha thalassemia trait (aa/ and a-/a-) and other hemoglobinopathies
Cystic Fibrosis (CF) carrier screening	Negative by gene sequencing in the CFTR gene	1/440
Spinal Muscular Atrophy (SMA) carrier screening	Negative for deletions of exon 7 in the SMN1 gene	1/894
Expanded Genetic Disease Carrier Screening Panel attached- 283 diseases by gene sequencing	Negative for genes sequenced	
Special Testing		
Neurofibromatosis Type 2 (NF2)	Negative by gene sequencing	Significantly reduced risk
Spastic Paraplegia 11 (SPG11)	Negative by gene sequencing	Significantly reduced risk
LAMA2-Related Disorders (LAMA2)	Negative by gene sequencing	Significantly reduced risk
Gene: TG	Negative by gene sequencing	See attached report

*No single test can screen for all genetic disorders. A negative screening result significantly reduces, but cannot eliminate, the risk for these conditions in a pregnancy.**Donor residual risk is the chance the donor is still a carrier after testing negative.

Patient Information

Specimen Information

Specimen Type: Blood Date Collected: 11/20/2019 Date Received: 11/21/2019 Final Report: 12/04/2019

Referring Provider

Number of genes tested: 283

SUMMARY OF RESULTS AND RECOMMENDATIONS

Negative for all other genes tested					
To view a full list of genes and diseases tested					
please see Table 1 in this report					

AR=Autosomal recessive; XL=X-linked

Recommendations

- CGG repeat analysis of *FMR1* for fragile X syndrome is not performed on males as repeat expansion of premutation alleles is not expected in the male germline.
- Individuals of Asian, African, Hispanic and Mediterranean ancestry should also be screened for hemoglobinopathies by CBC and hemoglobin electrophoresis.
- Consideration of residual risk by ethnicity after a negative carrier screen is recommended for the other diseases on the panel, especially in the case of a positive family history for a specific disorder.

Test description

This patient was tested for a panel of diseases using a combination of sequencing, targeted genotyping and copy number analysis. Please note that negative results reduce but do not eliminate the possibility that this individual is a carrier for one or more of the disorders tested. Please see Table 1 for a list of genes and diseases tested, and **go.sema4.com/residualrisk** for specific detection rates and residual risk by ethnicity. With individuals of mixed ethnicity, it is recommended to use the highest residual risk estimate. Only variants determined to be pathogenic or likely pathogenic are reported in this carrier screening test.

Xingwu Lu Ph.D., FACMG Assistant Laboratory Director Laboratory Medical Consultant: George A. Diaz, M.D., Ph.D.

Genes and diseases tested

For specific detection rates and residual risk by ethnicity, please visit ${\it go.sema4.com/residual risk}$

Table 1: List of genes and diseases tested with detailed results

	Disease	Gene	Inheritance Pattern	Status	Detailed Summary
Θ	Negative				
	3-Beta-Hydroxysteroid Dehydrogenase Type II Deficiency	HSD3B2	AR	Reduced Risk	
	3-Methylcrotonyl-CoA Carboxylase Deficiency (<i>MCCC1</i> - Related)	MCCC1	AR	Reduced Risk	
	3-Methylcrotonyl-CoA Carboxylase Deficiency (<i>MCCC2</i> - Related)	MCCC2	AR	Reduced Risk	
	3-Methylglutaconic Aciduria, Type III	OPA3	AR	Reduced Risk	
	3-Phosphoglycerate Dehydrogenase Deficiency	PHGDH	AR	Reduced Risk	
	6-Pyruvoyl-Tetrahydropterin Synthase Deficiency	PTS	AR	Reduced Risk	
	Abetalipoproteinemia	MTTP	AR	Reduced Risk	
	Achromatopsia (CNGB3-related)	CNGB3	AR	Reduced Risk	
	Acrodermatitis Enteropathica	SLC39A4	AR	Reduced Risk	
	Acute Infantile Liver Failure	TRMU	AR	Reduced Risk	
	Acyl-CoA Oxidase I Deficiency	ACOX1	AR	Reduced Risk	
	Adenosine Deaminase Deficiency	ADA	AR	Reduced Risk	
	Adrenoleukodystrophy, X-Linked	ABCD1	XL	Reduced Risk	
	Aicardi-Goutieres Syndrome (SAMHD1-Related)	SAMHD1	AR	Reduced Risk	
	Alpha-Mannosidosis	MAN2B1	AR	Reduced Risk	
	Alpha-Thalassemia	HBA1/HBA2	AR	Reduced Risk	<i>HBA1</i> Copy Number: 2 <i>HBA2</i> Copy Number: 2 No pathogenic copy number variants detected <i>HBA1/HBA2</i> Sequencing: Negative
	Alpha-Thalassemia Mental Retardation Syndrome	ATRX	XL	Reduced Risk	
	Alport Syndrome (COL4A3-Related)	COL4A3	AR	Reduced Risk	
	Alport Syndrome (COL4A4-Related)	COL4A4	AR	Reduced Risk	
	Alport Syndrome (COL4A5-Related)	COL4A5	XL	Reduced Risk	
	Alstrom Syndrome	ALMS1	AR	Reduced Risk	
	Andermann Syndrome	SLC12A6	AR	Reduced Risk	
	Argininosuccinic Aciduria	ASL	AR	Reduced Risk	
	Aromatase Deficiency	CYP19A1	AR	Reduced Risk	

Arthrogryposis, Mental Retardation, and Seizures	SLC35A3	AR	Reduced Risk
Asparagine Synthetase Deficiency	ASNS	AR	Reduced Risk
Aspartylglycosaminuria	AGA	AR	Reduced Risk
Ataxia With Isolated Vitamin E Deficiency	TTPA	AR	Reduced Risk
Ataxia-Telangiectasia	ATM	AR	Reduced Risk
Autosomal Recessive Spastic Ataxia of Charlevoix- Saguenay	SACS	AR	Reduced Risk
Bardet-Biedl Syndrome (<i>BBS10</i> -Related)	BBS10	AR	Reduced Risk
Bardet-Biedl Syndrome (<i>BBS12</i> -Related)	BBS12	AR	Reduced Risk
Bardet-Biedl Syndrome (BBS1-Related)	BBS1	AR	Reduced Risk
Bardet-Biedl Syndrome (BBS2-Related)	BBS2	AR	Reduced Risk
Bare Lymphocyte Syndrome, Type II	CIITA	AR	Reduced Risk
Bartter Syndrome, Type 4A	BSND	AR	Reduced Risk
Bernard-Soulier Syndrome, Type A1.	GP1BA	AR	Reduced Risk
Bernard-Soulier Syndrome, Type C	GP9	AR	Reduced Risk
Beta-Globin-Related Hemoglobinopathies	HBB	AR	Reduced Risk
Beta-Ketothiolase Deficiency	ACAT1	AR	Reduced Risk
Bilateral Frontoparietal Polymicrogyria	GPR56	AR	Reduced Risk
Biotinidase Deficiency	BTD	AR	Reduced Risk
Bloom Syndrome	BLM	AR	Reduced Risk
Canavan Disease	ASPA	AR	Reduced Risk
Carbamoylphosphate Synthetase I Deficiency	CPS1	AR	Reduced Risk
Carnitine Palmitoyltransferase IA Deficiency	CPT1A	AR	Reduced Risk
Carnitine Palmitoytransferase II Deficiency	CPT2	AR	Reduced Risk
Carpenter Syndrome	RAB23	AR	Reduced Risk
Cartilage-Hair Hypoplasia	RMRP	AR	Reduced Risk
Cerebral Creatine Deficiency Syndrome 1	SLC6A8	XL	Reduced Risk
Cerebral Creatine Deficiency Syndrome 2	GAMT	AR	Reduced Risk
Cerebrotendinous Xanthomatosis	CYP27A1	AR	Reduced Risk
Charcot-Marie-Tooth Disease, Type 4D	NDRG1	AR	Reduced Risk
Charcot-Marie-Tooth Disease, Type 5 / Arts Syndrome	PRPS1	XL	Reduced Risk
Charcot-Marie-Tooth Disease, X-Linked	GJB1	XL	Reduced Risk
Choreoacanthocytosis	VPS13A	AR	Reduced Risk
Choroideremia	СНМ	XL	Reduced Risk
Chronic Granulomatous Disease (CYBA-Related)	СҮВА	AR	Reduced Risk
Chronic Granulomatous Disease (CYBB-Related)	СҮВВ	XL	Reduced Risk

Citrin Deficiency	SLC25A13	AR	Reduced Risk	
Citrullinemia, Type 1	ASS1	AR	Reduced Risk	
Cohen Syndrome	VPS13B	AR	Reduced Risk	
Combined Malonic and Methylmalonic Aciduria	ACSF3	AR	Reduced Risk	
Combined Oxidative Phosphorylation Deficiency 1	GFM1	AR	Reduced Risk	
Combined Oxidative Phosphorylation Deficiency 3	TSFM	AR	Reduced Risk	
Combined Pituitary Hormone Deficiency 2	PROP1	AR	Reduced Risk	
Combined Pituitary Hormone Deficiency 3	LHX3	AR	Reduced Risk	
Combined SAP Deficiency	PSAP	AR	Reduced Risk	
Congenital Adrenal Hyperplasia due to 17-Alpha- Hydroxylase Deficiency	CYP17A1	AR	Reduced Risk	
Congenital Adrenal Hyperplasia due to 21-Hydroxylase Deficiency	CYP21A2	AR	Reduced Risk	<i>CYP21A2</i> copy number: 2 <i>CYP21A2</i> sequencing: Negative
Congenital Amegakaryocytic Thrombocytopenia	MPL	AR	Reduced Risk	
Congenital Disorder of Glycosylation, Type la	PMM2	AR	Reduced Risk	
Congenital Disorder of Glycosylation, Type Ib	MPI	AR	Reduced Risk	
Congenital Disorder of Glycosylation, Type Ic	ALG6	AR	Reduced Risk	
Congenital Insensitivity to Pain with Anhidrosis	NTRK1	AR	Reduced Risk	
Congenital Myasthenic Syndrome (CHRNE-Related)	CHRNE	AR	Reduced Risk	
Congenital Myasthenic Syndrome (RAPSN-Related)	RAPSN	AR	Reduced Risk	
Congenital Neutropenia (HAX1-Related)	HAX1	AR	Reduced Risk	
Congenital Neutropenia (VPS45-Related)	VPS45	AR	Reduced Risk	
Corneal Dystrophy and Perceptive Deafness	SLC4A11	AR	Reduced Risk	
Corticosterone Methyloxidase Deficiency	CYP11B2	AR	Reduced Risk	
Cystic Fibrosis	CFTR	AR	Reduced Risk	
Cystinosis	CTNS	AR	Reduced Risk	
D-Bifunctional Protein Deficiency	HSD17B4	AR	Reduced Risk	
Deafness, Autosomal Recessive 77	LOXHD1	AR	Reduced Risk	
Duchenne Muscular Dystrophy / Becker Muscular Dystrophy	DMD	XL	Reduced Risk	
Dyskeratosis Congenita (RTEL1-Related)	RTEL1	AR	Reduced Risk	
Dystrophic Epidermolysis Bullosa	COL7A1	AR	Reduced Risk	
Ehlers-Danlos Syndrome, Type VIIC	ADAMTS2	AR	Reduced Risk	
Ellis-van Creveld Syndrome (EVC-Related)	EVC	AR	Reduced Risk	
Emery-Dreifuss Myopathy 1	EMD	XL	Reduced Risk	
Enhanced S-Cone Syndrome	NR2E3	AR	Reduced Risk	
Ethylmalonic Encephalopathy	ETHE1	AR	Reduced Risk	

Fabry Disease	GLA	XL	Reduced Risk	
Factor IX Deficiency	F9	XL	Reduced Risk	
Factor XI Deficiency	F11	AR	Reduced Risk	
Familial Autosomal Recessive Hypercholesterolemia	LDLRAP1	AR	Reduced Risk	
Familial Dysautonomia	IKBKAP	AR	Reduced Risk	
Familial Hypercholesterolemia	LDLR	AR	Reduced Risk	
Familial Hyperinsulinism (ABCC8-Related)	ABCC8	AR	Reduced Risk	
Familial Hyperinsulinism (KCNJ11-Related)	KCNJ11	AR	Reduced Risk	
Familial Mediterranean Fever	MEFV	AR	Reduced Risk	
Fanconi Anemia, Group A	FANCA	AR	Reduced Risk	
Fanconi Anemia, Group C	FANCC	AR	Reduced Risk	
Fanconi Anemia, Group G	FANCG	AR	Reduced Risk	
Fragile X Syndrome	FMR1	XL	Reduced Risk	FMR1 CGG repeat sizes: Not Performed FMR1 Sequencing: Negative Fragile X CGG triplet repeat expansion testing was not performed at this time, as the patient has either been previously tested or is a male.
Fumarase Deficiency	FH	AR	Reduced Risk	
GRACILE Syndrome and Other BCS1L-Related Disorders	BCS1L	AR	Reduced Risk	
Galactokinase Deficiency	GALK1	AR	Reduced Risk	
Galactosemia	GALT	AR	Reduced Risk	
Gaucher Disease	GBA	AR	Reduced Risk	
Gitelman Syndrome	SLC12A3	AR	Reduced Risk	
Glutaric Acidemia, Type I	GCDH	AR	Reduced Risk	
Glutaric Acidemia, Type IIa	ETFA	AR	Reduced Risk	
Glutaric Acidemia, Type IIc	ETFDH	AR	Reduced Risk	
Glycine Encephalopathy (AMT-Related)	AMT	AR	Reduced Risk	
Glycine Encephalopathy (GLDC-Related)	GLDC	AR	Reduced Risk	
Glycogen Storage Disease, Type II	GAA	AR	Reduced Risk	
Glycogen Storage Disease, Type III	AGL	AR	Reduced Risk	
Glycogen Storage Disease, Type IV / Adult Polyglucosan Body Disease	GBE1	AR	Reduced Risk	
Glycogen Storage Disease, Type la	G6PC	AR	Reduced Risk	
Glycogen Storage Disease, Type Ib	SLC37A4	AR	Reduced Risk	
Glycogen Storage Disease, Type V	PYGM	AR	Reduced Risk	
Glycogen Storage Disease, Type VII	PFKM	AR	Reduced Risk	
HMG-CoA Lyase Deficiency		AR	Reduced Risk	
	HMGCL	AR	Reduced Risk	

Hemochromatosis, Type 3	TFR2	AR	Reduced Risk
Hereditary Fructose Intolerance	ALDOB	AR	Reduced Risk
Hereditary Spastic Paraparesis 49		AR	Reduced Risk
	TECPR2		
Hermansky-Pudlak Syndrome, Type 1	HPS1	AR	Reduced Risk
Hermansky-Pudlak Syndrome, Type 3	HPS3	AR	Reduced Risk
Holocarboxylase Synthetase Deficiency	HLCS	AR	Reduced Risk
Homocystinuria (CBS-Related)	CBS	AR	Reduced Risk
Homocystinuria due to MTHFR Deficiency	MTHFR	AR	Reduced Risk
Homocystinuria, cblE Type	MTRR	AR	Reduced Risk
Hydrolethalus Syndrome	HYLS1	AR	Reduced Risk
Hyperomithinemia-Hyperammonemia-Homocitrullinuria Syndrome	SLC25A15	AR	Reduced Risk
Hypohidrotic Ectodermal Dysplasia 1	EDA	XL	Reduced Risk
Hypophosphatasia	ALPL	AR	Reduced Risk
Inclusion Body Myopathy 2	GNE	AR	Reduced Risk
Infantile Cerebral and Cerebellar Atrophy	MED17	AR	Reduced Risk
Isovaleric Acidemia	IVD	AR	Reduced Risk
Joubert Syndrome 2	TMEM216	AR	Reduced Risk
Joubert Syndrome 7 / Meckel Syndrome 5 / COACH Syndrome	RPGRIP1L	AR	Reduced Risk
Junctional Epidermolysis Bullosa (LAMA3-Related)	LAMA3	AR	Reduced Risk
Junctional Epidermolysis Bullosa (LAMB3-Related)	LAMB3	AR	Reduced Risk
Junctional Epidermolysis Bullosa (LAMC2-Related)	LAMC2	AR	Reduced Risk
Krabbe Disease	GALC	AR	Reduced Risk
Lamellar Ichthyosis, Type 1	TGM1	AR	Reduced Risk
Leber Congenital Amaurosis 10 and Other CEP290- Related Ciliopathies	CEP290	AR	Reduced Risk
Leber Congenital Amaurosis 13	RDH12	AR	Reduced Risk
Leber Congenital Amaurosis 2 / Retinitis Pigmentosa 20	RPE65	AR	Reduced Risk
Leber Congenital Amaurosis 5	LCA5	AR	Reduced Risk
Leber Congenital Amaurosis 8 / Retinitis Pigmentosa 12 / Pigmented Paravenous Chorioretinal Atrophy	CRB1	AR	Reduced Risk
Leigh Syndrome, French-Canadian Type	LRPPRC	AR	Reduced Risk
Lethal Congenital Contracture Syndrome 1 / Lethal Arthrogryposis with Anterior Horn Cell Disease	GLE1	AR	Reduced Risk
Leukoencephalopathy with Vanishing White Matter	EIF2B5	AR	Reduced Risk
Limb-Girdle Muscular Dystrophy, Type 2A	CAPN3	AR	Reduced Risk
Lind-arale Muscular Dyscophy, type 2A			

Limb-Girdle Muscular Dystrophy, Type 2C	SGCG	AR	Reduced Risk
Limb-Girdle Muscular Dystrophy, Type 2D	SGCA	AR	Reduced Risk
Limb-Girdle Muscular Dystrophy, Type 2E	SGCB	AR	Reduced Risk
Limb-Girdle Muscular Dystrophy, Type 21	FKRP	AR	Reduced Risk
Lipoamide Dehydrogenase Deficiency	DLD	AR	Reduced Risk
Lipoid Adrenal Hyperplasia	STAR	AR	Reduced Risk
Lipoprotein Lipase Deficiency	LPL	AR	Reduced Risk
Long-Chain 3-Hydroxyacyl-CoA Dehydrogenase Deficiency	HADHA	AR	Reduced Risk
Lysinuric Protein Intolerance	SLC7A7	AR	Reduced Risk
Maple Syrup Urine Disease, Type 1a	BCKDHA	AR	Reduced Risk
Maple Syrup Urine Disease, Type 1b	BCKDHB	AR	Reduced Risk
Meckel 1 / Bardet-Biedl Syndrome 13	MKS1	AR	Reduced Risk
Medium Chain Acyl-CoA Dehydrogenase Deficiency	ACADM	AR	Reduced Risk
Megalencephalic Leukoencephalopathy with Subcortical Cysts	MLC1	AR	Reduced Risk
Menkes Disease	ATP7A	XL	Reduced Risk
Metachromatic Leukodystrophy	ARSA	AR	Reduced Risk
Methylmalonic Acidemia (MMAA-Related)	MMAA	AR	Reduced Risk
Methylmalonic Acidemia (MMAB-Related)	MMAB	AR	Reduced Risk
Methylmalonic Acidemia (MUT-Related)	MUT	AR	Reduced Risk
Methylmalonic Aciduria and Homocystinuria, Cobalamin C Type	MMACHC	AR	Reduced Risk
Methylmalonic Aciduria and Homocystinuria, Cobalamin DType	MMADHC	AR	Reduced Risk
Microphthalmia / Anophthalmia	VSX2	AR	Reduced Risk
Mitochondrial Complex Deficiency (ACADg-Related)	ACAD9	AR	Reduced Risk
Mitochondrial Complex Deficiency (NDUFAF5-Related)	NDUFAF5	AR	Reduced Risk
Mitochondrial Complex I Deficiency (NDUFS6-Related)	NDUFS6	AR	Reduced Risk
Mitochondrial DNA Depletion Syndrome 6 / Navajo Neurohepatopathy	MPV17	AR	Reduced Risk
Mitochondrial Myopathy and Sideroblastic Anemia 1	PUS1	AR	Reduced Risk
Mucolipidosis II / IIIA	GNPTAB	AR	Reduced Risk
Mucolipidosis III Gamma	GNPTG	AR	Reduced Risk
Mucolipidosis IV	MCOLN1	AR	Reduced Risk
Mucopolysaccharidosis Type I	IDUA	AR	Reduced Risk
	IDUA		
Mucopolysaccharidosis Type II	IDS	XL	Reduced Risk

Mucopolysaccharidosis Type IIIB	NAGLU	AR	Reduced Risk
Mucopolysaccharidosis Type IIIC	HGSNAT	AR	Reduced Risk
Mucopolysaccharidosis Type IIID	GNS	AR	Reduced Risk
Mucopolysaccharidosis Type IVb / GM1 Gangliosidosis	GLB1	AR	Reduced Risk
Mucopolysaccharidosis type IX	HYAL1	AR	Reduced Risk
Mucopolysaccharidosis type VI	ARSB	AR	Reduced Risk
Multiple Sulfatase Deficiency	SUMF1	AR	Reduced Risk
Muscle-Eye-Brain Disease and Other <i>POMGNT1</i> -Related Congenital Muscular Dystrophy-Dystroglycanopathies	POMGNT1	AR	Reduced Risk
Myoneurogastrointestinal Encephalopathy	TYMP	AR	Reduced Risk
Myotubular Myopathy 1	MTM1	XL	Reduced Risk
N-Acetylglutamate Synthase Deficiency	NAGS	AR	Reduced Risk
Nemaline Myopathy 2	NEB	AR	Reduced Risk
Nephrogenic Diabetes Insipidus, Type II	AQP2	AR	Reduced Risk
Nephrotic Syndrome (<i>NPHS1</i> -Related) / Congenital Finnish Nephrosis	NPHS1	AR	Reduced Risk
Nephrotic Syndrome (<i>NPHS2</i> -Related) / Steroid- Resistant Nephrotic Syndrome	NPHS2	AR	Reduced Risk
Neuronal Ceroid-Lipofuscinosis (CLN3-Related)	CLN3	AR	Reduced Risk
Neuronal Ceroid-Lipofuscinosis (CLN5-Related)	CLN5	AR	Reduced Risk
Neuronal Ceroid-Lipofuscinosis (CLN6-Related)	CLN6	AR	Reduced Risk
Neuronal Ceroid-Lipofuscinosis (CLN8-Related)	CLN8	AR	Reduced Risk
Neuronal Ceroid-Lipofuscinosis (MFSD8-Related)	MFSD8	AR	Reduced Risk
Neuronal Ceroid-Lipofuscinosis (PP71-Related)	PPT1	AR	Reduced Risk
Neuronal Ceroid-Lipofuscinosis (TPP1-Related)	TPP1	AR	Reduced Risk
Niemann-Pick Disease (SMPD1-Related)	SMPD1	AR	Reduced Risk
Niemann-Pick Disease, Type C (<i>NPC1</i> -Related)	NPC1	AR	Reduced Risk
Niemann-Pick Disease, Type C (<i>NPC2</i> -Related)	NPC2	AR	Reduced Risk
Nijmegen Breakage Syndrome	NBN	AR	Reduced Risk
Non-Syndromic Hearing Loss (GJB2-Related)	GJB2	AR	Reduced Risk
Odonto-Onycho-Dermal Dysplasia / Schopf-Schulz- Passarge Syndrome	WNT10A	AR	Reduced Risk
Omenn Syndrome (R4G2-Related)	RAG2	AR	Reduced Risk
Omenn Syndrome / Severe Combined Immunodeficiency, Athabaskan-Type	DCLRE1C	AR	Reduced Risk
Omithine Aminotransferase Deficiency	OAT	AR	Reduced Risk
Ornithine Transcarbomylase Deficiency	OTC	XL	Reduced Risk
Osteopetrosis 1	TCIRG1	AR	Reduced Risk

Spinal Muscular Atrophy	SMN1	AR	Reduced Risk	<i>SMN2</i> copy number: 1 c.*3+80T>G: Negative
Smith-Lemli-Opitz Syndrome	DHCR7	AR	Reduced Risk	SMN1 copy number: 2
Sjogren-Larsson Syndrome	ALDH3A2	AR	Reduced Risk	
Segawa Syndrome	TH	AR	Reduced Risk	
Schimke Immunoosseous Dysplasia	SMARCAL1	AR	Reduced Risk	
Sandhoff Disease	HEXB	AR	Reduced Risk	
Salla Disease	SLC17A5	AR	Reduced Risk	
Roberts Syndrome	ESCO2	AR	Reduced Risk	
Rhizomelic Chondrodysplasia Punctata, Type 3	AGPS	AR	Reduced Risk	
Rhizomelic Chondrodysplasia Punctata, Type 1	PEX7	AR	Reduced Risk	
Retinitis Pigmentosa 59	DHDDS	AR	Reduced Risk	
Retinitis Pigmentosa 28	FAM161A	AR	Reduced Risk	
Retinitis Pigmentosa 26	CERKL	AR	Reduced Risk	
Retinitis Pigmentosa 25	EYS	AR	Reduced Risk	
Renal Tubular Acidosis and Deafness	ATP6V1B1	AR	Reduced Risk	
Pyruvate Dehydrogenase E1-Beta Deficiency	PDHB	AR	Reduced Risk	
Pyruvate Dehydrogenase E1-Alpha Deficiency	PDHA1	XL	Reduced Risk	
Pycnodysostosis	CTSK	AR	Reduced Risk	
Propionic Acidemia (PCCB-Related)	PCCB	AR	Reduced Risk	
Propionic Acidemia (PCCA-Related)	PCCA	AR	Reduced Risk	
Progressive Familial Intrahepatic Cholestasis, Type 2	ABCB11	AR	Reduced Risk	
Progressive Cerebello-Cerebral Atrophy	SEPSECS	AR	Reduced Risk	
Primary Hyperoxaluria, Type 3	HOGA1	AR	Reduced Risk	
Primary Hyperoxaluria, Type 2	GRHPR	AR	Reduced Risk	
Primary Hyperoxaluria, Type 1	AGXT	AR	Reduced Risk	
Primary Ciliary Dyskinesia (DNAI2-Related)	DNAI2	AR	Reduced Risk	
Primary Ciliary Dyskinesia (DNA/1-Related)	DNAI1	AR	Reduced Risk	
Primary Ciliary Dyskinesia (DNAH5-Related)	DNAH5	AR	Reduced Risk	
Primary Carnitine Deficiency	SLC22A5	AR	Reduced Risk	
Pontocerebellar Hypoplasia, Type 6	RARS2	AR	Reduced Risk	
Pontocerebellar Hypoplasia, Type 1A	VRK1	AR	Reduced Risk	
Polyglandular Autoimmune Syndrome, Type 1	AIRE	AR	Reduced Risk	
Polycystic Kidney Disease, Autosomal Recessive	PKHD1	AR	Reduced Risk	
Phenylalanine Hydroxylase Deficiency	PAH	AR	Reduced Risk	

Spondylothoracic Dysostosis	MESP2	AR	Reduced Risk	
Steel Syndrome	COL27A1	AR	Reduced Risk	
Stuve-Wiedemann Syndrome	LIFR	AR	Reduced Risk	
Sulfate Transporter-Related Osteochondrodysplasia	SLC26A2	AR	Reduced Risk	
Tay-Sachs Disease	HEXA	AR	Reduced Risk	 Tay-Sachs disease enzyme: Non-carrier White blood cells: Non-carrier Hex A%: 69.0% (Non-carrier : 55.0 - 72.0%; Carrier: <50%) Total hexosaminidase activity: 1424 nmol/hr/mg Plasma: Non-carrier Hex A%: 70.1 (Non-carrier : 58.0 - 72.0%; Carrier: <54%) Total hexosaminidase activity: 620 nmol/hr/ml HEXA Sequencing: Negative
Tyrosinemia, Type I	FAH	AR	Reduced Risk	
Usher Syndrome, Type IB	MY07A	AR	Reduced Risk	
Usher Syndrome, Type IC	USH1C	AR	Reduced Risk	
Usher Syndrome, Type ID	CDH23	AR	Reduced Risk	
Usher Syndrome, Type IF	PCDH15	AR	Reduced Risk	
Usher Syndrome, Type IIA	USH2A	AR	Reduced Risk	
Usher Syndrome, Type III	CLRN1	AR	Reduced Risk	
Very Long Chain Acyl-CoA Dehydrogenase Deficiency	ACADVL	AR	Reduced Risk	
Walker-Warburg Syndrome and Other <i>FKTN</i> -Related Dystrophies	FKTN	AR	Reduced Risk	
Wilson Disease	ATP7B	AR	Reduced Risk	
Wolman Disease / Cholesteryl Ester Storage Disease	LIPA	AR	Reduced Risk	
X-Linked Juvenile Retinoschisis	RS1	XL	Reduced Risk	
X-Linked Severe Combined Immunodeficiency	IL2RG	XL	Reduced Risk	
Zellweger Syndrome Spectrum (PEX10-Related)	PEX10	AR	Reduced Risk	
Zellweger Syndrome Spectrum (PEX1-Related)	PEX1	AR	Reduced Risk	
Zellweger Syndrome Spectrum (PEX2-Related)	PEX2	AR	Reduced Risk	
Zellweger Syndrome Spectrum (PEX6-Related)	PEX6	AR	Reduced Risk	

AR=Autosomal recessive; XL=X-linked

Test methods and comments

Genomic DNA isolated from this patient was analyzed by one or more of the following methodologies, as applicable:

Fragile X CGG Repeat Analysis (Analytical Detection Rate >99%)

PCR amplification using Asuragen, Inc. AmplideX® *FMR1* PCR reagents followed by capillary electrophoresis for allele sizing was performed. Samples positive for *FMR1* CGG repeats in the premutation and full mutation size range were further analyzed by Southern blot analysis to

assess the size and methylation status of the FMR1 CGG repeat.

Genotyping (Analytical Detection Rate >99%)

Multiplex PCR amplification and allele specific primer extension analyses using the MassARRAY® System were used to identify variants that are complex in nature or are present in low copy repeats. Rare sequence variants may interfere with assay performance.

Multiplex Ligation-Dependent Probe Amplification (MLPA) (Analytical Detection Rate >99%)

MLPA® probe sets and reagents from MRC-Holland were used for copy number analysis of specific targets versus known control samples. False positive or negative results may occur due to rare sequence variants in target regions detected by MLPA probes. Analytical sensitivity and specificity of the MLPA method are both 99%.

For alpha thalassemia, the copy numbers of the *HBA1* and *HBA2* genes were analyzed. Alpha-globin gene deletions, triplications, and the Constant Spring (CS) mutation are assessed. This test is expected to detect approximately 90% of all alpha-thalassemia mutations, varying by ethnicity. Carriers of alpha-thalassemia with three or more *HBA* copies on one chromosome, and one or no copies on the other chromosome, may not be detected. With the exception of triplications, other benign alpha-globin gene polymorphisms will not be reported. Analyses of *HBA1* and *HBA2* are performed in association with long-range PCR of the coding regions followed by short-read sequencing.

For Duchenne muscular dystrophy, the copy numbers of all *DMD* exons were analyzed. Potentially pathogenic single exon deletions and duplications are confirmed by a second method. Analysis of *DMD* is performed in association with sequencing of the coding regions.

For congenital adrenal hyperplasia, the copy number of the *CYP21A2* gene was analyzed. This analysis can detect large deletions due to unequal meiotic crossing-over between *CYP21A2* and the pseudogene *CYP21A1P*. These 30-kb deletions make up approximately 20% of *CYP21A2* pathogenic alleles. This test may also identify certain point mutations in *CYP21A2* caused by gene conversion events between *CYP21A2* and *CYP21A2* and *CYP21A1P*. Some carriers may not be identified by dosage sensitive methods as this testing cannot detect individuals with two copies (duplication) of the *CYP21A2* gene on one chromosome and loss of *CYP21A2* (deletion) on the other chromosome. Analysis of *CYP21A2* is performed in association with long-range PCR of the coding regions followed by short-read sequencing.

For spinal muscular atrophy (SMA), the copy numbers of the *SMN1* and *SMN2* genes were analyzed. The individual dosage of exons 7 and 8 as well as the combined dosage of exons 1, 4, 6 and 8 of *SMN1* and *SMN2* were assessed. Copy number gains and losses can be detected with this assay. Depending on ethnicity, 6 - 29 % of carriers will not be identified by dosage sensitive methods as this testing cannot detect individuals with two copies (duplication) of the *SMN1* gene on one chromosome and loss of *SMN1* (deletion) on the other chromosome (silent 2+0 carrier) or individuals that carry an intragenic mutation in *SMN1*. Please also note that 2% of individuals with SMA have an *SMN1* mutation that occurred *de novo*. Typically in these cases, only one parent is an SMA carrier.

The presence of the c.*3+80T>G (chr5:70.247.901T>G) variant allele in an individual with Ashkenazi Jewish or Asian ancestry is typically indicative of a duplication of *SMN1*. When present in an Ashkenazi Jewish or Asian individual with two copies of *SMN1*, c.*3+80T>G is likely indicative of a silent (2+0) carrier. In individuals with two copies of *SMN1* with African American, Hispanic or Caucasian ancestry, the presence or absence of c.*3+80T>G significantly increases or decreases, respectively, the likelihood of being a silent 2+0 silent carrier.

Pathogenic or likely pathogenic sequence variants in exon 7 may be detected during testing for the c.*3+80T>G variant allele; these will be reported if confirmed to be located in SMN1 using locus-specific Sanger primers

MLPA for Gaucher disease (*GBA*), cystic fibrosis (*CFTR*), and non-syndromic hearing loss (*GJB2/GJB6*) will only be performed if indicated for confirmation of detected CNVs. If *GBA* analysis was performed, the copy numbers of exons 1, 3, 4, and 6 - 10 of the *GBA* gene (of 11 exons total) were analyzed. If *CFTR* analysis was performed, the copy numbers of all 27 *CFTR* exons were analyzed. If *GJB2/GJB6* analysis was performed, the copy numbers of all 27 *CFTR* exons were analyzed. If *GJB2/GJB6* analysis was performed, the copy numbers of all 27 *CFTR* exons were analyzed. If *GJB2/GJB6* analysis was performed, the copy numbers of all 27 *CFTR* exons were analyzed. If *GJB2/GJB6* analysis was performed, the copy numbers of all 27 *CFTR* exons were analyzed. If *GJB2/GJB6* analysis was performed, the copy number of the two *GJB2* exons were analyzed, as well as the presence or absence of the two upstream deletions of the *GJB2* regulatory region, del(*GJB6* -D13S1830) and del(*GJB6* -D13S1854).

Next Generation Sequencing (NGS) (Analytical Detection Rate >95%)

NGS was performed on a panel of genes for the purpose of identifying pathogenic or likely pathogenic variants.

Agilent SureSelectTMQXT technology was used with a custom capture library to target the exonic regions and intron/exon splice junctions of the relevant genes, as well as a number of UTR, intronic or promoter regions that contain previously reported mutations. Samples were pooled and sequenced on the Illumina HiSeq 2500 platform in the Rapid Run mode or the Illumina NovaSeq platform in the Xp workflow, using 100 bp paired-end reads. The sequencing data was analyzed using a custom bioinformatics algorithm designed and validated in house. The coding exons and splice junctions of the known protein-coding RefSeq genes were assessed for the average depth of coverage (minimum of 20X) and data quality threshold values. Most exons not meeting a minimum of >20X read depth across the exon are further analyzed by Sanger sequencing. Please note that several genomic regions present difficulties in mapping or obtaining read depth >20X. The exons contained within these regions are noted within Table 1 (as "Exceptions") and will not be reflexed to Sanger sequencing if the mapping quality or coverage is poor. Any variants identified during testing in these regions are confirmed by a second method and reported if determined to be pathogenic or likely pathogenic. However, as there is a possibility of false negative results within these regions, detection

rates and residual risks for these genes have been calculated with the presumption that variants in these exons will not be detected, unless included in the MassARRAY® genotyping platform.

This test will detect variants within the exons and the intron-exon boundaries of the target regions. Variants outside these regions may not be detected, including, but not limited to, UTRs, promoters, and deep intronic areas, or regions that fall into the Exceptions mentioned above. This technology may not detect all small insertion/deletions and is not diagnostic for repeat expansions and structural genomic variation. In addition, a mutation(s) in a gene not included on the panel could be present in this patient.

Variant interpretation and classification was performed based on the American College of Medical Genetics Standards and Guidelines for the Interpretation of Sequence Variants (Richards et al. 2015). All potentially pathogenic variants may be confirmed by either a specific genotyping assay or Sanger sequencing, if indicated. Any benign variants, likely benign variants or variants of uncertain significance identified during this analysis will not be reported.

Copy Number Variant Analysis (Analytical Detection Rate >95%)

Large duplications and deletions were called from the relative read depths on an exon-by-exon basis using a custom exome hidden Markov model (XHMM) algorithm. Deletions or duplications determined to be pathogenic or likely pathogenic were confirmed by either a custom arrayCGH platform, quantitative PCR, or MLPA (depending on CNV size and gene content). While this algorithm is designed to pick up deletions and duplications of 2 or more exons in length, potentially pathogenic single-exon CNVs will be confirmed and reported, if detected.

Exon Array (Confirmation method) (Accuracy >99%)

The customized oligonucleotide microarray (Oxford Gene Technology) is a highly-targeted exon-focused array capable of detecting medically relevant microdeletions and microduplications at a much higher resolution than traditional aCGH methods. Each array matrix has approximately 180,000 60-mer oligonucleotide probes that cover the entire genome. This platform is designed based on human genome NCBI Build 37 (hg19) and the CGH probes are enriched to target the exonic regions of the genes in this panel.

Quantitative PCR (Confirmation method) (Accuracy >99%)

The relative quantification PCR is utilized on a Roche Universal Library Probe (UPL) system, which relates the PCR signal of the target region in one group to another. To test for genomic imbalances, both sample DNA and reference DNA is amplified with primer/probe sets that specific to the target region and a control region with known genomic copy number. Relative genomic copy numbers are calculated based on the standard $\Delta\Delta$ Ct formula.

Long-Range PCR (Analytical Detection Rate >99%)

Long-range PCR was performed to generate locus-specific amplicons for *CYP21A2*, *HBA1* and *HBA2* and *GBA*. The PCR products were then prepared for short-read NGS sequencing and sequenced. Sequenced reads were mapped back to the original genomic locus and run through the bioinformatics pipeline. If indicated, copy number from MLPA was correlated with the sequencing output to analyze the results. For *CYP21A2*, a certain percentage of healthy individuals carry a duplication of the *CYP21A2* gene, which has no clinical consequences. In cases where two copies of a gene are located on the same chromosome in tandem, only the second copy will be amplified and assessed for potentially pathogenic variants, due to size limitations of the PCR reaction. However, because these alleles contain at least two copies of the *CYP21A2* gene in tandem, it is expected that this patient has at least one functional gene in the tandem allele and this patient is therefore less likely to be a carrier. When an individual carries both a duplication allele and a pathogenic variant, or multiple pathogenic variants, the current analysis may not be able to determine the phase (cis/trans configuration) of the *CYP21A2* alleles identified. Family studies may be required in certain scenarios where phasing is required to determine the carrier status.

Residual Risk Calculations

Carrier frequencies and detection rates for each ethnicity were calculated through the combination of internal curations of >28,000 variants and genomic frequency data from >138,000 individuals across seven ethnic groups in the gnomAD database. Additional variants in HGMD and novel deleterious variants were also incorporated into the calculation. Residual risk values are calculated using a Bayesian analysis combining the *a priori* risk of being a pathogenic mutation carrier (carrier frequency) and the detection rate. They are provided only as a guide for assessing approximate risk given a negative result, and values will vary based on the exact ethnic background of an individual. This report does not represent medical advice but should be interpreted by a genetic counselor, medical geneticist or physician skilled in genetic result interpretation and the relevant medical literature.

Sanger Sequencing (Confirmation method) (Accuracy >99%)

Sanger sequencing, as indicated, was performed using BigDye Terminator chemistry with the ABI 3730 DNA analyzer with target specific amplicons. It also may be used to supplement specific guaranteed target regions that fail NGS sequencing due to poor quality or low depth of coverage (<20 reads) or as a confirmatory method for NGS positive results. False negative results may occur if rare variants interfere with amplification or annealing.

Tay-Sachs Disease (TSD) Enzyme Analysis (Analytical Detection Rate \geq 98%)

Hexosaminidase activity and Hex A% activity were measured by a standard heat-inactivation, fluorometric method using artificial 4-MU-â-Nacetyl glucosaminide (4-MUG) substrate. This assay is highly sensitive and accurate in detecting Tay-Sachs carriers and individuals affected with TSD. Normal ranges of Hex A% activity are 55.0-72.0 for white blood cells and 58.0-72.0 for plasma. It is estimated that less than 0.5% of Tay-Sachs carriers have non-carrier levels of percent Hex A activity, and therefore may not be identified by this assay. In addition, this assay may detect individuals that are carriers of or are affected with Sandhoff disease. False positive results may occur if benign variants, such as pseudodeficiency alleles, interfere with the enzymatic assay. False negative results may occur if both *HEXA* and *HEXB* pathogenic or pseudodeficiency variants are present in the same individual.

Please note these tests were developed and their performance characteristics were determined by Mount Sinai Genomics, Inc. They have not been cleared or approved by the FDA. These analyses generally provide highly accurate information regarding the patient's carrier or affected status. Despite this high level of accuracy, it should be kept in mind that there are many potential sources of diagnostic error, including misidentification of samples, polymorphisms, or other rare genetic variants that interfere with analysis. Families should understand that rare diagnostic errors may occur for these reasons.

SELECTED REFERENCES

Carrier Screening

Grody W et al. ACMG position statement on prenatal/preconception expanded carrier screening. Genet Med. 2013 15:482-3.

Fragile X syndrome:

Chen L et al. An information-rich CGG repeat primed PCR that detects the full range of Fragile X expanded alleles and minimizes the need for Southern blot analysis. *J Mol Diag* 2010 12:589-600.

Spinal Muscular Atrophy:

Luo M et al. An Ashkenazi Jewish SMN1 haplotype specific to duplication alleles improves pan-ethnic carrier screening for spinal muscular atrophy. *Genet Med* . 2014 16:149-56.

Ashkenazi Jewish Disorders:

Scott SA et al. Experience with carrier screening and prenatal diagnosis for sixteen Ashkenazi Jewish Genetic Diseases. *Hum. Mutat.* 2010 31:1-11.

Duchenne Muscular Dystrophy:

Flanigan KM et al. Mutational spectrum of DMD mutations in dystrophinopathy patients: application of modern diagnostic techniques to a large cohort. *Hum Mutat* . 2009 30:1657-66.

Variant Classification:

Richards S et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. *Genet Med.* 2015 May;17(5):405-24 Additional disease-specific references available upon request.

NAME 6064, Donor

PATIENT INFORMATION	SPECIMEN INFORMATION	PROVIDER INFORMATION
6064, Donor DOB: Sex: Male	Type: Whole Blood Collected: August 11, 2020 Received: August 13, 2020 PG ID: 2020-226-132	Harvey Stern, MD, PhD Suzanne Seitz, MS, MPA Fairfax Cryobank

MOLECULAR GENETICS REPORT: NF2 and SPG11 Gene Sequencing with CNV Detection

SUMMARY OF RESULTS	NEGATIVE
--------------------	----------

RESULTS AND INTERPRETATIONS: In this patient, for the *NF*2 and *SPG11* genes, we found no sequence variants that are likely to be a primary cause of disease.

This patient is apparently negative for copy number variants (CNVs) within the genomic regions of this test.

These results should be interpreted in context of clinical findings, family history and other laboratory data. All genetic tests have limitations. See limitations and other information for this test on the following page(s).

NOTES: Since this test is performed using exome capture probes, a reflex to any of our exome-based tests is available (PGxome, PGxome Custom Panels). Genetic counseling is recommended.

GENE(S) ANALYZED: NF2, SPG11

SUMMARY STATISTICS:

Pipeline	Version	Average NGS Coverage	Fraction Bases Covered with NGS
Infinity_Pipeline	1.4.0	158x	98.5%

Minimum NGS coverage is ≥20x for all exons and +/-10bp of flanking DNA, and ≥10x from 11-20bp of flanking DNA.

Electronically signed on August 27, 2020 by:	Electronically signed and reported on August 28, 2020 by:
Brett Deml, PhD, FACMG	Diane Allingham-Hawkins, PhD, FCCMG, FACMG
Clinical Molecular Geneticist	Clinical Molecular Geneticist

 3800 South Business Park Avenue, Marshfield, Wisconsin
 54449
 USA
 •
 www.PreventionGenetics.com

 Phone: (715) 387-0484
 •
 General Fax: (715) 384-3661
 •
 Billing Fax: (715) 207-6602
 •
 Email: support@preventiongenetics.com

 Clinical Laboratory Director: Jerry Machado, PhD, DABMG, FCCMG
 •
 CLIA 52D2065132
 •
 CAP 7185561
 •
 NPI 1114140571
 •
 AU ID 1407125
 •
 IS99:2012 #3950.01

NAME

SUPPLEMENTAL INFORMATION V.19.04 SEQUENCING WITH CNV DETECTION

Limitations and Other Test Notes

Interpretation of the test results is limited by the information that is currently available. Better interpretation should be possible in the future as our knowledge about human genetics and the patient's condition improve.

When Next Gen or Sanger sequencing does not reveal any difference from the reference sequence, or when a sequence variant is homozygous, we cannot be certain that we were able to detect both patient alleles. Occasionally, a patient may carry an allele which does not capture or amplify due for example to a large deletion or insertion.

Copy number variants (CNVs) of four exons or more in size are detected with sensitivity approaching 100% through analysis of Next Gen sequence data. However, sensitivity for detection of CNVs smaller than four exons is lower (we estimate ~75%).

Coverage includes all coding exons of the gene(s) analyzed plus 10 bases of flanking noncoding DNA in all available transcripts along with other non-coding regions in which pathogenic variants have been identified at PreventionGenetics or reported elsewhere.

In most cases, we are unable to determine the phase of sequence variants. In particular, when we find two likely causative variants for recessive disorders, we cannot be certain that the variants are on different chromosomes.

Our ability to detect minor sequence variants due to somatic mosaicism is limited. Sequence variants that are present in less than 50% of the patient's nucleated cells may not be detected.

Unless present within coding regions, runs of mononucleotide repeats (eg $(A)_n$ or $(T)_n$) with n >8 in the reference sequence) are generally not analyzed because of strand slippage during amplification.

Unless otherwise indicated, DNA sequence data is obtained from a specific cell type (often leukocytes from whole blood). Test reports contain no information about the DNA sequence in other cell types.

We cannot be certain that the reference sequences are correct. Genome build hg19, GRCh37 (Feb2009) is currently used as our reference in nearly all cases.

We have confidence in our ability to track a specimen once it has been received by PreventionGenetics. However, we take no responsibility for any specimen labeling errors that occur before the sample arrives at PreventionGenetics.

Genetic counseling to help to explain test results to the patients and to discuss reproductive options is recommended.

Reported results will typically not contain any additional information regarding pharmacogenetic analysis of genes, nor are these tests designed to help guide dosage requirements. Pharmacogenetic variant analysis is available, for a select list of genes, as an opt-in with PGxome® tests.

Test Methods

We use Next Generation Sequencing (NGS) technologies to cover the coding regions of the targeted genes plus 10 bases of non-coding DNA flanking each exon. As required, genomic DNA is extracted from the specimen. The DNA corresponding to these regions is captured using Agilent Clinical Research Exome hybridization

NAME 6064, Donor

PREVENTION GENETICS

probes. Captured DNA is sequenced using Illumina's Reversible Dye Terminator (RDT) platform NovaSeq 6000 using 150 by 150 bp paired end reads (Illumina, San Diego, CA, USA).

The following quality control metrics are generally achieved: >98% of target bases are covered at >20x, and mean coverage of target bases >120x. Data analysis is performed using the internally developed software Titanium-Exome. Specified genes for which the enhance option is selected are backfilled with Sanger sequencing to achieve 100% coverage.

For Sanger sequencing, Polymerase Chain Reaction (PCR) is used to amplify the necessary exons plus additional flanking non-coding sequence. After purification of the PCR products, cycle sequencing is carried out using the ABI Big Dye Terminator v.3.1 kit. PCR products are resolved by electrophoresis on an ABI 3730xl capillary sequencer. In most cases, cycle sequencing is performed separately in both the forward and reverse directions; in some cases, sequencing is performed twice in either the forward or reverse directions.

Copy number variants (CNVs) are also detected from NGS data. We utilize a CNV calling algorithm that compares mean read depth and distribution for each target in the test sample against multiple matched controls. Neighboring target read depth and distribution and zygosity of any variants within each target region are used to reinforce CNV calls. All reported CNVs are confirmed using another technology such as aCGH, MLPA, or PCR. On occasion, it will not be technically possible to confirm a smaller CNV called by NGS. In these instances, the CNV will not be included on the report.

All differences from the reference sequences (sequence variants) are assigned to one of five interpretation categories (Pathogenic, Likely Pathogenic, Variant of Uncertain Significance, Likely Benign and Benign) per ACMG Guidelines (Richards et al. 2015). Rare and undocumented synonymous variants are nearly always classified as likely benign if there is no indication that they alter protein sequence or disrupt splicing. Benign variants are not listed in the reports, but are available upon request.

Human Genome Variation Society (HGVS) recommendations are used to describe sequence variants (http://www.hgvs.org).

FDA Notes

These results should be used in the context of available clinical findings, and should not be used as the sole basis for treatment. This test was developed and its performance characteristics determined by PreventionGenetics. US Food and Drug Administration (FDA) does not require this test to go through premarket FDA review. This test is used for clinical purposes. It should not be regarded as investigational or for research. This laboratory is certified under the Clinical Laboratory Improvement Amendments of 1988 (CLIA) as qualified to perform high complexity clinical laboratory testing.

TREVENIION / GENEIIOS	0004, D0101	
PATIENT INFORMATION	SPECIMEN INFORMATION	PROVIDER INFORMATION
6064, Donor ID#: DOB: Sex: Male	Type: Requested: May 06, 2021 PG ID:	Harvey Stern, MD, PhD Suzanne Seitz, MS Fairfax Cryobank

NAME

6064 Donor

MOLECULAR GENETICS REPORT: LAMA2 Gene Sequencing with CNV Detection *See GENES ANALYZED for gene list*

SUMMARY OF RESULTS

NEGATIVE

PATIENT ID

RESULTS AND INTERPRETATIONS: In this patient, for the LAMA2 gene, we found no sequence variants.

This patient is apparently negative for copy number variants (CNVs) within the genomic regions of this test.

These results should be interpreted in context of clinical findings, family history and other laboratory data. All genetic tests have limitations. See limitations and other information for this test on the following page(s).

NOTES: Since this test is performed using exome capture probes, a reflex to any of our exome-based tests is available (PGxome, PGxome Custom Panels).

GENE(S) ANALYZED: LAMA2

SUMMARY STATISTICS:

Pipeline	Version	Average NGS Coverage	Fraction Bases Covered with NGS
Infinity_Pipeline	1.8.6	81x	98.7%

Minimum NGS coverage is \geq 20x for all exons and +/-10bp of flanking DNA.

Electronically signed on May 19, 2021 by: Angela Gruber, PhD Human Molecular Geneticist Electronically signed and reported on May 21, 2021 by: Jerry Machado, PhD, DABMGG, FCCMG Clinical Molecular Geneticist

NAME

SUPPLEMENTAL INFORMATION V.19.04 SEQUENCING WITH CNV DETECTION

Limitations and Other Test Notes

Interpretation of the test results is limited by the information that is currently available. Better interpretation should be possible in the future as our knowledge about human genetics and the patient's condition improve.

When Next Gen or Sanger sequencing does not reveal any difference from the reference sequence, or when a sequence variant is homozygous, we cannot be certain that we were able to detect both patient alleles. Occasionally, a patient may carry an allele which does not capture or amplify due for example to a large deletion or insertion.

Copy number variants (CNVs) of four exons or more in size are detected with sensitivity approaching 100% through analysis of Next Gen sequence data. However, sensitivity for detection of CNVs smaller than four exons is lower (we estimate ~75%).

Coverage includes all coding exons of the gene(s) analyzed plus 10 bases of flanking noncoding DNA in all available transcripts along with other non-coding regions in which pathogenic variants have been identified at PreventionGenetics or reported elsewhere.

In most cases, we are unable to determine the phase of sequence variants. In particular, when we find two likely causative variants for recessive disorders, we cannot be certain that the variants are on different chromosomes.

Our ability to detect minor sequence variants due to somatic mosaicism is limited. Sequence variants that are present in less than 50% of the patient's nucleated cells may not be detected.

Unless present within coding regions, runs of mononucleotide repeats (eg (A)_n or (T)_n) with n > 8 in the reference sequence) are generally not analyzed because of strand slippage during amplification.

Unless otherwise indicated, DNA sequence data is obtained from a specific cell type (often leukocytes from whole blood). Test reports contain no information about the DNA sequence in other cell types.

We cannot be certain that the reference sequences are correct. Genome build hg19, GRCh37 (Feb2009) is currently used as our reference in nearly all cases.

We have confidence in our ability to track a specimen once it has been received by PreventionGenetics. However, we take no responsibility for any specimen labeling errors that occur before the sample arrives at PreventionGenetics.

Genetic counseling to help to explain test results to the patients and to discuss reproductive options is recommended.

Reported results will typically not contain any additional information regarding pharmacogenetic analysis of genes, nor are these tests designed to help guide dosage requirements. Pharmacogenetic variant analysis is available, for a select list of genes, as an opt-in with PGxome® tests.

Test Methods

We use Next Generation Sequencing (NGS) technologies to cover the coding regions of the targeted genes plus 10 bases of non-coding DNA flanking each exon. As required, genomic DNA is extracted from the specimen. The DNA corresponding to these regions is captured using Agilent Clinical Research Exome hybridization

NAME 6064, Donor

PREVENTION GENETICS

probes. Captured DNA is sequenced using Illumina's Reversible Dye Terminator (RDT) platform NovaSeq 6000 using 150 by 150 bp paired end reads (Illumina, San Diego, CA, USA).

The following quality control metrics are generally achieved: >98% of target bases are covered at >20x, and mean coverage of target bases >120x. Data analysis is performed using the internally developed software Titanium-Exome. Specified genes for which the enhance option is selected are backfilled with Sanger sequencing to achieve 100% coverage.

For Sanger sequencing, Polymerase Chain Reaction (PCR) is used to amplify the necessary exons plus additional flanking non-coding sequence. After purification of the PCR products, cycle sequencing is carried out using the ABI Big Dye Terminator v.3.1 kit. PCR products are resolved by electrophoresis on an ABI 3730xl capillary sequencer. In most cases, cycle sequencing is performed separately in both the forward and reverse directions; in some cases, sequencing is performed twice in either the forward or reverse directions.

Copy number variants (CNVs) are also detected from NGS data. We utilize a CNV calling algorithm that compares mean read depth and distribution for each target in the test sample against multiple matched controls. Neighboring target read depth and distribution and zygosity of any variants within each target region are used to reinforce CNV calls. All reported CNVs are confirmed using another technology such as aCGH, MLPA, or PCR. On occasion, it will not be technically possible to confirm a smaller CNV called by NGS. In these instances, the CNV will not be included on the report.

All differences from the reference sequences (sequence variants) are assigned to one of five interpretation categories (Pathogenic, Likely Pathogenic, Variant of Uncertain Significance, Likely Benign and Benign) per ACMG Guidelines (Richards et al. 2015). Rare and undocumented synonymous variants are nearly always classified as likely benign if there is no indication that they alter protein sequence or disrupt splicing. Benign variants are not listed in the reports, but are available upon request.

Human Genome Variation Society (HGVS) recommendations are used to describe sequence variants (http://www.hgvs.org).

FDA Notes

These results should be used in the context of available clinical findings, and should not be used as the sole basis for treatment. This test was developed and its performance characteristics determined by PreventionGenetics. US Food and Drug Administration (FDA) does not require this test to go through premarket FDA review. This test is used for clinical purposes. It should not be regarded as investigational or for research. This laboratory is certified under the Clinical Laboratory Improvement Amendments of 1988 (CLIA) as qualified to perform high complexity clinical laboratory testing.

Patient Information Name: Donor 6064 Date of Birth:

Specimen Information

Specimen Type: Purified DNA Date Collected: 05/03/2022 Date Received: 05/06/2022 Final Report: 05/18/2022

Referring Provider

Fairfax Cryobank, Inc.

Custom Carrier Screen (1 gene)

with Personalized Residual Risk

SUMMARY OF RESULTS AND RECOMMENDATIONS

⊖ Negative	
Negative for all genes tested: TG	
To view a full list of genes and diseases tested	
please see Table 1 in this report	

AR=Autosomal recessive; XL=X-linked

Recommendations

• Consideration of residual risk by ethnicity after a negative carrier screen is recommended for the other diseases on the panel, especially in the case of a positive family history for a specific disorder.

Test description

This patient was tested for the genes listed above using one or more of the following methodologies: target capture and short-read sequencing, long-range PCR followed by short-read sequencing, targeted genotyping, and/or copy number analysis. Please note that negative results reduce but do not eliminate the possibility that this individual is a carrier for one or more of the disorders tested. Please see Table 1 for a list of genes and diseases tested with the patient's personalized residual risk. If personalized residual risk is not provided, please see the complete residual risk table at **go.sema4.com/residualrisk**. Only known pathogenic or likely pathogenic variants are reported. This carrier screening test does not report likely benign variants and variants of uncertain significance (VUS). If reporting of likely benign variants and VUS are desired in this patient, please contact the laboratory at 800-298-6470, option 2 to request an amended report.

Fat Q Nulle

Fatimah Nahhas-Alwan, Ph.D., DABMGG, Laboratory Director Laboratory Medical Consultant: George A. Diaz, M.D., Ph.D

Genes and diseases tested

The personalized residual risks listed below are specific to this individual. The complete residual risk table is available at **go.sema4.com/residualrisk**

Table 1: List of genes and diseases tested with detailed results

Disease	Gene	Inheritance Pattern	Status	Detailed Summary
Negative				
Thyroid Dyshormonogenesis 3	TG	AR	Reduced Risk	Personalized Residual Risk: 1 in 850

AR=Autosomal recessive; XL=X-linked

Test methods and comments

Genomic DNA isolated from this patient was analyzed by one or more of the following methodologies, as applicable:

Fragile X CGG Repeat Analysis (Analytical Detection Rate >99%)

PCR amplification using Asuragen, Inc. AmplideX[®]*FMR1* PCR reagents followed by capillary electrophoresis for allele sizing was performed. Samples positive for *FMR1* CGG repeats in the premutation and full mutation size range were further analyzed by Southern blot analysis to assess the size and methylation status of the *FMR1* CGG repeat.

Genotyping (Analytical Detection Rate >99%)

Multiplex PCR amplification and allele specific primer extension analyses using the MassARRAY[®] System were used to identify certain recurrent variants that are complex in nature or are present in low copy repeats. Rare sequence variants may interfere with assay performance.

Multiplex Ligation-Dependent Probe Amplification (MLPA) (Analytical Detection Rate >99%)

MLPA[®] probe sets and reagents from MRC-Holland were used for copy number analysis of specific targets versus known control samples. False positive or negative results may occur due to rare sequence variants in target regions detected by MLPA probes. Analytical sensitivity and specificity of the MLPA method are both 99%.

For alpha thalassemia, the copy numbers of the *HBA1* and *HBA2* genes were analyzed. Alpha-globin gene deletions, triplications, and the Constant Spring (CS) mutation are assessed. This test is expected to detect approximately 90% of all alpha-thalassemia mutations, varying by ethnicity. carriers of alpha-thalassemia with three or more *HBA* copies on one chromosome, and one or no copies on the other chromosome, may not be detected. With the exception of triplications, other benign alpha-globin gene polymorphisms will not be reported. Analyses of *HBA1* and *HBA2* are performed in association with long-range PCR of the coding regions followed by short-read sequencing.

For Duchenne muscular dystrophy, the copy numbers of all *DMD* exons were analyzed. Potentially pathogenic single exon deletions and duplications are confirmed by a second method. Analysis of *DMD* is performed in association with sequencing of the coding regions.

For congenital adrenal hyperplasia, the copy number of the *CYP21A2* gene was analyzed. This analysis can detect large deletions typically due to unequal meiotic crossing-over between *CYP21A2* and the pseudogene *CYP21A1P*. Classic 30-kb deletions make up approximately 20% of *CYP21A2* pathogenic alleles. This test may also identify certain point mutations in *CYP21A2* caused by gene conversion events between *CYP21A2* and *CYP21A2* and *CYP21A1P*. Some carriers may not be identified by dosage sensitive methods as this testing cannot detect individuals with two copies (duplication) of the *CYP21A2* gene on one chromosome and loss of *CYP21A2* (deletion) on the other chromosome. Analysis of *CYP21A2* is performed in association with long-range PCR of the coding regions followed by short-read sequencing.

For spinal muscular atrophy (SMA), the copy numbers of the *SMN1* and *SMN2* genes were analyzed. The individual dosage of exons 7 and 8 as well as the combined dosage of exons 1, 4, 6 and 8 of *SMN1* and *SMN2* were assessed. Copy number gains and losses can be detected with this assay. Depending on ethnicity, 6 - 29 % of carriers will not be identified by dosage sensitive methods as this testing cannot detect individuals with two copies (duplication) of the *SMN1* gene on one chromosome and loss of *SMN1* (deletion) on the other chromosome (silent 2+0 carrier) or individuals that carry an intragenic mutation in *SMN1*. Please also note that 2% of individuals diagnosed with SMA have a causative *SMN1* variant that occurred *de novo*, and therefore cannot be picked up by carrier screening in the parents. Analysis of *SMN1* is performed in association with short-read sequencing of exons 2a-7, followed by confirmation using long-range PCR (described below).

Carrier screening report Donor 6064 Date of Birth: C Sema4 ID

The presence of the c.*3+80T>G (chr5:70,247,901T>G) variant allele in an individual with Ashkenazi Jewish or Asian ancestry is typically indicative of a duplication of *SMN1*. When present in an Ashkenazi Jewish or Asian individual with two copies of *SMN1*, c.*3+80T>G is likely indicative of a silent (2+0) carrier. In individuals with two copies of *SMN1* with African American, Hispanic or Caucasian ancestry, the presence or absence of c.*3+80T>G significantly increases or decreases, respectively, the likelihood of being a silent 2+0 silent carrier.

MLPA for Gaucher disease (*GBA*), cystic fibrosis (*CFTR*), and non-syndromic hearing loss (*GJB2/GJB6*) will only be performed if indicated for confirmation of detected CNVs. If *GBA* analysis was performed, the copy numbers of exons 1, 3, 4, and 6 - 10 of the *GBA* gene (of 11 exons total) were analyzed. If *CFTR* analysis was performed, the copy numbers of all 27 *CFTR* exons were analyzed. If *GJB2/GJB6* analysis was performed, the copy numbers of all 27 *CFTR* exons were analyzed. If *GJB2/GJB6* analysis was performed, the copy number of the two *GJB2* exons were analyzed, as well as the presence or absence of the two upstream deletions of the *GJB2* regulatory region, del(*GJB6*-D13S1830) and del(*GJB6*-D13S1854).

Next Generation Sequencing (NGS) (Analytical Detection Rate >95%)

NGS was performed on a panel of genes for the purpose of identifying pathogenic or likely pathogenic variants.

Agilent SureSelectTMXT Low Input technology was used with a custom capture library to target the exonic regions and intron/exon splice junctions of the relevant genes, as well as a number of UTR, intronic or promoter regions that contain previously reported mutations. Libraries were pooled and sequenced on the Illumina NovaSeq 9000 platform, using paired-end 100 bp reads. The sequencing data was analyzed using a custom bioinformatics algorithm designed and validated in house.

The coding exons and splice junctions of the known protein-coding RefSeq genes were assessed for the average depth of coverage (minimum of 20X) and data quality threshold values. Most exons not meeting a minimum of >20X read depth across the exon are further analyzed by Sanger sequencing. Please note that several genomic regions present difficulties in mapping or obtaining read depth >20X. These regions, which are described below, will not be reflexed to Sanger sequencing if the mapping quality or coverage is poor. Any variants identified during testing in these regions are confirmed by a second method and reported if determined to be pathogenic or likely pathogenic. However, as there is a possibility of false negative results within these regions, detection rates and residual risks for these genes have been calculated with the

presumption that variants in these exons will not be detected, unless included in the MassARRAY[®] genotyping platform.

Exceptions: ABCD1 (NM_000033.3) exons 8 and 9; ACADSB (NM_ 001609.3) chr10:124,810,695-124,810,707 (partial exon 9); ADA (NM_000022.2) exon 1; ADAMTS2 (NM_014244.4) exon 1; AGPS (NM_003659.3) chr2:178,257,512-178,257,649 (partial exon 1); ALDH7A1 (NM_001182.4) chr5:125,911,150-125,911,163 (partial exon 7) and chr5:125,896,807-125,896,821 (partial exon 10); ALMS1 (NM_015120.4) chr2:73,612,990-73,613,041 (partial exon 1); APOPT1 (NM_ 032374.4) chr14:104,040,437-104,040,455 (partial exon 3); CDAN1 (NM_138477.2) exon 2; CEP152 (NM_014985.3) chr15:49,061,146-49,061,165 (partial exon 14) and exon 22; CEP290 (NM_025114.3) exon 5, exon 7, chr12:88,519,017-88,519,039 (partial exon 13), chr12:88,514,049-88,514,058 (partial exon 15), chr12:88,502,837-88,502,841 (partial exon 23), chr12:88,481,551-88,481,589 (partial exon 32), chr12:88,471,605-88,471,700 (partial exon 40); CFTR (NM_000492.3) exon 10; COL4A4 (NM_000092.4) chr2:227,942,604-227,942,619 (partial exon 25); COX10 (NM_001303,3) exon 6; CYP11B1 (NM_000497,3) exons 3-7; CYP11B2 (NM_000498,3) exons 3-7; DNAI2 (NM_023036.4) chr17:72,308,136-72,308,147 (partial exon 12); DOK7 (NM_173660.4) chr4:3,465,131-3,465,161 (partial exon 1) and exon 2; DUOX2 (NM_014080.4) exons 6-8; EIF2AK3 (NM_004836.5 exon 8; EVC (NM_153717.2) exon 1; F5 (NM_000130.4) chr1:169,551,662-169,551,679 (partial exon 2); FH (NM_000143.3) exon 1; GAMT (NM_000156.5 exon 1; GLDC (NM_000170.2) exon 1; GNPTAB (NM_024312.4) chr17:4.837,000-4,837,400 (partial exon 2); GNPTG (NM_032520.4) exon 1; GHR (NM_000163,4) exon 3; GYS2 (NM_021957.3) chr12:21,699,370-21,699,409 (partial exon 12); HGSNAT (NM_152419.2) exon 1; IDS (NM_000202.6) exon 3; ITGB4 (NM_000213.4) chr17:73,749,976-73,750,060 (partial exon 33); JAK3 (NM_000215.3) chr19:17,950,462-17,950,483 (partial exon 10); LIFR (NM_002310.5 exon 19; LMBRD1 (NM_018368.3) chr6:70,459,226-70,459,257 (partial exon 5), chr6:70,447,828-70,447,836 (partial exon 7) and exon 12; LYST (NM_000081.3) chr1:235,944,158-235,944,176 (partial exon 16) and chr1:235,875,350-235,875,362 (partial exon 43); MLYCD (NM_012213.2) chr16:83,933,242-83,933,282 (partial exon 1); MTR (NM_000254.2) chr1 237,024,418-237,024,439 (partial exon 20) and chr1:237,038,019-237,038,029 (partial exon 24); NBEAL2 (NM_015175.2) chr3 47,021,385-47,021,407 (partial exon 1); NEB (NM_001271208.1 exons 82-105; NPC1 (NM_000271.4) chr18:21,123,519-21,123,538 (partial exon 14); NPHP1 (NM_000272.3) chr2:110,937,251-110,937,263 (partial exon 3); OCRL (NM_000276.3) chrX:128,674,450-128,674,460 (partial exon 1); PHKB (NM_000293,2) exon 1 and chr16:47,732,498-47,732,504 (partial exon 30); PIGN (NM_176787.4) chr18:59,815,547-59,815,576 (partial exon 8); PIP5K1C (NM_012398.2) exon 1 and chr19:3637602-3637616 (partial exon 17); POU1F1 (NM_000306.3) exon 5; PTPRC (NM_002838.4) exons 11 and 23; PUS1 (NM_025215.5 chr12:132,414,446-132,414,532 (partial exon 2); RPGRIP1L (NM_015272.2) exon 23; SGSH (NM_000199;3) chr17:78,194,022-78,194,072 (partial exon 1); SLC6A8 (NM_005629;3) exons 3 and 4; ST3GAL5 (NM_003896;3) exon 1; SURF1 (NM_003172.3) chrg:136,223,269-136,223,307 (partial exon 1); TRPM6 (NM_017662.4) chrg:77,362,800-77,362,811 (partial exon 31); TSEN54 (NM_207346.2) exon 1; TYR (NM_000372.4) exon 5; VWF (NM_000552.3) exons 24-26, chr12:6,125,675-6,125,684 (partial exon 30), chr12:6,121,244-6,121,265 (partial exon 33), and exon 34.

This test will detect variants within the exons and the intron-exon boundaries of the target regions. Variants outside these regions may not be detected, including, but not limited to, UTRs, promoters, and deep intronic areas, or regions that fall into the Exceptions mentioned above. This technology may not detect all small insertion/deletions and is not diagnostic for repeat expansions and structural genomic variation. In addition, a mutation(s) in a gene not included on the panel could be present in this patient.

Variant interpretation and classification was performed based on the American College of Medical Genetics Standards and Guidelines for the Interpretation of Sequence Variants (Richards et al, 2015). All potentially pathogenic variants may be confirmed by either a specific genotyping assay or Sanger sequencing, if indicated. Any benign variants, likely benign variants or variants of uncertain significance identified during this analysis will not be reported.

Next Generation Sequencing for SMN1

Exonic regions and intron/exon splice junctions of *SMN1* and *SMN2* were captured, sequenced, and analyzed as described above. Any variants located within exons 2a-7 and classified as pathogenic or likely pathogenic were confirmed to be in either *SMN1* or *SMN2* using gene-specific long-range PCR analysis followed by Sanger sequencing. Variants located in exon 1 cannot be accurately assigned to either *SMN1* or *SMN2* using our current methodology, and so these variants are considered to be of uncertain significance and are not reported.

Copy Number Variant Analysis (Analytical Detection Rate >95%)

Large duplications and deletions were called from the relative read depths on an exon-by-exon basis using a custom exome hidden Markov model (XHMM) algorithm. Deletions or duplications determined to be pathogenic or likely pathogenic were confirmed by either a custom arrayCGH platform, quantitative PCR, or MLPA (depending on CNV size and gene content). While this algorithm is designed to pick up deletions and duplications of 2 or more exons in length, potentially pathogenic single-exon CNVs will be confirmed and reported, if detected.

Exon Array (Confirmation method) (Accuracy >99%)

The customized oligonucleotide microarray (Oxford Gene Technology) is a highly-targeted exon-focused array capable of detecting medically relevant microdeletions and microduplications at a much higher resolution than traditional aCGH methods. Each array matrix has approximately 180,000 60-mer oligonucleotide probes that cover the entire genome. This platform is designed based on human genome NCBI Build 37 (hg19) and the CGH probes are enriched to target the exonic regions of the genes in this panel.

Quantitative PCR (Confirmation method) (Accuracy >99%)

Th relative quantification PCR is utilized on a Roche Universal Library Probe (UPL) system, which relates the PCR signal of the target region in one group to another. To test for genomic imbalances, both sample DNA and reference DNA is amplified with primer/probe sets that specific to the target region and a control region with known genomic copy number. Relative genomic copy numbers are calculated based on the standard ΔΔCt formula.

Long-Range PCR (Analytical Detection Rate >99%)

Long-range PCR was performed to generate locus-specific amplicons for *CYP21A2, HBA1* and *HBA2* and *GBA*. The PCR products were then prepared for short-read NGS sequencing and sequenced. Sequenced reads were mapped back to the original genomic locus and run through the bioinformatics pipeline. If indicated, copy number from MLPA was correlated with the sequencing output to analyze the results. For *CYP21A2*, a certain percentage of healthy individuals carry a duplication of the *CYP21A2* gene, which has no clinical consequences. In cases where two copies of a gene are located on the same chromosome in tandem, only the second copy will be amplified and assessed for potentially pathogenic variants, due to size limitations of the PCR reaction. However, because these alleles contain at least two copies of the *CYP21A2* gene in tandem, it is expected that this patient has at least one functional gene in the tandem allele and this patient is therefore less likely to be a carrier. When an individual carries both a duplication allele and a pathogenic variant, or multiple pathogenic variants, the current analysis may not be able to determine the phase (cis/trans configuration) of the *CYP21A2* alleles identified. Family studies may be required in certain scenarios where phasing is required to determine the carrier status.

Residual Risk Calculations

Carrier frequencies and detection rates for each ethnicity were calculated through the combination of internal curations of >30,000 variants and genomic frequency data from >138,000 individuals across seven ethnic groups in the gnomAD database. Additional variants in HGMD and novel deleterious variants were also incorporated into the calculation. Residual risk values are calculated using a Bayesian analysis combining the *a priori* risk of being a pathogenic mutation carrier (carrier frequency) and the detection rate. They are provided only as a guide for assessing approximate risk given a negative result, and values will vary based on the exact ethnic background of an individual. This report does not represent medical advice but should be interpreted by a genetic counselor, medical geneticist or physician skilled in genetic result interpretation and the relevant medical literature.

Personalized Residual Risk Calculations

Agilent SureSelectTMXT Low-Input technology was utilized in order to create whole-genome libraries for each patient sample. Libraries were then pooled and sequenced on the Illumina NovaSeq platform. Each sequencing lane was multiplexed to achieve 0.4-2x genome coverage, using paired-end 100 bp reads. The sequencing data underwent ancestral analysis using a customized, licensed bioinformatics algorithm that was validated in house. Identified sub-ethnic groupings were binned into one of 7 continental-level groups (African, East Asian, South Asian, Non-Finnish European, Finnish, Native American, and Ashkenazi Jewish) or, for those ethnicities that matched poorly to the continental-level groups, an 8th "unassigned" group, which were then used to select residual risk values for each gene. For individuals belonging to multiple high-

level ethnic groupings, a weighting strategy was used to select the most appropriate residual risk. For genes that had insufficient data to calculate ethnic-specific residual risk values, or for sub-ethnic groupings that fell into the "unassigned" group, a "worldwide" residual risk was used. This "worldwide" residual risk was calculated using data from all available continental-level groups.

Sanger Sequencing (Confirmation method) (Accuracy >99%)

Sanger sequencing, as indicated, was performed using BigDye Terminator chemistry with the ABI 3730 DNA analyzer with target specific amplicons. It also may be used to supplement specific guaranteed target regions that fail NGS sequencing due to poor quality or low depth of coverage (<20 reads) or as a confirmatory method for NGS positive results. False negative results may occur if rare variants interfere with amplification or annealing.

Tay-Sachs Disease (TSD) Enzyme Analysis (Analytical Detection Rate ≥98%)

Hexosaminidase activity and Hex A% activity were measured by a standard heat-inactivation, fluorometric method using artificial 4-MU-β-Nacetyl glucosaminide (4-MUG) substrate. This assay is highly sensitive and accurate in detecting Tay-Sachs carriers and individuals affected with TSD. Normal ranges of Hex A% activity are 55.0-72.0 for white blood cells and 58.0-72.0 for plasma. It is estimated that less than 0.5% of Tay-Sachs carriers have non-carrier levels of percent Hex A activity, and therefore may not be identified by this assay. In addition, this assay may detect individuals that are carriers of or are affected with Sandhoff disease. False positive results may occur if benign variants, such as pseudodeficiency alleles, interfere with the enzymatic assay. False negative results may occur if both *HEXA* and *HEXB* pathogenic or pseudodeficiency variants are present in the same individual.

Please note these tests were developed and their performance characteristics were determined by Sema4 Opco, Inc. They have not been cleared or approved by the FDA. These analyses generally provide highly accurate information regarding the patient's carrier or affected status. Despite this high level of accuracy, it should be kept in mind that there are many potential sources of diagnostic error, including misidentification of samples, polymorphisms, or other rare genetic variants that interfere with analysis. Families should understand that rare diagnostic errors may occur for these reasons.

SELECTED REFERENCES

Carrier Screening

Grody W et al. ACMG position statement on prenatal/preconception expanded carrier screening. Genet Med. 2013 15:482-3.

Fragile X syndrome:

Chen L et al. An information-rich CGG repeat primed PCR that detects the full range of Fragile X expanded alleles and minimizes the need for Southern blot analysis. *J Mol Diag* 2010 12:589-600.

Spinal Muscular Atrophy:

Luo M et al. An Ashkenazi Jewish SMN1 haplotype specific to duplication alleles improves pan-ethnic carrier screening for spinal muscular atrophy. *Genet Med.* 2014 16:149-56.

Ashkenazi Jewish Disorders:

Scott SA et al. Experience with carrier screening and prenatal diagnosis for sixteen Ashkenazi Jewish Genetic Diseases. *Hum. Mutat.* 2010 31:1-11.

Duchenne Muscular Dystrophy:

Flanigan KM et al. Mutational spectrum of DMD mutations in dystrophinopathy patients: application of modern diagnostic techniques to a large cohort. *Hum Mutat.* 2009 30:1657-66.

Variant Classification:

Richards S et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. *Genet Med*. 2015 May;17(5):405-24 Additional disease-specific references available upon request.