Fairfax
 Cr\%obank

The Trusted Choice for Donor Sperm

Donor 6427

Genetic Testing Summary

> Fairfax Cryobank recommends reviewing this genetic testing summary with your healthcare provider to determine suitability.

Last Updated: 01/04/22

Donor Reported Ancestry: English, Irish, Norwegian Jewish Ancestry: No

Genetic Test*	Result	Comments/Donor's Residual Risk**

Chromosome analysis (karyotype)	Normal male karyotype	No evidence of clinically significant chromosome abnormalities
Hemoglobin evaluation	Normal hemoglobin fractionation and MCV/MCH results	Reduced risk to be a carrier for sickle cell anemia, beta thalassemia, alpha thalassemia trait (aa/-- and a-/a-) and other hemoglobinopathies
Cystic Fibrosis (CF) carrier screening	Negative by gene sequencing in the CFTR gene	$1 / 440$
Spinal Muscular Atrophy (SMA) carrier screening	Negative for deletions of exon 7 in the SMN1 gene	$1 / 894$
Expanded Genetic Disease Carrier		
Screening Panel attached- 283 diseases		
by gene sequencing	Carrier: Abetalipoproteinemia (MTTP)	Partner testing recommended before using this donor.

[^0]Carrier screening report
Donor 6427
Date of Birth:
Sema4 ID:

Patient Information

Name: Donor 6427

Sema4 ID:
Client ID

Indication: Carrier Testing

Specimen Information

Specimen Type: Blood
Date Collected: 05/05/2021
Date Received: 05/06/2021
Final Report: 05/22/2021

Expanded Carrier Screen (283) Minus TSE

Number of genes tested: 283

SUMMARY OF RESULTS AND RECOMMENDATIONS

\oplus Positive	\ominus Negative
Carrier of Abetalipoproteinemia (AR)	Negative for all other genes tested
Associated gene(s): MTTP	To view a full list of genes and diseases tested
please see Table 1 in this report	
Variant(s) Detected: c.2636_2637delAA, p.K879SfsX9, Likely	
Pathogenic, Heterozygous (one copy)	

$A R=$ Autosomal recessive; $X L=X$-linked

Recommendations

- Testing the partner for the above positive disorder(s) and genetic counseling are recommended.
- Please note that for female carriers of X-linked diseases, follow-up testing of a male partner is not indicated.
- CGG repeat analysis of FMR1 for fragile X syndrome is not performed on males as repeat expansion of premutation alleles is not expected in the male germline.
- Individuals of Asian, African, Hispanic and Mediterranean ancestry should also be screened for hemoglobinopathies by CBC and hemoglobin electrophoresis.
- Consideration of residual risk by ethnicity after a negative carrier screen is recommended for the other diseases on the panel, especially in the case of a positive family history for a specific disorder.

Interpretation of positive results

Abetalipoproteinemia (AR)

Results and Interpretation

A heterozygous (one copy) likely pathogenic frameshift variant, c.2636_2637delAA, p.K879SfsX9, was detected in the MTTPgene (NM_000253.3). When this variant is present in trans with a pathogenic variant, it is considered to be causative for abetalipoproteinemia. Therefore, this individual is expected to be at least a carrier for abetalipoproteinemia. Heterozygous carriers are not expected to exhibit symptoms of this disease.

What is Abetalipoproteinemia?

Abetalipoproteinemia is an autosomal recessive disease caused by pathogenic variants in the MTTPgene and has the highest prevalence in the Ashkenazi Jewish population. Abetalipoproteinemia results from impaired absorption of dietary fats, cholesterol and fat-soluble vitamins. Clinically, this disease can cause failure to thrive, diarrhea, fatty stools, and abnormally shaped red blood cells. The resulting vitamin deficiency can also cause ataxia and retinitis pigmentosa in adulthood. Without treatments, life expectancy is significantly reduced, but with medical management patients may have a near-normal lifespan. No genotype-phenotype correlation has been reported.

Test description

This patient was tested for a panel of diseases using a combination of sequencing, targeted genotyping and copy number analysis. Please note that negative results reduce but do not eliminate the possibility that this individual is a carrier for one or more of the disorders tested. Please see Table 1 for a list of genes and diseases tested, and go.sema4.com/residualrisk for specific detection rates and residual risk by ethnicity. With individuals of mixed ethnicity, it is recommended to use the highest residual risk estimate. Only variants determined to be pathogenic or likely pathogenic are reported in this carrier screening test.

Hlice KTamer

Alice Tanner, Ph.D., M.S., CGC, FACMG, Laboratory Director
Laboratory Medical Consultant: George A. Diaz, M.D., Ph.D

Genes and diseases tested

For specific detection rates and residual risk by ethnicity, please visit go.sema4.com/residualrisk

Table 1: List of genes and diseases tested with detailed results

Disease	Gene	Inheritance Pattern	Status	Detailed Summary
\oplus Positive				
Abetalipoproteinemia	MTTP	AR	Carrier	c.2636_2637delAA, p.K879SfsX9, Likely Pathogenic, Heterozygous (one copy)
\ominus Negative				
3-Beta-Hydroxysteroid Dehydrogenase Type II Deficiency	HSD3B2	AR	Reduced Risk	
3-Methylcrotonyl-CoA Carboxylase Deficiency (MCCC1-Related)	MCCC1	AR	Reduced Risk	
3-Methylcrotonyl-CoA Carboxylase Deficiency (MCCC2-Related)	MCCC2	AR	Reduced Risk	
3-MethyIglutaconic Aciduria, Type III	OPA3	AR	Reduced Risk	
3-Phosphoglycerate Dehydrogenase Deficiency	PHGDH	AR	Reduced Risk	
6-Pyruvoyl-Tetrahydropterin Synthase Deficiency	PTS	AR	Reduced Risk	
Achromatopsia (CNGB3-related)	CNGB3	AR	Reduced Risk	
Acrodermatitis Enteropathica	SLC39A4	AR	Reduced Risk	
Acute Infantile Liver Failure	TRMU	AR	Reduced Risk	
Acyl-CoA Oxidase I Deficiency	ACOX1	AR	Reduced Risk	
Adenosine Deaminase Deficiency	ADA	AR	Reduced Risk	
Adrenoleukodystrophy, X-Linked	ABCD1	XL	Reduced Risk	
Aicardi-Goutieres Syndrome (SAMHD1-Related)	SAMHD1	AR	Reduced Risk	
Alpha-Mannosidosis	MAN2B1	AR	Reduced Risk	
Alpha-Thalassemia	HBA1/HBA2	AR	Reduced Risk	HBA1 Copy Number: 2 HBA2 Copy Number: 2 No pathogenic copy number variants detected HBA1/HBA2 Sequencing: Negative
Alpha-Thalassemia Mental Retardation Syndrome	ATRX	XL	Reduced Risk	
Alport Syndrome (COL4A3-Related)	COL4A3	AR	Reduced Risk	
Alport Syndrome (COL4A4-Related)	COL4A4	AR	Reduced Risk	
Alport Syndrome (COL4A5-Related)	COL4A5	XL	Reduced Risk	
Alstrom Syndrome	ALMS1	AR	Reduced Risk	
Andermann Syndrome	SLC12A6	AR	Reduced Risk	
Argininosuccinic Aciduria	ASL	AR	Reduced Risk	
Aromatase Deficiency	CYP19A1	AR	Reduced Risk	
Arthrogryposis, Mental Retardation, and Seizures	SLC35A3	AR	Reduced Risk	
Asparagine Synthetase Deficiency	ASNS	AR	Reduced Risk	
Aspartylglycosaminuria	AGA	AR	Reduced Risk	
Ataxia With Isolated Vitamin E Deficiency	TTPA	AR	Reduced Risk	
Ataxia-Telangiectasia	ATM	AR	Reduced Risk	
Autosomal Recessive Spastic Ataxia of CharlevoixSaguenay	SACS	AR	Reduced Risk	
Bardet-Biedl Syndrome (BBS10-Related)	BBS10	AR	Reduced Risk	
Bardet-Biedl Syndrome (BBS12-Related)	BBS12	AR	Reduced Risk	
Bardet-Biedl Syndrome (BBS1-Related)	BBS1	AR	Reduced Risk	
Bardet-Biedl Syndrome (BBS2-Related)	BBS2	AR	Reduced Risk	
Bare Lymphocyte Syndrome, Type II	CIITA	AR	Reduced Risk	
Bartter Syndrome, Type 4A	BSND	AR	Reduced Risk	
Bernard-Soulier Syndrome, Type A1	GP1BA	AR	Reduced Risk	
Bernard-Soulier Syndrome, Type C	GP9	AR	Reduced Risk	
Beta-Globin-Related Hemoglobinopathies	HBB	AR	Reduced Risk	

Carrier screening report
Donor 6427
Date of Birth:
Sema4 ID:

Beta-Ketothiolase Deficiency	ACAT1	AR	Reduced Risk	
Bilateral Frontoparietal Polymicrogyria	GPR56	AR	Reduced Risk	
Biotinidase Deficiency	BTD	AR	Reduced Risk	
Bloom Syndrome	BLM	AR	Reduced Risk	
Canavan Disease	ASPA	AR	Reduced Risk	
Carbamoylphosphate Synthetase I Deficiency	CPS1	AR	Reduced Risk	
Carnitine Palmitoyltransferase IA Deficiency	CPT1A	AR	Reduced Risk	
Carnitine Palmitoyltransferase II Deficiency	CPT2	AR	Reduced Risk	
Carpenter Syndrome	RAB23	AR	Reduced Risk	
Cartilage-Hair Hypoplasia	RMRP	AR	Reduced Risk	
Cerebral Creatine Deficiency Syndrome 1	SLC6A8	XL	Reduced Risk	
Cerebral Creatine Deficiency Syndrome 2	GAMT	AR	Reduced Risk	
Cerebrotendinous Xanthomatosis	CYP27A1	AR	Reduced Risk	
Charcot-Marie-Tooth Disease, Type 4D	NDRG1	AR	Reduced Risk	
Charcot-Marie-Tooth Disease, Type 5 / Arts Syndrome	PRPS1	XL	Reduced Risk	
Charcot-Marie-Tooth Disease, X-Linked	GJB1	XL	Reduced Risk	
Choreoacanthocytosis	VPS13A	AR	Reduced Risk	
Choroideremia	CHM	XL	Reduced Risk	
Chronic Granulomatous Disease (CYBA-Related)	CYBA	AR	Reduced Risk	
Chronic Granulomatous Disease ($C Y B B$-Related)	СУВВ	XL	Reduced Risk	
Citrin Deficiency	SLC25A13	AR	Reduced Risk	
Citrullinemia, Type 1	ASS1	AR	Reduced Risk	
Cohen Syndrome	VPS13B	AR	Reduced Risk	
Combined Malonic and Methylmalonic Aciduria	ACSF3	AR	Reduced Risk	
Combined Oxidative Phosphorylation Deficiency 1	GFM1	AR	Reduced Risk	
Combined Oxidative Phosphorylation Deficiency 3	TSFM	AR	Reduced Risk	
Combined Pituitary Hormone Deficiency 2	PROP1	AR	Reduced Risk	
Combined Pituitary Hormone Deficiency 3	LHX3	AR	Reduced Risk	
Combined SAP Deficiency	PSAP	AR	Reduced Risk	
Congenital Adrenal Hyperplasia due to 17-AlphaHydroxylase Deficiency	CYP17A1	AR	Reduced Risk	
Congenital Adrenal Hyperplasia due to 21-Hydroxylase Deficiency	CYP21A2	AR	Reduced Risk	CYP21A2 copy number: 2 CYP21A2 sequencing: Negative
Congenital Amegakaryocytic Thrombocytopenia	MPL	AR	Reduced Risk	
Congenital Disorder of Glycosylation, Type la	PMM2	AR	Reduced Risk	
Congenital Disorder of Glycosylation, Type Ib	MPI	AR	Reduced Risk	
Congenital Disorder of Glycosylation, Type Ic	ALG6	AR	Reduced Risk	
Congenital Insensitivity to Pain with Anhidrosis	NTRK1	AR	Reduced Risk	
Congenital Myasthenic Syndrome (CHRNE-Related)	CHRNE	AR	Reduced Risk	
Congenital Myasthenic Syndrome (RAPSN-Related)	RAPSN	AR	Reduced Risk	
Congenital Neutropenia (HAX1-Related)	HAX1	AR	Reduced Risk	
Congenital Neutropenia (VPS45-Related)	VPS45	AR	Reduced Risk	
Corneal Dystrophy and Perceptive Deafness	SLC4A11	AR	Reduced Risk	
Corticosterone Methyloxidase Deficiency	CYP11B2	AR	Reduced Risk	
Cystic Fibrosis	CFTR	AR	Reduced Risk	
Cystinosis	CTNS	AR	Reduced Risk	
D-Bifunctional Protein Deficiency	HSD17B4	AR	Reduced Risk	
Deafness, Autosomal Recessive 77	LOXHD1	AR	Reduced Risk	
Duchenne Muscular Dystrophy / Becker Muscular Dystrophy	DMD	XL	Reduced Risk	
Dyskeratosis Congenita (RTEL1-Related)	RTEL1	AR	Reduced Risk	
Dystrophic Epidermolysis Bullosa	COL7A1	AR	Reduced Risk	
Ehlers-Danlos Syndrome, Type VIIC	ADAMTS2	AR	Reduced Risk	
Ellis-van Creveld Syndrome (EVC-Related)	EVC	AR	Reduced Risk	
Emery-Dreifuss Myopathy 1	EMD	XL	Reduced Risk	
Enhanced S-Cone Syndrome	NR2E3	AR	Reduced Risk	
Ethylmalonic Encephalopathy	ETHE1	AR	Reduced Risk	
Fabry Disease	GLA	XL	Reduced Risk	
Factor IX Deficiency	F9	XL	Reduced Risk	
Factor XI Deficiency	F11	AR	Reduced Risk	
Familial Autosomal Recessive Hypercholesterolemia	LDLRAP1	AR	Reduced Risk	
Familial Dysautonomia	IKBKAP	AR	Reduced Risk	

Carrier screening report
Donor 6427
Date of Birth:
Sema4 ID:

Familial Hypercholesterolemia	LDLR	AR	Reduced Risk	
Familial Hyperinsulinism (ABCC8-Related)	ABCC8	AR	Reduced Risk	
Familial Hyperinsulinism (KCNJ11-Related)	KCNJ11	AR	Reduced Risk	
Familial Mediterranean Fever	MEFV	AR	Reduced Risk	
Fanconi Anemia, Group A	FANCA	AR	Reduced Risk	
Fanconi Anemia, Group C	FANCC	AR	Reduced Risk	
Fanconi Anemia, Group G	FANCG	AR	Reduced Risk	
Fragile XSyndrome	FMR1	XL	Reduced Risk	FMR1 CGG repeat sizes: Not Performed FMR1 Sequencing: Negative Fragile X CGG triplet repeat expansion testing was not performed at this time, as the patient has either been previously tested or is a male.
Fumarase Deficiency	FH	AR	Reduced Risk	
GRACILE Syndrome and Other BCS1L-Related Disorders	BCS1L	AR	Reduced Risk	
Galactokinase Deficiency	GALK1	AR	Reduced Risk	
Galactosemia	GALT	AR	Reduced Risk	
Gaucher Disease	GBA	AR	Reduced Risk	
Gitelman Syndrome	SLC12A3	AR	Reduced Risk	
Glutaric Acidemia, Type I	GCDH	AR	Reduced Risk	
Glutaric Acidemia, Type Ila	ETFA	AR	Reduced Risk	
Glutaric Acidemia, Type Ilc	ETFDH	AR	Reduced Risk	
Glycine Encephalopathy (AMT-Related)	AMT	AR	Reduced Risk	
Glycine Encephalopathy (GLDC-Related)	GLDC	AR	Reduced Risk	
Glycogen Storage Disease, Type II	GAA	AR	Reduced Risk	
Glycogen Storage Disease, Type III	AGL	AR	Reduced Risk	
Glycogen Storage Disease, Type IV / Adult Polyglucosan Body Disease	GBE1	AR	Reduced Risk	
Glycogen Storage Disease, Type la	G6PC	AR	Reduced Risk	
Glycogen Storage Disease, Type lb	SLC37A4	AR	Reduced Risk	
Glycogen Storage Disease, Type V	PYGM	AR	Reduced Risk	
Glycogen Storage Disease, Type VII	PFKM	AR	Reduced Risk	
HMG-CoA Lyase Deficiency	HMGCL	AR	Reduced Risk	
Hemochromatosis, Type 2A	HFE2	AR	Reduced Risk	
Hemochromatosis, Type 3	TFR2	AR	Reduced Risk	
Hereditary Fructose Intolerance	ALDOB	AR	Reduced Risk	
Hereditary Spastic Paraparesis 49	TECPR2	AR	Reduced Risk	
Hermansky-Pudlak Syndrome, Type 1	HPS1	AR	Reduced Risk	
Hermansky-Pudlak Syndrome, Type 3	HPS3	AR	Reduced Risk	
Holocarboxylase Synthetase Deficiency	HLCS	AR	Reduced Risk	
Homocystinuria (CBS-Related)	CBS	AR	Reduced Risk	
Homocystinuria due to MTHFR Deficiency	MTHFR	AR	Reduced Risk	
Homocystinuria, cblE Type	MTRR	AR	Reduced Risk	
Hydrolethalus Syndrome	HYLS1	AR	Reduced Risk	
Hyperornithinemia-HyperammonemiaHomocitrullinuria Syndrome	SLC25A15	AR	Reduced Risk	
Hypohidrotic Ectodermal Dysplasia 1	EDA	XL	Reduced Risk	
Hypophosphatasia	ALPL	AR	Reduced Risk	
Inclusion Body Myopathy 2	GNE	AR	Reduced Risk	
Infantile Cerebral and Cerebellar Atrophy	MED17	AR	Reduced Risk	
Isovaleric Acidemia	IVD	AR	Reduced Risk	
Joubert Syndrome 2	TMEM216	AR	Reduced Risk	
Joubert Syndrome 7 / Meckel Syndrome 5 / COACH Syndrome	RPGRIP1L	AR	Reduced Risk	
Junctional Epidermolysis Bullosa (LAMA3-Related)	LAMA3	AR	Reduced Risk	
Junctional Epidermolysis Bullosa (LAMB3-Related)	LAMB3	AR	Reduced Risk	
Junctional Epidermolysis Bullosa (LAMC2-Related)	LAMC2	AR	Reduced Risk	
Krabbe Disease	GALC	AR	Reduced Risk	
Lamellar Ichthyosis, Type 1	TGM1	AR	Reduced Risk	
Leber Congenital Amaurosis 10 and Other CEP290Related Ciliopathies	CEP290	AR	Reduced Risk	
Leber Congenital Amaurosis 13	RDH12	AR	Reduced Risk	

Carrier screening report
Donor 6427
Date of Birth:
Sema4 ID:

Leber Congenital Amaurosis 2 / Retinitis Pigmentosa 20	RPE65	AR	Reduced Risk
Leber Congenital Amaurosis 5	LCA5	AR	Reduced Risk
Leber Congenital Amaurosis 8 / Retinitis Pigmentosa 12 / Pigmented Paravenous Chorioretinal Atrophy	CRB1	AR	Reduced Risk
Leigh Syndrome, French-Canadian Type	LRPPRC	AR	Reduced Risk
Lethal Congenital Contracture Syndrome 1 / Lethal Arthrogryposis with Anterior Horn Cell Disease	GLE1	AR	Reduced Risk
Leukoencephalopathy with Vanishing White Matter	EIF2B5	AR	Reduced Risk
Limb-Girdle Muscular Dystrophy, Type 2A	CAPN3	AR	Reduced Risk
Limb-Girdle Muscular Dystrophy, Type 2B	DYSF	AR	Reduced Risk
Limb-Girdle Muscular Dystrophy, Type 2C	SGCG	AR	Reduced Risk
Limb-Girdle Muscular Dystrophy, Type 2D	SGCA	AR	Reduced Risk
Limb-Girdle Muscular Dystrophy, Type 2E	SGCB	AR	Reduced Risk
Limb-Girdle Muscular Dystrophy, Type 21	FKRP	AR	Reduced Risk
Lipoamide Dehydrogenase Deficiency	DLD	AR	Reduced Risk
Lipoid Adrenal Hyperplasia	STAR	AR	Reduced Risk
Lipoprotein Lipase Deficiency	LPL	AR	Reduced Risk
Long-Chain 3-Hydroxyacyl-CoA Dehydrogenase Deficiency	HADHA	AR	Reduced Risk
Lysinuric Protein Intolerance	SLC7A7	AR	Reduced Risk
Maple Syrup Urine Disease, Type 1a	BCKDHA	AR	Reduced Risk
Maple Syrup Urine Disease, Type 1b	BCKDHB	AR	Reduced Risk
Meckel Syndrome 1 / Bardet-Biedl Syndrome 13	MKS1	AR	Reduced Risk
Medium Chain Acyl-CoA Dehydrogenase Deficiency	ACADM	AR	Reduced Risk
Megalencephalic Leukoencephalopathy with Subcortical Cysts	MLC1	AR	Reduced Risk
Menkes Disease	ATP7A	XL	Reduced Risk
Metachromatic Leukodystrophy	ARSA	AR	Reduced Risk
MethyImalonic Acidemia (MMAA-Related)	MMAA	AR	Reduced Risk
Methylmalonic Acidemia (MMAB-Related)	MMAB	AR	Reduced Risk
Methylmalonic Acidemia (MUT-Related)	MUT	AR	Reduced Risk
Methylmalonic Aciduria and Homocystinuria, Cobalamin C Type	MMACHC	AR	Reduced Risk
Methylmalonic Aciduria and Homocystinuria, Cobalamin D Type	MMADHC	AR	Reduced Risk
Microphthalmia / Anophthalmia	VSX2	AR	Reduced Risk
Mitochondrial Complex I Deficiency (ACAD9-Related)	ACAD9	AR	Reduced Risk
Mitochondrial Complex I Deficiency (NDUFAF5Related)	NDUFAF5	AR	Reduced Risk
Mitochondrial Complex I Deficiency (NDUFS6-Related)	NDUFS6	AR	Reduced Risk
Mitochondrial DNA Depletion Syndrome 6 / Navajo Neurohepatopathy	MPV17	AR	Reduced Risk
Mitochondrial Myopathy and Sideroblastic Anemia 1	PUS1	AR	Reduced Risk
Mucolipidosis II / IIIA	GNPTAB	AR	Reduced Risk
Mucolipidosis III Gamma	GNPTG	AR	Reduced Risk
Mucolipidosis IV	MCOLN1	AR	Reduced Risk
Mucopolysaccharidosis Type I	IDUA	AR	Reduced Risk
Mucopolysaccharidosis Type II	IDS	XL	Reduced Risk
Mucopolysaccharidosis Type IIIA	SGSH	AR	Reduced Risk
Mucopolysaccharidosis Type IIIB	NAGLU	AR	Reduced Risk
Mucopolysaccharidosis Type IIIC	HGSNAT	AR	Reduced Risk
Mucopolysaccharidosis Type IIID	GNS	AR	Reduced Risk
Mucopolysaccharidosis Type IVb / GM1 Gangliosidosis	GLB1	AR	Reduced Risk
Mucopolysaccharidosis type IX	HYAL1	AR	Reduced Risk
Mucopolysaccharidosis type VI	ARSB	AR	Reduced Risk
Multiple Sulfatase Deficiency	SUMF1	AR	Reduced Risk
Muscle-Eye-Brain Disease and Other POMGNT1Related Congenital Muscular DystrophyDystroglycanopathies	POMGNT1	AR	Reduced Risk
Myoneurogastrointestinal Encephalopathy	TYMP	AR	Reduced Risk
Myotubular Myopathy 1	MTM1	XL	Reduced Risk
N-Acetylglutamate Synthase Deficiency	NAGS	AR	Reduced Risk
Nemaline Myopathy 2	NEB	AR	Reduced Risk

Carrier screening report
Donor 6427
Date of Birth:
Sema4 ID:

Carrier screening report
Donor 6427
Date of Birth:
Sema4 ID:

Steel Syndrome	COL27A1	AR	Reduced Risk
Stuve-Wiedemann Syndrome	LIFR	AR	Reduced Risk
Sulfate Transporter-Related Osteochondrodysplasia	SLC26A2	AR	Reduced Risk
Tay-Sachs Disease	HEXA	AR	Reduced Risk
Tyrosinemia, Type I	FAH	AR	Reduced Risk
Usher Syndrome, Type IB	MYO7A	AR	Reduced Risk
Usher Syndrome, Type IC	USH1C	AR	Reduced Risk
Usher Syndrome, Type ID	CDH23	AR	Reduced Risk
Usher Syndrome, Type IF	PCDH15	AR	Reduced Risk
Usher Syndrome, Type IIA	USH2A	AR	Reduced Risk
Usher Syndrome, Type III	CLRN1	AR	Reduced Risk
Very Long Chain Acyl-CoA Dehydrogenase Deficiency	ACADVL	AR	Reduced Risk
Walker-Warburg Syndrome and Other FKTN-Related Dystrophies	FKTN	AR	Reduced Risk
Wilson Disease	ATP7B	AR	Reduced Risk
Wolman Disease / Cholesteryl Ester Storage Disease	LIPA	AR	Reduced Risk
X-Linked Juvenile Retinoschisis	RS1	XL	Reduced Risk
X-Linked Severe Combined Immunodeficiency	LL2RG	XL	Reduced Risk
Zellweger Syndrome Spectrum (PEX10-Related)	PEX10	AR	Reduced Risk
Zellweger Syndrome Spectrum (PEX1-Related)	PEX1	AR	Reduced Risk
Zellweger Syndrome Spectrum (PEX2-Related)	PEX2	AR	Reduced Risk
Zellweger Syndrome Spectrum (PEX6-Related)	PEX6	AR	Reduced Risk

$A R=$ Autosomal recessive; $X L=X$-linked

Test methods and comments

Genomic DNA isolated from this patient was analyzed by one or more of the following methodologies, as applicable:

Fragile X CGG Repeat Analysis (Analytical Detection Rate >99\%)

PCR amplification using Asuragen, Inc. AmplideX ${ }^{\circledR} F M R 1$ PCR reagents followed by capillary electrophoresis for allele sizing was performed. Samples positive for FMR1 CGG repeats in the premutation and full mutation size range were further analyzed by Southern blot analysis to assess the size and methylation status of the FMR1 CGG repeat.

Genotyping (Analytical Detection Rate >99\%)

Multiplex PCR amplification and allele specific primer extension analyses using the MassARRAY ${ }^{\circledR}$ System were used to identify certain recurrent variants that are complex in nature or are present in low copy repeats. Rare sequence variants may interfere with assay performance.

Multiplex Ligation-Dependent Probe Amplification (MLPA) (Analytical Detection Rate >99\%)

MLPA ${ }^{\circledR}$ probe sets and reagents from MRC-Holland were used for copy number analysis of specific targets versus known control samples. False positive or negative results may occur due to rare sequence variants in target regions detected by MLPA probes. Analytical sensitivity and specificity of the MLPA method are both 99%.

For alpha thalassemia, the copy numbers of the HBA1 and HBA2 genes were analyzed. Alpha-globin gene deletions, triplications, and the Constant Spring (CS) mutation are assessed. This test is expected to detect approximately 90% of all alpha-thalassemia mutations, varying by ethnicity. carriers of alpha-thalassemia with three or more HBA copies on one chromosome, and one or no copies on the other chromosome, may not be detected. With the exception of triplications, other benign alpha-globin gene polymorphisms will not be reported. Analyses of HBA1 and HBA2 are performed in association with long-range PCR of the coding regions followed by short-read sequencing.
For Duchenne muscular dystrophy, the copy numbers of all DMD exons were analyzed. Potentially pathogenic single exon deletions and duplications are confirmed by a second method. Analysis of $D M D$ is performed in association with sequencing of the coding regions.
For congenital adrenal hyperplasia, the copy number of the CYP21A2 gene was analyzed. This analysis can detect large deletions typically due to unequal meiotic crossing-over between CYP21A2 and the pseudogene CYP21A1P. Classic 30-kb deletions make up approximately 20% of CYP21A2 pathogenic alleles. This test may also identify certain point mutations in CYP21A2 caused by gene conversion events between CYP21A2 and CYP21A1P. Some carriers may not be identified by dosage sensitive methods as this testing cannot detect individuals with two copies (duplication) of the CYP21A2 gene on one chromosome and loss of CYP21A2 (deletion) on the other chromosome. Analysis of CYP21A2 is performed in association with long-range PCR of the coding regions followed by short-read sequencing.
For spinal muscular atrophy (SMA), the copy numbers of the SMN1 and SMN2 genes were analyzed. The individual dosage of exons 7 and 8 as well as the combined dosage of exons 1, 4, 6 and 8 of SMN1 and SMN2 were assessed. Copy number gains and losses can be detected with
this assay. Depending on ethnicity, 6-29\% of carriers will not be identified by dosage sensitive methods as this testing cannot detect individuals with two copies (duplication) of the SMN1 gene on one chromosome and loss of SMN1 (deletion) on the other chromosome (silent $2+0$ carrier) or individuals that carry an intragenic mutation in SMN1. Please also note that 2% of individuals diagnosed with SMA have a causative SMN1 variant that occurred de novo, and therefore cannot be picked up by carrier screening in the parents. Analysis of SMN1 is performed in association with short-read sequencing of exons $2 a-7$, followed by confirmation using long-range PCR (described below). The presence of the $c . * 3+80 T>G(c h r 5: 70,247,901 T>G)$ variant allele in an individual with Ashkenazi Jewish or Asian ancestry is typically indicative of a duplication of SMN1. When present in an Ashkenazi Jewish or Asian individual with two copies of SMN1, c. ${ }^{*} 3+80 T>G$ is likely indicative of a silent ($2+0$) carrier. In individuals with two copies of SMN1 with African American, Hispanic or Caucasian ancestry, the presence or absence of $c . * 3+80 T>G$ significantly increases or decreases, respectively, the likelihood of being a silent $2+0$ silent carrier.

MLPA for Gaucher disease ($G B A$), cystic fibrosis (CFTR), and non-syndromic hearing loss ($G J B 2 / G J B 6$) will only be performed if indicated for confirmation of detected CNVs. If GBA analysis was performed, the copy numbers of exons $1,3,4$, and $6-10$ of the $G B A$ gene (of 11 exons total) were analyzed. If CFTR analysis was performed, the copy numbers of all 27 CFTR exons were analyzed. If GJB2/GJB6 analysis was performed, the copy number of the two GJB2 exons were analyzed, as well as the presence or absence of the two upstream deletions of the GJB2 regulatory region, del(GJB6-D13S1830) and del(GJB6-D13S1854).

Next Generation Sequencing (NGS) (Analytical Detection Rate >95\%)

NGS was performed on a panel of genes for the purpose of identifying pathogenic or likely pathogenic variants.
Agilent SureSelect ${ }^{T M}$ XT Low Input technology was used with a custom capture library to target the exonic regions and intron/exon splice junctions of the relevant genes, as well as a number of UTR, intronic or promoter regions that contain previously reported mutations. Libraries were pooled and sequenced on the Illumina NovaSeq 9000 platform, using paired-end 100 bp reads. The sequencing data was analyzed using a custom bioinformatics algorithm designed and validated in house.
The coding exons and splice junctions of the known protein-coding RefSeq genes were assessed for the average depth of coverage (minimum of 20X) and data quality threshold values. Most exons not meeting a minimum of >20X read depth across the exon are further analyzed by Sanger sequencing. Please note that several genomic regions present difficulties in mapping or obtaining read depth >20X. These regions, which are described below, will not be reflexed to Sanger sequencing if the mapping quality or coverage is poor. Any variants identified during testing in these regions are confirmed by a second method and reported if determined to be pathogenic or likely pathogenic. However, as there is a possibility of false negative results within these regions, detection rates and residual risks for these genes have been calculated with the presumption that variants in these exons will not be detected, unless included in the MassARRAY ${ }^{\circledR}$ genotyping platform.
Exceptions: $A B C D 1$ (NM_000033.3) exons 8 and 9; $A D A\left(N M _000022.2\right)$ exon 1; ADAMTS2 (NM_014244.4) exon 1; AGPS(NM_003659.3) chr2:178,257,512-178,257,649 (partial exon 1); ALMS1 (NM_015120.4) chr2:73,612,990-73,613,041 (partial exon 1); CEP290 (NM_025114.3) exon 5. exon 7, chr12:88,519,017-88,519,039 (partial exon 13), chr12:88,514,049-88,514,058 (partial exon 15), chr12:88,502,837-88,502,841 (partial exon 23), chr12:88,481,551-88,481,589 (partial exon 32), chr12:88,471,605-88,471,700 (partial exon 40); CFTR (NM_000492.3) exon 10; COL4A4 (NM_000092.4) chr2:227,942,604-227,942,619 (partial exon 25); CYP11B2 (NM_000498.3) exons 3-7; DNAl2 (NM_023036.4) chr17:72,308,13672,308,147 (partial exon 12); EVC(NM_153717.2) exon 1; FH (NM_000143.3) exon 1; GAMT(NM_000156.5 exon 1; GLDC(NM_000170.2) exon 1; GNPTAB (NM_024312.4) chr17:4,837,000-4,837,400 (partial exon 2); GNPTG (NM_032520.4) exon 1; HGSNAT(NM_152419.2) exon 1; IDS (NM_000202.6) exon 3; LIFR (NM_002310.5) exon 19; NEB (NM_001271208.1) exons $82-105$; NPC1 (NM_000271.4) chr18:21,123.519-21,123.538 (partial exon 14); PUS1 (NM_025215.5) ; chr12:132,414,446-132,414.532 (partial exon 2); RPGRIP1L (NM_015272.2) exon 23; SGSH (NM_000199.3) chr17:78,194,022-78,194,072 (partial exon 1); SLC6A8(NM_005629.3) exons 3 and 4.
This test will detect variants within the exons and the intron-exon boundaries of the target regions. Variants outside these regions may not be detected, including, but not limited to, UTRs, promoters, and deep intronic areas, or regions that fall into the Exceptions mentioned above. This technology may not detect all small insertion/deletions and is not diagnostic for repeat expansions and structural genomic variation. In addition, a mutation(s) in a gene not included on the panel could be present in this patient.
Variant interpretation and classification was performed based on the American College of Medical Genetics Standards and Guidelines for the Interpretation of Sequence Variants (Richards et al, 2015). All potentially pathogenic variants may be confirmed by either a specific genotyping assay or Sanger sequencing, if indicated. Any benign variants, likely benign variants or variants of uncertain significance identified during this analysis will not be reported.

Next Generation Sequencing for SMN1

Exonic regions and intron/exon splice junctions of SMN1 and SMN2 were captured, sequenced, and analyzed as described above. Any variants located within exons 2a-7 and classified as pathogenic or likely pathogenic were confirmed to be in either SMN1 or SMN2 using gene-specific long-range PCR analysis followed by Sanger sequencing. Variants located in exon 1 cannot be accurately assigned to either SMN1 or SMN2 using our current methodology, and so these variants are considered to be of uncertain significance and are not reported.

Copy Number Variant Analysis (Analytical Detection Rate >95\%)

Large duplications and deletions were called from the relative read depths on an exon-by-exon basis using a custom exome hidden Markov model (XHMM) algorithm. Deletions or duplications determined to be pathogenic or likely pathogenic were confirmed by either a custom arrayCGH platform, quantitative PCR, or MLPA (depending on CNV size and gene content). While this algorithm is designed to pick up deletions and duplications of 2 or more exons in length, potentially pathogenic single-exon CNVs will be confirmed and reported, if detected.

Exon Array (Confirmation method) (Accuracy >99\%)

The customized oligonucleotide microarray (Oxford Gene Technology) is a highly-targeted exon-focused array capable of detecting medically relevant microdeletions and microduplications at a much higher resolution than traditional aCGH methods. Each array matrix has approximately $180,00060-m e r$ oligonucleotide probes that cover the entire genome. This platform is designed based on human genome NCBI Build 37 (hg1g) and the CGH probes are enriched to target the exonic regions of the genes in this panel.

Quantitative PCR (Confirmation method) (Accuracy >99\%)

The relative quantification PCR is utilized on a Roche Universal Library Probe (UPL) system, which relates the PCR signal of the target region in one group to another. To test for genomic imbalances, both sample DNA and reference DNA is amplified with primer/probe sets that specific to the target region and a control region with known genomic copy number. Relative genomic copy numbers are calculated based on the standard $\triangle \triangle C t$ formula.

Long-Range PCR (Analytical Detection Rate >99\%)

Long-range PCR was performed to generate locus-specific amplicons for CYP21A2, HBA1 and HBA2 and GBA. The PCR products were then prepared for short-read NGS sequencing and sequenced. Sequenced reads were mapped back to the original genomic locus and run through the bioinformatics pipeline. If indicated, copy number from MLPA was correlated with the sequencing output to analyze the results. For CYP21A2, a certain percentage of healthy individuals carry a duplication of the CYP21A2 gene, which has no clinical consequences. In cases where two copies of a gene are located on the same chromosome in tandem, only the second copy will be amplified and assessed for potentially pathogenic variants, due to size limitations of the PCR reaction. However, because these alleles contain at least two copies of the CYP21A2 gene in tandem, it is expected that this patient has at least one functional gene in the tandem allele and this patient is therefore less likely to be a carrier. When an individual carries both a duplication allele and a pathogenic variant, or multiple pathogenic variants, the current analysis may not be able to determine the phase (cis/trans configuration) of the CYP21A2 alleles identified. Family studies may be required in certain scenarios where phasing is required to determine the carrier status.

Residual Risk Calculations

Carrier frequencies and detection rates for each ethnicity were calculated trough the combination of internal curations of $>30,000$ variants and genomic frequency data from $>138,000$ individuals across seven ethnic groups in the gnomAD database. Additional variants in HGMD and novel deleterious variants were also incorporated into the calculation. Residual risk values are calculated using a Bayesian analysis combining the a priori risk of being a pathogenic mutation carrier (carrier frequency) and the detection rate. They are provided only as a guide for assessing approximate risk given a negative result, and values will vary based on the exact ethnic background of an individual. This report does not represent medical advice but should be interpreted by a genetic counselor, medical geneticist or physician skilled in genetic result interpretation and the relevant medical literature.

Personalized Residual Risk Calculations

Agilent SureSelect ${ }^{T M}$ XT Low-Input technology was utilized in order to create whole-genome libraries for each patient sample. Libraries were then pooled and sequenced on the Illumina NovaSeq platform. Each sequencing lane was multiplexed to achieve 0.4-2x genome coverage, using paired-end 100 bp reads. The sequencing data underwent ancestral analysis using a customized, licensed bioinformatics algorithm that was validated in house. Identified sub-ethnic groupings were binned into one of 7 continental-level groups (African, East Asian, South Asian, Non-Finnish European, Finnish, Native American, and Ashkenazi Jewish) or, for those ethnicities that matched poorly to the continental-level groups, an $8^{\text {th }}$ "unassigned" group, which were then used to select residual risk values for each gene. For individuals belonging to multiple highlevel ethnic groupings, a weighting strategy was used to select the most appropriate residual risk. For genes that had insufficient data to calculate ethnic-specific residual risk values, or for sub-ethnic groupings that fell into the "unassigned" group, a "worldwide" residual risk was used. This "worldwide" residual risk was calculated using data from all available continental-level groups.

Sanger Sequencing (Confirmation method) (Accuracy >99\%)

Sanger sequencing, as indicated, was performed using BigDye Terminator chemistry with the ABI 3730 DNA analyzer with target specific amplicons. It also may be used to supplement specific guaranteed target regions that fail NGS sequencing due to poor quality or low depth of coverage (<20 reads) or as a confirmatory method for NGS positive results. False negative results may occur if rare variants interfere with amplification or annealing.

Carrier screening report
Donor 6427
Date of Birth:
Sema4 ID:

Please note these tests were developed and their performance characteristics were determined by Mount Sinai Genomics, Inc. They have not been cleared or approved by the FDA. These analyses generally provide highly accurate information regarding the patient's carrier or affected status. Despite this high level of accuracy, it should be kept in mind that there are many potential sources of diagnostic error, including misidentification of samples, polymorphisms, or other rare genetic variants that interfere with analysis. Families should understand that rare diagnostic errors may occur for these reasons.

SELECTED REFERENCES

Carrier Screening

Grody W et al. ACMG position statement on prenatal/preconception expanded carrier screening. Genet Med. 2013 15:482-3.

Fragile X syndrome:

Chen L et al. An information-rich CGG repeat primed PCR that detects the full range of Fragile X expanded alleles and minimizes the need for Southern blot analysis. J Mol Diag 2010 12:589-600.

Spinal Muscular Atrophy:

Luo M et al. An Ashkenazi Jewish SMN1 haplotype specific to duplication alleles improves pan-ethnic carrier screening for spinal muscular atrophy. Genet Med. 2014 16:149-56.

Ashkenazi Jewish Disorders:

Scott SA et al. Experience with carrier screening and prenatal diagnosis for sixteen Ashkenazi Jewish Genetic Diseases. Hum. Mutat. 2010 31:111.

Duchenne Muscular Dystrophy:

Flanigan KM et al. Mutational spectrum of DMD mutations in dystrophinopathy patients: application of modern diagnostic techniques to a large cohort. Hum Mutat. 2009 30:1657-66.

Variant Classification:

Richards S et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015 May;17(5):405-24

Additional disease-specific references available upon request.

[^0]: *No single test can screen for all genetic disorders. A negative screening result significantly reduces, but cannot eliminate, the risk for these conditions in a pregnancy.
 **Donor residual risk is the chance the donor is still a carrier after testing negative.

