

Donor 7050

Genetic Testing Summary

Fairfax Cryobank recommends reviewing this genetic testing summary with your healthcare provider to determine suitability.

Last Updated: 04/02/24

Donor Reported Ancestry: Puerto Rican Jewish Ancestry: No

Genetic Test*	Result	Comments/Donor's Residual Risk**
Chromosome analysis (karyotype)	Normal male karyotype	No evidence of clinically significant chromosome abnormalities
Hemoglobin evaluation	Normal hemoglobin fractionation and MCV/MCH results	Reduced risk to be a carrier for sickle cell anemia, beta thalassemia, alpha thalassemia trait (aa/ and a-/a-) and other hemoglobinopathies
Expanded Genetic Disease Carrier Screening Panel attached- 514 diseases	Carrier: ABCA4-related conditions (ABCA4)	Partner testing is recommended before using this donor.
by gene sequencing.	Carrier: Congenital disorder of glycosylation type Ia (PMM2)	Residual risks for negative results can be seen here:
	Carrier: Dubin-Johnson syndrome (ABCC2)	https://fairfaxcryobank.com/invitae- residual-risk-table
	Carrier: Familial chylomicronemia syndrome (LPL)	
	Carrier: Hermansky-Pudlak syndrome type 1 (HPS1)	
	Carrier: Niemann-Pick disease type C (NPC1-related)	
	Carrier: Primary carnitine deficiency (SLC22A5)	
	Negative for other genes sequenced.	

^{*}No single test can screen for all genetic disorders. A negative screening result significantly reduces, but cannot eliminate, the risk for these conditions in a pregnancy.**Donor residual risk is the chance the donor is still a carrier after testing negative.

DOB:

Male

Sex assigned at birth:

Gender:

Patient ID (MRN): 7050-

Blood Sample type:

21-MAR-2023 Sample collection date:

22-MAR-2023 Sample accession date:

Report date: 31-MAR-2023

Invitae #: Clinical team:

Reason for testing

Test performed

Gamete donor Invitae Carrier Screen

RESULT: POSITIVE

This carrier test evaluated 514 gene(s) for genetic changes (variants) that are associated with an increased risk of having a child with a genetic condition. Knowledge of carrier status for one of these conditions may provide information that can be used to assist with family planning and/or preparation. Carrier screening is not intended for diagnostic purposes. To identify a potential genetic basis for a condition in the individual being tested, diagnostic testing for the gene(s) of interest is recommended.

This test shows the presence of clinically significant genetic change(s) in this individual in the gene(s) indicated below. No other clinically significant changes were identified in the remaining genes evaluated with this test.

RESULTS	GENE	VARIANT(S)	INHERITANCE	PARTNER TESTING RECOMMENDED
Carrier: ABCA4-related conditions	ABCA4	c.769-784C>T (Intronic)	Autosomal recessive	Yes
Carrier: Congenital disorder of glycosylation type Ia	PMM2	c.256-1G>C (Splice acceptor)	Autosomal recessive	Yes
Carrier: Dubin-Johnson syndrome	ABCC2	c.3390del (p.Gly1131Alafs*18)	Autosomal recessive	Yes
Carrier: Familial chylomicronemia syndrome	LPL	c.644G>A (p.Gly215Glu)	Autosomal recessive	Yes
Carrier: Hermansky-Pudlak syndrome type 1	HPS1	c.1472_1487dup (p.His497Glnfs*90)	Autosomal recessive	Yes
Carrier: Niemann-Pick disease type C (NPC1-related)	NPC1	c.2524T>C (p.Phe842Leu)	Autosomal recessive	Yes
Carrier: Primary carnitine deficiency	SLC22A5	c.272A>G (p.Asn91Ser)	Autosomal recessive	Yes

DOB:

Invitae #:

Next steps

- See the table above for recommendations regarding testing of this individual's reproductive partner.
- Even for genes that have a negative test result, there is always a small risk that an individual could still be a carrier. This is called "residual risk." See the Carrier detection rates and residual risks document.
- Discussion with a physician and/or genetic counselor is recommended to further review the implications of this test result and to understand these results in the context of any family history of a genetic condition.
- All patients, regardless of result, may wish to consider additional screening for hemoglobinopathies by complete blood count (CBC) and hemoglobin electrophoresis, if this has not already been completed.
- Individuals can register their tests at https://www.invitae.com/patients/ to access online results, educational resources, and next steps.

Invitae #:

DOB:

RESULT: CARRIER

ABCA4-related conditions

A single Pathogenic variant, c.769-784C>T (Intronic), was identified in ABCA4.

What are ABCA4-related conditions?

ABCA4-related conditions are a spectrum of inherited retinal disorders that cause impaired vision.

Cone-rod dystrophy (CRD) typically presents during childhood or adolescence and symptoms become more severe over time. Symptoms include reduced visual acuity (farsightedness or nearsightedness), loss of color perception, increased sensitivity to light (photophobia), and difficulty seeing in low light settings (night blindness). Some affected individuals develop involuntary eye movements (nystagmus), and many are legally blind by midadulthood.

Stargardt disease typically presents during childhood to early adulthood, although the severity and progression are highly variable. Affected individuals experience symptoms including a dark spot appearing in the center of their vision, having difficulty reading, driving or recognizing faces, difficulty transitioning from an area of light to dark, and photophobia. Individuals can also develop problems with night or color vision over time. Upon retinal exam, there is a characteristic build up of an orange-yellow fatty substance called lipofuscin at the macula at the back of the eye, which is the part of the eye that is responsible for central vision.

Retinitis pigmentosa (RP) typically presents with night blindness, which usually occurs during childhood or adolescence. Vision loss continues over years or decades and typically progresses to a loss of side (peripheral) vision, causing tunnel vision. Ultimately, central vision loss occurs. Many individuals with RP are legally blind by adulthood, though the severity of symptoms and age of onset varies by individual.

Not everyone with a genetic change in ABCA4 will present the same; symptoms and severity can vary, even between family members with the same genetic change. Follow-up depends on each affected individual's specific situation, and discussion with a healthcare provider should be considered.

Next steps

Carrier testing for the reproductive partner is recommended.

(+) If your partner tests positive:

In autosomal recessive inheritance, an individual must have disease-causing genetic changes in each copy of the ABCA4 gene to be affected. Carriers, who have a diseasecausing genetic change in only one copy of the gene, typically do not have symptoms. When both reproductive partners are carriers of an autosomal recessive condition, there is a 25% chance for each child to have the condition.

If your partner tests negative:

A negative carrier test result reduces, but does not eliminate, the chance that a person may be a carrier. The risk that a person could still be a carrier, even after a negative test result, is called a residual risk. See the table below for your partner's hypothetical

Genetic variant Unaffected child

Autosomal recessive inheritance

residual risk after testing negative for ABCA4-related conditions. These values are provided only as a guide, are based on the detection rate for the condition as tested at Invitae, and assume a negative family history, the absence of symptoms, and vary based on the ethnic background of an individual. For genes associated with both dominant and recessive inheritance, the numbers provided apply to the recessive condition(s) associated with the gene.

DOB:

DISORDER (INHERITANCE)	GENE	ETHNICITY	CARRIER FREQUENCY BEFORE SCREENING	CARRIER RESIDUAL RISK AFTER NEGATIVE RESULT
ABCA4-related conditions (AR) NM_000350.2	ABCA4	Pan-ethnic	1 in 45	l in 441

OOB:

Invitae #:

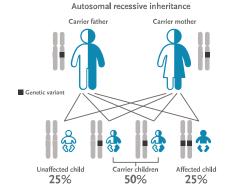
Congenital disorder of glycosylation type Ia

A single Pathogenic variant, c.256-1G>C (Splice acceptor), was identified in PMM2.

What is congenital disorder of glycosylation type Ia?

Congenital disorders of glycosylation (CDGs) are a group of conditions in which individuals have difficulty adding or removing a sugar group to make glycoproteins. This process, called "glycosylation," is a necessary step to modify proteins for their intended purpose. CDGs affect several body systems. CDG type Ia (CDG-Ia) is the most common CDG. Age of onset and severity of symptoms are variable. The most severe cases involve excess fluid accumulation in the body (fetal hydrops) and result in stillbirth or newborn death. Symptoms typically present during the first year of life and commonly include low muscle tone (hypotonia), inverted nipples, abnormal fat distribution, and unusual facial features (dysmorphism). Other symptoms may include poor growth (failure to thrive), abnormal brain structure (cerebellar atrophy), eyes that do not look in the same direction (strabismus), delayed mental and movement abilities (psychomotor delay), difficulty coordinating movements (ataxia), intellectual disability, liver disease, joint deformities (contractures), and, in females, impaired response to sex hormones (hypergonadotropic hypogonadism). In some cases, the condition affects the kidneys, heart, and endocrine and/or immune systems. Approximately 20% of affected infants do not survive the first year of life due to organ failure. Symptoms in affected adolescents and adults may include difficulty coordinating speech (dysarthria), strabismus, abnormal sideto-side and front-to-back curvature of the spine (kyphoscoliosis), pain and reduced sensation due to nerve damage, typically in the hands and feet (peripheral neuropathy), problems with blood clotting such as prolonged or excessive bleeding (coagulopathy) or a tendency to form abnormal clots in blood vessels (thrombosis), stroke-like episodes, retinitis pigmentosa (RP, a disease of the light-sensitive tissue that lines the back of the eye [retina] that causes progressive vision loss), and, in females, premature ovarian failure, which causes early menopause. Individuals with milder symptoms and late-onset disease have also been reported. Follow-up depends on each affected individual's specific situation, and discussion with a healthcare provider should be considered.

Next steps


Carrier testing for the reproductive partner is recommended.

+ If your partner tests positive:

In autosomal recessive inheritance, an individual must have disease-causing genetic changes in each copy of the PMM2 gene to be affected. Carriers, who have a disease-causing genetic change in only one copy of the gene, typically do not have symptoms. When both reproductive partners are carriers of an autosomal recessive condition, there is a 25% chance for each child to have the condition.

If your partner tests negative:

A negative carrier test result reduces, but does not eliminate, the chance that a person may be a carrier. The risk that a person could still be a carrier, even after a negative test result, is called a residual risk. See the table below for your partner's hypothetical

residual risk after testing negative for congenital disorder of glycosylation type Ia. These values are provided only as a guide, are based on the detection rate for the condition as tested at Invitae, and assume a negative family history, the absence of symptoms, and vary based on the ethnic background of an individual. For genes associated with both dominant and recessive inheritance, the numbers provided apply to the recessive condition(s) associated with the gene.

DISORDER (INHERITANCE)	GENE	ETHNICITY	CARRIER FREQUENCY BEFORE SCREENING	CARRIER RESIDUAL RISK AFTER NEGATIVE RESULT
Congenital disorder of glycosylation type Ia (AR) NM_000303.2	PMM2	Pan-ethnic	1 in 190	1 in 18900

Invitae #:

OOB:

RESULT: CARRIER

Dubin-Johnson syndrome

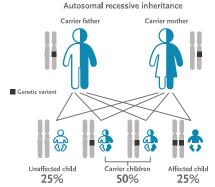
A single Pathogenic variant, c.3390del (p.Gly1131Alafs*18), was identified in ABCC2.

What is Dubin-Johnson syndrome?

Dubin-Johnson syndrome affects the liver. This condition is characterized by high levels of bilirubin in the blood (hyperbilirubinemia) and yellowing of the skin and whites of the eyes (jaundice). Additional symptoms may include a reduced ability to produce and release bile (cholestasis), increased build-up of fat in the liver (steatosis), enlarged liver (hepatomegaly), dark urine, abdominal pain, weakness, fatigue, nausea, vomiting, diarrhea, or fever. As individuals with Dubin-Johnson syndrome age, their liver problems can disappear and they may not have any subsequent related health concerns. Follow-up depends on each affected individual's specific situation, and discussion with a healthcare provider should be considered.

Next steps

Carrier testing for the reproductive partner is recommended.


(+)

If your partner tests positive:

In autosomal recessive inheritance, an individual must have disease-causing genetic changes in each copy of the ABCC2 gene to be affected. Carriers, who have a disease-causing genetic change in only one copy of the gene, typically do not have symptoms. When both reproductive partners are carriers of an autosomal recessive condition, there is a 25% chance for each child to have the condition.

A negative carrier test result reduces, but does not eliminate, the chance that a person may be a carrier. The risk that a person could still be a carrier, even after a negative test result, is called a residual risk. See the table below for your partner's hypothetical

residual risk after testing negative for Dubin-Johnson syndrome. These values are provided only as a guide, are based on the detection rate for the condition as tested at Invitae, and assume a negative family history, the absence of symptoms, and vary based on the ethnic background of an individual. For genes associated with both dominant and recessive inheritance, the numbers provided apply to the recessive condition(s) associated with the gene.

DISORDER (INHERITANCE)	GENE	ETHNICITY	CARRIER FREQUENCY BEFORE SCREENING	CARRIER RESIDUAL RISK AFTER NEGATIVE RESULT
Dubin-Johnson syndrome (AR) NM_000392.4	ABCC2 *	Pan-ethnic	≤1 in 500	Reduced

Invitae #:

OOB:

RESULT: CARRIER

Familial chylomicronemia syndrome

A single Pathogenic variant, c.644G>A (p.Gly215Glu), was identified in LPL.

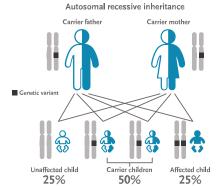
What is familial chylomicronemia syndrome?

Familial chylomicronemia syndrome (FCS) is a condition in which the body has difficulty breaking down fats. FCS can be caused by changes in several different genes. FCS caused by changes in the LPL gene is also known as lipoprotein lipase deficiency. FCS is characterized by increased levels of triglycerides, a type of fat, in the blood (hypertriglyceridemia). Symptoms typically present in childhood with abdominal pain, nausea, poor growth (failure to thrive), enlarged liver and spleen (hepatosplenomegaly), and inflammation of the pancreas (pancreatitis). With very high levels of triglycerides, deposits of cholesterol under the skin, surrounded by a red border (eruptive xanthomas) can develop, as well as lipemia retinalis, which is when the blood vessels at the back of the eye appear whitish and creamy. Without treatment, neurological features such as depression, memory loss, and mild intellectual decline may occur. Not all affected individuals will have all of these symptoms. Early initiation of treatment, including medication, dietary and lifestyle modifications, may reduce the severity of symptoms. Screening and management guidelines exist to help identify and/or treat lipid conditions at an earlier stage.

Next steps

Carrier testing for the reproductive partner is recommended.

(+


If your partner tests positive:

In autosomal recessive inheritance, an individual must have disease-causing genetic changes in each copy of the LPL gene to be affected. Carriers, who have a disease-causing genetic change in only one copy of the gene, typically do not have symptoms. When both reproductive partners are carriers of an autosomal recessive condition, there is a 25% chance for each child to have the condition.

If your partner tests negative:

A negative carrier test result reduces, but does not eliminate, the chance that a person may be a carrier. The risk that a person could still be a carrier, even after a negative test result, is called a residual risk. See the table below for your partner's hypothetical

residual risk after testing negative for familial chylomicronemia syndrome. These values are provided only as a guide, are based on the detection rate for the condition as tested at Invitae, and assume a negative family history, the absence of symptoms, and vary based on the ethnic background of an individual. For genes associated with both dominant and recessive inheritance, the numbers provided apply to the recessive condition(s) associated with the gene.

DISORDER (INHERITANCE)	GENE	ETHNICITY		
Familial chylomicronemia syndrome (AR) NM_000237.2	LPL	Pan-ethnic	≤1 in 500	Reduced

OOB:

Invitae #:

RESULT: CARRIER

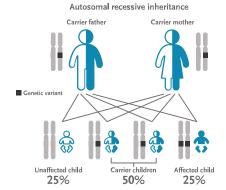
Hermansky-Pudlak syndrome type 1

A single Pathogenic variant, c.1472_1487dup (p.His497Glnfs*90), was identified in HPS1.

What is Hermansky-Pudlak syndrome type 1?

Hermansky-Pudlak syndrome (HPS) is a condition characterized by oculocutaneous albinism, which causes decreased color (hypopigmentation) of the hair, skin, and eyes, as well as problems with blood clotting (coagulation). Individuals with HPS usually have skin and hair coloring that is lighter than unaffected relatives, a higher than average risk of skin damage and skin cancers caused by long-term sun exposure, and abnormal platelets leading to bleeding issues including easy bruising and prolonged bleeding after minor procedures such as tooth extraction. Other common symptoms include involuntary eye movements (nystagmus) which are present at birth, vision problems which are typically stable after early childhood, and increased sensitivity to light (photophobia). In HPS type 1, the oculocutaneous albinism and bleeding problems are severe. Affected individuals are also often diagnosed with inflammation of the large intestine (granulomatous colitis) by the mid-teens. Lung disease (pulmonary fibrosis) typically begins in the thirties and is often fatal. Life expectancy is dependent on the severity of the individual's symptoms. Treatment, including possible lung transplant, is supportive and focused on managing the individual's symptoms. Follow-up depends on each affected individual's specific situation, and discussion with a healthcare provider should be considered.

Next steps


Carrier testing for the reproductive partner is recommended.

+ If your partner tests positive:

In autosomal recessive inheritance, an individual must have disease-causing genetic changes in each copy of the HPS1 gene to be affected. Carriers, who have a disease-causing genetic change in only one copy of the gene, typically do not have symptoms. When both reproductive partners are carriers of an autosomal recessive condition, there is a 25% chance for each child to have the condition.

If your partner tests negative:

A negative carrier test result reduces, but does not eliminate, the chance that a person may be a carrier. The risk that a person could still be a carrier, even after a negative test result, is called a residual risk. See the table below for your partner's hypothetical

residual risk after testing negative for Hermansky-Pudlak syndrome type 1. These values are provided only as a guide, are based on the detection rate for the condition as tested at Invitae, and assume a negative family history, the absence of symptoms, and vary based on the ethnic background of an individual. For genes associated with both dominant and recessive inheritance, the numbers provided apply to the recessive condition(s) associated with the gene.

DISORDER (INHERITANCE)	GENE	ETHNICITY	CARRIER FREQUENCY BEFORE SCREENING	CARRIER RESIDUAL RISK AFTER NEGATIVE RESULT
Hermansky-Pudlak syndrome type 1 (AR) NM_000195.4	HPS1	Pan-ethnic	≤1 in 500	Reduced

Invitae #:

RESULT: CARRIER

Niemann-Pick disease type C (NPC1-related)

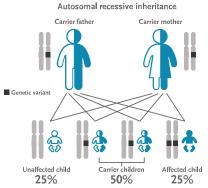
A single Likely Pathogenic variant, c.2524T>C (p.Phe842Leu), was identified in NPC1.

What is Niemann-Pick disease type C (NPC1-related)?

Niemann-Pick disease is group of related conditions that affects lysosomes, which are structures in the cell that break down and recycle other molecules. Niemann-Pick disease type C (NPC) can be caused by changes in different genes. Individuals with (NPC) have difficulty transporting cholesterol and other fats (lipids) into lysosomes. Lipids accumulate in the cells, leading to impaired function of various tissues and organs. Symptoms usually begin in childhood, although they may appear at any time, from the prenatal period to adulthood. Affected individuals typically develop difficulty coordinating movements (ataxia), an inability to move the eyes vertically (vertical supranuclear gaze palsy), involuntary muscle tensing (dystonia), severe liver disease, and lung disease. Other symptoms may include speech and swallowing difficulties, seizures, tremors, and progressive intellectual decline. Life expectancy is shortened for more severely affected individuals, with death typically occurring in the teens or 20s. Follow-up depends on each affected individual's specific situation, and discussion with a healthcare provider should be considered.

Next steps

Carrier testing for the reproductive partner is recommended.


(+) If your partner tests positive:

In autosomal recessive inheritance, an individual must have disease-causing genetic changes in each copy of the NPC1 gene to be affected. Carriers, who have a diseasecausing genetic change in only one copy of the gene, typically do not have symptoms. When both reproductive partners are carriers of an autosomal recessive condition, there is a 25% chance for each child to have the condition.

If your partner tests negative:

A negative carrier test result reduces, but does not eliminate, the chance that a person may be a carrier. The risk that a person could still be a carrier, even after a negative test result, is called a residual risk. See the table below for your partner's hypothetical

residual risk after testing negative for Niemann-Pick disease type C (NPC1-related). These values are provided only as a guide, are based on the detection rate for the condition as tested at Invitae, and assume a negative family history, the absence of symptoms, and vary based on the ethnic background of an individual. For genes associated with both dominant and recessive inheritance, the numbers provided apply to the recessive condition(s) associated with the gene.

DISORDER (INHERITANCE)	GENE	ETHNICITY	CARRIER FREQUENCY BEFORE SCREENING	CARRIER RESIDUAL RISK AFTER NEGATIVE RESULT
Niemann-Pick disease type C (NPC1-related) (AR) NM_000271.4	NPC1	Pan-ethnic	1 in 183	1 in 18200

OOB:

Invitae #:

RESULT: CARRIER

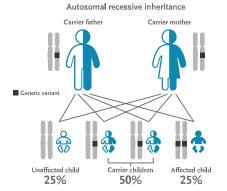
Primary carnitine deficiency

A single Pathogenic variant, c.272A>G (p.Asn91Ser), was identified in SLC22A5.

What is primary carnitine deficiency?

Primary carnitine deficiency (PCD) is a condition in which individuals have difficulty breaking down fats for energy, leading to a variety of possible symptoms. The severity of symptoms of PCD varies widely among affected individuals. The infantile form typically presents with symptoms such as poor feeding, low blood sugar (hypoglycemia), lack of energy (lethargy), enlarged liver (hepatomegaly), and buildup of ammonia in the blood (hyperammonemia). The symptoms are triggered by fasting or concurrent illness (decompensation); symptoms can lead to coma, and may be fatal. The childhood onset form typically presents with weakened heart muscle (cardiomyopathy), and individuals with this form may also have weakness of the muscles used for movement (skeletal muscle myopathy). Adults with PCD may have susceptibility to fatigue (fatiguability). Other affected individuals may never experience any overt signs or symptoms (asymptomatic). Additionally, many minimally or asymptomatic women with PCD have been identified after having a child with an abnormal newborn screen for carnitine deficiency. Prognosis depends the severity of symptoms. Treatment with carnitine supplementation may help prevent or reduce the severity of symptoms. Follow-up depends on each affected individual's specific situation, and discussion with a healthcare provider should be considered.

Next steps


Carrier testing for the reproductive partner is recommended.

+ If your partner tests positive:

In autosomal recessive inheritance, an individual must have disease-causing genetic changes in each copy of the SLC22A5 gene to be affected. Carriers, who have a disease-causing genetic change in only one copy of the gene, typically do not have symptoms. When both reproductive partners are carriers of an autosomal recessive condition, there is a 25% chance for each child to have the condition.

If your partner tests negative:

A negative carrier test result reduces, but does not eliminate, the chance that a person may be a carrier. The risk that a person could still be a carrier, even after a negative test result, is called a residual risk. See the table below for your partner's hypothetical

residual risk after testing negative for primary carnitine deficiency. These values are provided only as a guide, are based on the detection rate for the condition as tested at Invitae, and assume a negative family history, the absence of symptoms, and vary based on the ethnic background of an individual. For genes associated with both dominant and recessive inheritance, the numbers provided apply to the recessive condition(s) associated with the gene.

DISORDER (INHERITANCE)	GENE	ETHNICITY	CARRIER FREQUENCY BEFORE SCREENING	CARRIER RESIDUAL RISK AFTER NEGATIVE RESULT
Primary carnitine deficiency (AR) NM_003060.3	SLC22A5	Pan-ethnic	1 in 71	1 in 7000

Invitae #:

DOB:

Results to note

SMN1

Negative result. SMN1: 2 copies; c.*3+80T>G not detected.

Pseudodeficiency allele(s)

- Benign changes, c.1685T>C (p.Ile562Thr), known to be pseudodeficiency alleles, identified in the GALC gene. Pseudodeficiency alleles are not known to be associated with disease, including Krabbe disease.
- The presence of a pseudodeficiency allele does not impact this individual's risk to be a carrier. Individuals with pseudodeficiency alleles may exhibit false positive results on related biochemical tests, including newborn screening. However, pseudodeficiency alleles are not known to cause disease, even when there are two copies of the variant (homozygous) or when in combination with another disease-causing variant (compound heterozygous). Carrier testing for the reproductive partner is not indicated based on this result.

Variant details

ABCA4, Intron 6, c.769-784C>T (Intronic), heterozygous, PATHOGENIC

- This sequence change falls in intron 6 of the ABCA4 gene. It does not directly change the encoded amino acid sequence of the ABCA4 protein.
- This variant is present in population databases (rs144695319, gnomAD 0.4%), and has an allele count higher than expected for a pathogenic variant.
- This variant has been observed in individual(s) with late-onset, foveal-sparing Stargardt disease (PMID: 30643219, 31618761). In at least one individual the data is consistent with being in trans (on the opposite chromosome) from a pathogenic variant.
- Studies have shown that this variant is associated with altered splicing resulting in introduction of a 162 nuc. pseudoexon (PMID: 30643219).
- For these reasons, this variant has been classified as Pathogenic.

ABCC2, Exon 24, c.3390del (p.Gly1131Alafs*18), heterozygous, PATHOGENIC

- This sequence change creates a premature translational stop signal (p.Gly1131Alafs*18) in the ABCC2 gene. It is expected to result in an absent or disrupted protein product. Loss-of-function variants in ABCC2 are known to be pathogenic (PMID: 9185779, 16549534, 16952291).
- This variant is not present in population databases (gnomAD no frequency).
- This variant has not been reported in the literature in individuals affected with ABCC2-related conditions.
- For these reasons, this variant has been classified as Pathogenic.

HPS1, Exon 15, c.1472_1487dup (p.His497Glnfs*90), heterozygous, PATHOGENIC

- This sequence change creates a premature translational stop signal (p.His497Glnfs*90) in the HPS1 gene. It is expected to result in an absent or disrupted protein product. Loss-of-function variants in HPS1 are known to be pathogenic (PMID: 12442288, 16185271).
- This variant is present in population databases (rs281865163, gnomAD 0.02%).
- This premature translational stop signal has been observed in individuals with Hermansky-Pudlak syndrome (PMID: 8896559, 9562579, 20662851). It is commonly reported in individuals of Puerto Rican ancestry (PMID: 8896559, 9562579, 20662851).
- ClinVar contains an entry for this variant (Variation ID: 5277).
- For these reasons, this variant has been classified as Pathogenic.

LPL, Exon 5, c.644G>A (p.Gly215Glu), heterozygous, PATHOGENIC

This sequence change replaces glycine, which is neutral and non-polar, with glutamic acid, which is acidic and polar, at codon 215 of the LPL protein (p.Gly215Glu).

Patient name: DONOR 7050 DOB:

Invitae #:

- This variant is present in population databases (rs118204057, gnomAD 0.03%).
- This missense change has been observed in individuals with lipoprotein lipase deficiency (PMID: 1969408, 22095987, 28438574).
- This variant is also known as p.Gly188Glu.
- ClinVar contains an entry for this variant (Variation ID: 1522).
- Advanced modeling of protein sequence and biophysical properties (such as structural, functional, and spatial information, amino acid conservation, physicochemical variation, residue mobility, and thermodynamic stability) performed at Invitae indicates that this missense variant is not expected to disrupt LPL protein function.
- Experimental studies have shown that this missense change affects LPL function (PMID: 1400331, 1969408, 29288010).
- For these reasons, this variant has been classified as Pathogenic.

NPC1, Exon 17, c.2524T>C (p.Phe842Leu), heterozygous, Likely Pathogenic

- This sequence change replaces phenylalanine, which is neutral and non-polar, with leucine, which is neutral and non-polar, at codon 842 of the NPC1 protein (p.Phe842Leu).
- This variant is present in population databases (rs190298665, gnomAD 0.02%).
- This missense change has been observed in individuals with Niemann-Pick Disease Type C (PMID: 29453517; Invitae).
- ClinVar contains an entry for this variant (Variation ID: 499258).
- Advanced modeling of protein sequence and biophysical properties (such as structural, functional, and spatial information, amino acid conservation, physicochemical variation, residue mobility, and thermodynamic stability) performed at Invitae indicates that this missense variant is expected to disrupt NPC1 protein function.
- In summary, the currently available evidence indicates that the variant is pathogenic, but additional data are needed to prove that conclusively. Therefore, this variant has been classified as Likely Pathogenic.

PMM2, Intron 3, c.256-1G>C (Splice acceptor), heterozygous, PATHOGENIC

- This sequence change affects an acceptor splice site in intron 3 of the PMM2 gene. RNA analysis indicates that disruption of this splice site induces altered splicing and may result in an absent or disrupted protein product.
- This variant is present in population databases (rs757394782, gnomAD 0.003%).
- Disruption of this splice site has been observed in individual(s) with congenital disorder of glycosylation type 1a (PMID: 19235233).
- ClinVar contains an entry for this variant (Variation ID: 7727).
- Studies have shown that disruption of this splice site results in skipping of exons 3 and 4 and introduces a premature termination codon (PMID: 19235233). The resulting mRNA is expected to undergo nonsense-mediated decay.
- For these reasons, this variant has been classified as Pathogenic.

SLC22A5, Exon 1, c.272A>G (p.Asn91Ser), heterozygous, PATHOGENIC

- This sequence change replaces asparagine, which is neutral and polar, with serine, which is neutral and polar, at codon 91 of the SLC22A5 protein (p.Asn91Ser).
- This variant is present in population databases (rs546442503, gnomAD 0.03%).
- This missense change has been observed in individual(s) with primary carnitine deficiency (Invitae). In at least one individual the data is consistent with being in trans (on the opposite chromosome) from a pathogenic variant.
- ClinVar contains an entry for this variant (Variation ID: 460405).
- Advanced modeling of protein sequence and biophysical properties (such as structural, functional, and spatial information, amino acid conservation, physicochemical variation, residue mobility, and thermodynamic stability) performed at Invitae indicates that this missense variant is expected to disrupt SLC22A5 protein function.
- For these reasons, this variant has been classified as Pathogenic.

Patient name: DONOR 7050 D

DOB:

Invitae #:

Residual risk

No carrier test can detect 100% of carriers. There still remains a small risk of being a carrier after a negative test (residual risk). Residual risk values assume a negative family history and are inferred from published carrier frequencies and estimated detection rates based on testing technologies used at Invitae. You can view Invitae's complete Carrier detection rates and residual risks document (containing all carrier genes) online at https://www.invitae.com/carrier-residual-risks/. Additionally, the order-specific information for this report is available to download in the portal (under this order's documents) or can be requested by contacting Invitae Client Services. The complete Carrier detection rates and residual risks document will not be applicable for any genes with specimen-specific limitations in sequencing and/or deletion/duplication coverage. Please see the final bullet point in the Limitations section of this report to view if this specimen had any gene-specific coverage gaps.

DOB:

Invitae #:

Genes analyzed

This table represents a complete list of genes analyzed for this individual, including the relevant gene transcript(s). If more than one transcript is listed for a single gene, variants were reported using the first transcript listed unless otherwise indicated in the report. An asterisk (*) indicates that this gene has a limitation. Please see the Limitations section for details. Results are negative, unless otherwise indicated in the report.

GENE	TRANSCRIPT
AAAS	NM_015665.5
ABCA12	NM_173076.2
ABCA3	NM_001089.2
ABCA4	NM_000350.2
ABCB11	NM_003742.2
ABCB4	NM_000443.3
ABCC2*	NM_000392.4
ABCC8	NM_000352.4
ACAD9	NM_014049.4
ACADM	NM_000016.5
ACADVL	NM_000018.3
ACAT1	NM_000019.3
ACOX1	NM_004035.6
ACSF3	NM_174917.4
ADA	NM_000022.2
ADAMTS2	NM_014244.4
ADAMTSL4	NM_019032.5
ADGRG1	NM_005682.6
ADGRV1	NM_032119.3
AGA	NM_000027.3
AGL	NM_000642.2
AGPS	NM_003659.3
AGXT	NM_000030.2
AHI1	NM_017651.4
AIPL1*	NM_014336.4
AIRE	NM_000383.3
ALDH3A2	NM_000382.2
ALDH7A1	NM_001182.4
ALDOB	NM_000035.3
ALG1	NM_019109.4
ALG6	NM_013339.3
ALMS1	NM_015120.4
ALPL	NM_000478.5
AMN*	NM_030943.3
AMT	NM_000481.3
ANO10*	NM_018075.3

GENE	TRANSCRIPT
AP1S1	NM_001283.3
AQP2	NM_000486.5
ARG1	NM_000045.3
ARL6	NM_177976.2
ARSA	NM_000487.5
ARSB	NM_000046.3
ASL	NM_000048.3
ASNS	NM_133436.3
ASPA	NM_000049.2
ASS1	NM_000050.4
ATM*	NM_000051.3
ATP6V1B1	NM_001692.3
АТР7В	NM_000053.3
ATP8B1*	NM_005603.4
BBS1	NM_024649.4
BBS10	NM_024685.3
BBS12	NM_152618.2
BBS2	NM_031885.3
BBS4	NM_033028.4
BBS5	NM_152384.2
BBS7	NM_176824.2
BBS9*	NM_198428.2
BCKDHA	NM_000709.3
ВСКДНВ	NM_183050.2
BCS1L	NM_004328.4
BLM	NM_000057.3
BLOC1S3	NM_212550.4
BLOC1S6	NM_012388.3
ВМР1	NM_006129.4;NM_001199.3
BRIP1	NM_032043.2
BSND	NM_057176.2
BTD	NM_000060.3
CAD	NM_004341.4
CANT1	NM_138793.3
CAPN3	NM_000070.2
CASQ2	NM_001232.3

GENE	TRANSCRIPT
CBS	NM_000071.2
CC2D1A	NM_017721.5
CC2D2A	NM_001080522.2
CCDC103	NM_213607.2
CCDC39	NM_181426.1
CCDC88C	NM_001080414.3
CD3D	NM_000732.4
CD3E	NM_000733.3
CD40	NM_001250.5
CD59	NM_203330.2
CDH23	NM_022124.5
CEP152	NM_014985.3
CEP290	NM_025114.3
CERKL	NM_001030311.2
CFTR*	NM_000492.3
CHAT	NM_020549.4
CHRNE	NM_000080.3
CHRNG	NM_005199.4
CIITA	NM_000246.3
CLCN1	NM_000083.2
CLN3	NM_001042432.1
CLN5	NM_006493.2
CLN6	NM_017882.2
CLN8	NM_018941.3
CLRN1	NM_174878.2
CNGB3	NM_019098.4
COL11A2*	NM_080680.2
COL17A1	NM_000494.3
COL27A1	NM_032888.3
COL4A3	NM_000091.4
COL4A4	NM_000092.4
COL7A1	NM_000094.3
COX15	NM_004376.6
CPS1	NM_001875.4
CPT1A	NM_001876.3
CPT2	NM_000098.2

DOB:

GENE	TRANSCRIPT
CRB1	NM_201253.2
CRTAP	NM_006371.4
CTNS	NM_004937.2
CTSA	NM_000308.3
CTSC	NM_001814.5
CTSD	NM_001909.4
CTSK	NM_000396.3
CYBA	NM_000101.3
CYP11A1	NM_000781.2
CYP11B1	NM_000497.3
CYP11B2	NM_000498.3
CYP17A1	NM_000102.3
CYP19A1	NM_031226.2
CYP1B1	NM_000104.3
CYP21A2*	NM_000500.7
CYP27A1	NM_000784.3
CYP27B1	NM_000785.3
СҮР7В1	NM_004820.3
DBT	NM_001918.3
DCAF17	NM_025000.3
DCLRE1C	NM_001033855.2
DDX11*	NM_030653.3
DFNB59	NM_001042702.3
DGAT1	NM_012079.5
DGUOK	NM_080916.2
DHCR7	NM_001360.2
DHDDS	NM_024887.3
DLD	NM_000108.4
DLL3	NM_016941.3
DNAH11	NM_001277115.1
DNAH5	NM_001369.2
DNAI1	NM_012144.3
DNAI2	NM_023036.4
DNMT3B	NM_006892.3
DOK7	NM_173660.4
DUOX2*	NM_014080.4
DYNC2H1	NM_001080463.1
DYSF	NM_003494.3
EIF2AK3	NM_004836.6

GENE	TRANSCRIPT
EIF2B1	NM_001414.3
EIF2B2	NM_014239.3
EIF2B3	NM_020365.4
EIF2B4	NM_015636.3
EIF2B5	NM_003907.2
ELP1	NM_003640.3
EPG5	NM_020964.2
ERCC2	NM_000400.3
ERCC6	NM_000124.3
ERCC8	NM_000082.3
ESCO2	NM_001017420.2
ETFA	NM_000126.3
ETFB	NM_001985.2
ETFDH	NM_004453.3
ETHE1	NM_014297.3
EVC	NM_153717.2
EVC2	NM_147127.4
EXOSC3	NM_016042.3
EYS*	NM_001142800.1
FAH*	NM_000137.2
FAM161A	NM_001201543.1
FANCA	NM_000135.2
FANCC	NM_000136.2
FANCD2*	NM_033084.3
FANCE	NM_021922.2
FANCG	NM_004629.1
FANCI	NM_001113378.1
FANCL*	NM_018062.3
FBP1	NM_000507.3
FBXO7	NM_012179.3
FH*	NM_000143.3
FKBP10	NM_021939.3
FKRP	NM_024301.4
FKTN	NM_001079802.1
FMO3	NM_006894.6
FOXN1	NM_003593.2
FOXRED1	NM_017547.3
FRAS1	NM_025074.6
FREM2	NM_207361.5

GENE	TRANSCRIPT
FUCA1	NM_000147.4
G6PC	NM_000151.3
G6PC3	NM_138387.3
GAA	NM_000152.3
GALC*	NM_000153.3
GALE*	NM_000403.3
GALK1	NM_000154.1
GALNS	NM_000512.4
GALNT3	NM_004482.3
GALT	NM_000155.3
GAMT	NM_000156.5
GATM	NM_001482.2
GBA*	NM_001005741.2
GBE1	NM_000158.3
GCDH	NM_000159.3
GCH1	NM_000161.2
GDF5	NM_000557.4
GFM1	NM_024996.5
GHR*	NM_000163.4
GJB2	NM_004004.5
GLB1	NM_000404.2
GLDC	NM_000170.2
GLE1	NM_001003722.1
GNE*	NM_001128227.2
GNPAT	NM_014236.3
GNPTAB	NM_024312.4
GNPTG	NM_032520.4
GNS	NM_002076.3
GORAB	NM_152281.2
GRHPR	NM_012203.1
GRIP1	NM_021150.3
GSS	NM_000178.2
GUCY2D	NM_000180.3
GUSB	NM_000181.3
HADH	NM_005327.4
HADHA	NM_000182.4
HADHB	NM_000183.2
HAMP	NM_021175.2
HAX1	NM_006118.3

DOB:

HBA1* NM_000517.4 HBB2 NM_000517.4 HBB NM_000520.4 HEXB NM_000520.3 HEXB NM_000521.3 HGSNAT NM_152419.2 HJV NM_213653.3 HLCS NM_000411.6 HMGCL NM_00011.2 HMOX1 NM_00019.2 HMOX1 NM_002133.2 HOGA1 NM_138413.3 HPD NM_002150.2 HPSI NM_000195.4 HPS3 NM_002383.4 HPS4 NM_022081.5 HPS5 NM_181507.1 HPS6 NM_024747.5 HSD17B3 NM_000197.1 HSD17B4 NM_000198.3 HYAL1 NM_153281.1 HYLS1 NM_01422 IDUA NM_00023.4 IGHMBP2 NM_002180.2 IKBKB NM_001556.2 IL7R NM_002185.3 INVS NM_0014425.3 ITGA6 NM_000210.3 ITGB4 NM_0000202.2	GENE	TRANSCRIPT
HBB NM_000518.4 HEXA NM_000520.4 HEXB NM_000521.3 HGSNAT NM_152419.2 HJV NM_213653.3 HLCS NM_000411.6 HMGCL NM_000191.2 HMOX1 NM_002133.2 HOGA1 NM_138413.3 HPD NM_002150.2 HPS1 NM_000195.4 HPS3 NM_032383.4 HPS4 NM_022081.5 HPS5 NM_181507.1 HPS6 NM_024747.5 HSD17B3 NM_000197.1 HSD17B4 NM_000198.3 HYAL1 NM_153281.1 HYLS1 NM_153281.1 HYLS1 NM_16504.2 IDUA NM_000203.4 IGHMBP2 NM_002180.2 IKBKB NM_002185.3 INVS NM_014425.3 ITGA6 NM_000210.3 ITGB3 NM_000215.3 KCNJ1 NM_000220.4 KCNJ1 NM_000220.4 KCNJ1 NM_000220.4 KCNJ1 NM_000227.4 LAMA2 NM_000228.2 LAMA3 NM_000228.2	HBA1*	NM_000558.4
HEXA HEXB NM_000520.4 HEXB NM_000521.3 HGSNAT NM_152419.2 HJV NM_213653.3 HLCS NM_000411.6 HMGCL NM_000191.2 HMOX1 NM_002133.2 HOGA1 NM_138413.3 HPD NM_002150.2 HPS1 NM_000195.4 HPS3 NM_032383.4 HPS4 NM_022081.5 HPS5 NM_181507.1 HPS6 NM_024747.5 HSD17B3 NM_000197.1 HSD17B4 NM_000198.3 HYAL1 NM_153281.1 HYLS1 NM_145014.2 IDUA NM_000203.4 IGHMBP2 NM_002180.2 IKBKB NM_001556.2 IL7R NM_002185.3 ITGA6 NM_000210.3 ITGB3 NM_000212.2 ITGB4 NM_000225.3 JAK3 NM_000227.4 LAMA2 NM_000228.2 LAMA3 NM_000228.2 LAMA3 NM_000228.2 LAMA3 NM_000228.2 LAMA3 NM_000228.2 LAMA2 NM_000228.2 LAMA3 NM_000228.2 LAMA2 NM_000228.2 LAMA3 NM_000228.2 LAMA3 NM_000228.2 LAMA2 NM_000228.2	HBA2	NM_000517.4
HEXB NM_000521.3 HGSNAT NM_152419.2 HJV NM_213653.3 HLCS NM_000411.6 HMGCL NM_000191.2 HMOX1 NM_002133.2 HOGA1 NM_138413.3 HPD NM_002150.2 HPS1 NM_000195.4 HPS3 NM_032383.4 HPS4 NM_022081.5 HPS5 NM_181507.1 HPS6 NM_024747.5 HSD17B3 NM_000197.1 HSD17B4 NM_000198.3 HYAL1 NM_153281.1 HYLS1 NM_145014.2 IDUA NM_00203.4 IGHMBP2 NM_002180.2 IKBKB NM_001556.2 IL7R NM_002185.3 ITGA6 NM_00210.3 ITGB3 NM_000212.2 ITGB4 NM_000225.3 ITGB4 NM_000225.3 ITGB4 NM_000225.3 ICNJ1 NM_000227.4 ICAMC2 NM_000228.2 LAMA2 NM_000228.2 LAMA3 NM_000227.4 LAMB3 NM_000228.2 LAMC2 NM_0002566.2	НВВ	NM_000518.4
HGSNAT NM_152419.2 HJV NM_213653.3 HLCS NM_000411.6 HMGCL NM_000191.2 HMOX1 NM_002133.2 HOGA1 NM_138413.3 HPD NM_002150.2 HPS1 NM_000195.4 HPS3 NM_032383.4 HPS4 NM_022081.5 HPS5 NM_181507.1 HPS6 NM_024747.5 HSD17B3 NM_000197.1 HSD17B4 NM_000198.3 HYAL1 NM_153281.1 HYLS1 NM_145014.2 IDUA NM_00203.4 IGHMBP2 NM_002180.2 IKBKB NM_001556.2 IL7R NM_002185.3 ITGA6 NM_00210.3 ITGB3 NM_000212.2 ITGB4 NM_000212.2 ITGB4 NM_000225.3 JAK3 NM_000225.3 ICNJ1 NM_000227.4 KCNJ11 NM_000227.4 LAMA2 NM_000228.2 LAMA3 NM_000227.4 LAMB3 NM_000226.2	HEXA	NM_000520.4
HJV NM_213653.3 HLCS NM_000411.6 HMGCL NM_000191.2 HMOX1 NM_002133.2 HOGA1 NM_138413.3 HPD NM_002150.2 HPS1 NM_000195.4 HPS3 NM_032383.4 HPS4 NM_022081.5 HPS5 NM_181507.1 HPS6 NM_024747.5 HSD17B3 NM_000197.1 HSD17B4 NM_000198.3 HYAL1 NM_153281.1 HYLS1 NM_145014.2 IDUA NM_00203.4 IGHMBP2 NM_002180.2 IKBKB NM_001556.2 IL7R NM_002185.3 INVS NM_014425.3 ITGA6 NM_000210.3 ITGB3 NM_000105731.2 IVD NM_002225.3 JAK3 NM_000227.4 KCNJ11 NM_000227.4 LAMA2 NM_000228.2 LAMA3 NM_000228.2 LAMA3 NM_000228.2 LAMA3 NM_000228.2 LAMA3 NM_000228.2 LAMA3 NM_000228.2 LAMA2 NM_000228.2 LAMA3 NM_000228.2 LAMA3 NM_000228.2 LAMA3 NM_000228.2 LAMA2 NM_000228.2	HEXB	NM_000521.3
HLCS	HGSNAT	NM_152419.2
HMGCL NM_000191.2 HMOX1 NM_002133.2 HOGA1 NM_138413.3 HPD NM_002150.2 HPS1 NM_000195.4 HPS3 NM_032383.4 HPS4 NM_022081.5 HPS5 NM_181507.1 HPS6 NM_024747.5 HSD17B3 NM_000197.1 HSD17B4 NM_000198.3 HYAL1 NM_153281.1 HYLS1 NM_145014.2 IDUA NM_000203.4 IGHMBP2 NM_002180.2 IKBKB NM_001556.2 IL7R NM_002185.3 INVS NM_014425.3 ITGB3 NM_000210.3 ITGB4 NM_000210.3 ITGB3 NM_000215.3 KCNJ1 NM_000225.3 JAK3 NM_000225.3 LAMA2 NM_000426.3 LAMA3 NM_000227.4 LAMB3 NM_0005562.2	HJV	NM_213653.3
HMOX1 NM_002133.2 HOGA1 NM_138413.3 HPD NM_002150.2 HPS1 NM_000195.4 HPS3 NM_032383.4 HPS4 NM_022081.5 HPS5 NM_181507.1 HPS6 NM_024747.5 HSD17B3 NM_000197.1 HSD17B4 NM_000414.3 HSD3B2 NM_000198.3 HYAL1 NM_153281.1 HYLS1 NM_145014.2 IDUA NM_000203.4 IGHMBP2 NM_002180.2 IKBKB NM_001556.2 IL7R NM_002185.3 INVS NM_014425.3 ITGA6 NM_000210.3 ITGB3 NM_000212.2 ITGB4 NM_000215.3 KCNJ1 NM_000225.3 JAK3 NM_000215.3 KCNJ1 NM_000227.4 LAMA2 NM_000227.4 LAMB3 NM_000228.2 LAMA3 NM_000228.2 LAMC2 NM_0005566.2	HLCS	NM_000411.6
HOGA1 NM_138413.3 HPD NM_002150.2 HPS1 NM_000195.4 HPS3 NM_032383.4 HPS4 NM_022081.5 HPS5 NM_181507.1 HPS6 NM_024747.5 HSD17B3 NM_000197.1 HSD17B4 NM_000198.3 HYAL1 NM_153281.1 HYLS1 NM_145014.2 IDUA NM_000203.4 IGHMBP2 NM_002180.2 IL7R NM_002185.3 INVS NM_014425.3 ITGA6 NM_000210.3 ITGB3 NM_000210.3 ITGB4 NM_0000212.2 ITGB4 NM_000225.3 JAK3 NM_000225.3 KCNJ1 NM_000225.3 LAMA2 NM_000426.3 LAMA3 NM_000227.4 LAMB3 NM_000556.2	HMGCL	NM_000191.2
HPD NM_002150.2 HPS1 NM_000195.4 HPS3 NM_032383.4 HPS4 NM_022081.5 HPS5 NM_181507.1 HPS6 NM_024747.5 HSD17B3 NM_000197.1 HSD17B4 NM_000414.3 HSD3B2 NM_000198.3 HYAL1 NM_153281.1 HYLS1 NM_145014.2 IDUA NM_00203.4 IGHMBP2 NM_002180.2 IKBKB NM_001556.2 IL7R NM_002185.3 INVS NM_014425.3 ITGA6 NM_000210.3 ITGB3 NM_000212.2 ITGB4 NM_000215.3 ITGB4 NM_000215.3 KCNJ1 NM_000220.4 KCNJ11 NM_000220.4 KCNJ11 NM_000227.4 LAMA2 NM_000228.2 LAMA3 NM_000227.4 LAMB3 NM_000228.2 LAMC2 NM_005566.2	HMOX1	NM_002133.2
HPS1 NM_000195.4 HPS3 NM_032383.4 HPS4 NM_022081.5 HPS5 NM_181507.1 HPS6 NM_024747.5 HSD17B3 NM_000197.1 HSD17B4 NM_000414.3 HSD3B2 NM_000198.3 HYAL1 NM_153281.1 HYLS1 NM_145014.2 IDUA NM_000203.4 IGHMBP2 NM_002180.2 IKBKB NM_001556.2 IL7R NM_002185.3 INVS NM_014425.3 ITGA6 NM_000210.3 ITGB3 NM_000210.3 ITGB3 NM_000212.2 ITGB4 NM_000215.3 IVD NM_00225.3 JAK3 NM_000215.3 KCNJ1 NM_000220.4 KCNJ11 NM_000227.4 LAMA2 NM_000227.4 LAMB3 NM_000228.2 LAMC2 NM_0005562.2	HOGA1	NM_138413.3
HPS3 NM_032383.4 HPS4 NM_022081.5 HPS5 NM_181507.1 HPS6 NM_024747.5 HSD17B3 NM_000197.1 HSD17B4 NM_000198.3 HYAL1 NM_153281.1 HYLS1 NM_145014.2 IDUA NM_00203.4 IGHMBP2 NM_002180.2 IKBKB NM_001556.2 IL7R NM_002185.3 INVS NM_014425.3 ITGA6 NM_000210.3 ITGB3 NM_000210.3 ITGB3 NM_000212.2 ITGB4 NM_000215.3 IVD NM_002225.3 JAK3 NM_000215.3 KCNJ1 NM_000220.4 KCNJ11 NM_000227.4 LAMA2 NM_000228.2 LAMA3 NM_000228.2 LAMA3 NM_000228.2 LAMA3 NM_000228.2 LAMB3 NM_000228.2 LAMC2 NM_005566.2	HPD	NM_002150.2
HPS4 NM_022081.5 HPS5 NM_181507.1 HPS6 NM_024747.5 HSD17B3 NM_000197.1 HSD17B4 NM_000414.3 HSD3B2 NM_000198.3 HYAL1 NM_153281.1 HYLS1 NM_145014.2 IDUA NM_000203.4 IGHMBP2 NM_002180.2 IKBKB NM_001556.2 IL7R NM_002185.3 INVS NM_014425.3 ITGA6 NM_000210.3 ITGB3 NM_000210.3 ITGB3 NM_000212.2 ITGB4 NM_000215.3 IVD NM_00212.2 ITGB4 NM_000215.3 KCNJ1 NM_000225.3 KCNJ1 NM_000225.3 LAMA2 NM_000227.4 LAMB3 NM_000228.2 LAMC2 NM_0005562.2	HPS1	NM_000195.4
HPS5 NM_181507.1 HPS6 NM_024747.5 HSD17B3 NM_000197.1 HSD17B4 NM_000198.3 HYAL1 NM_153281.1 HYLS1 NM_145014.2 IDUA NM_00203.4 IGHMBP2 NM_002180.2 IL7R NM_002185.3 INVS NM_014425.3 ITGA6 NM_000210.3 ITGB3 NM_000212.2 ITGB4 NM_001005731.2 IVD NM_002225.3 JAK3 NM_000215.3 KCNJ1 NM_000220.4 KCNJ11 NM_000525.3 LAMA2 NM_000426.3 LAMA3 NM_000227.4 LAMB3 NM_0005562.2	HPS3	NM_032383.4
HPS6 NM_024747.5 HSD17B3 NM_000197.1 HSD17B4 NM_000198.3 HYAL1 NM_153281.1 HYLS1 NM_145014.2 IDUA NM_000203.4 IGHMBP2 NM_002180.2 IKBKB NM_001556.2 IL7R NM_002185.3 INVS NM_014425.3 ITGA6 NM_000210.3 ITGB3 NM_000212.2 ITGB4 NM_001005731.2 IVD NM_002225.3 JAK3 NM_000215.3 KCNJ1 NM_000220.4 KCNJ11 NM_000525.3 LAMA2 NM_000426.3 LAMA3 NM_000227.4 LAMB3 NM_0005562.2	HPS4	NM_022081.5
HSD17B3 NM_000197.1 HSD17B4 NM_000414.3 HSD3B2 NM_000198.3 HYAL1 NM_153281.1 HYLS1 NM_145014.2 IDUA NM_000203.4 IGHMBP2 NM_002180.2 IKBKB NM_001556.2 IL7R NM_002185.3 INVS NM_014425.3 ITGA6 NM_000210.3 ITGB3 NM_000210.3 ITGB3 NM_000212.2 ITGB4 NM_0002525.3 JAK3 NM_000215.3 KCNJ1 NM_000220.4 KCNJ11 NM_000220.4 KCNJ11 NM_000227.4 LAMA2 NM_000228.2 LAMA3 NM_000228.2 LAMC2 NM_0005566.2	HPS5	NM_181507.1
HSD17B4 NM_000414.3 HSD3B2 NM_000198.3 HYAL1 NM_153281.1 HYLS1 NM_145014.2 IDUA NM_000203.4 IGHMBP2 NM_002180.2 IKBKB NM_001556.2 IL7R NM_002185.3 INVS NM_014425.3 ITGA6 NM_000210.3 ITGB3 NM_000212.2 ITGB4 NM_001005731.2 IVD NM_002225.3 JAK3 NM_000215.3 KCNJ1 NM_000220.4 KCNJ11 NM_000525.3 LAMA2 NM_000426.3 LAMA3 NM_000227.4 LAMB3 NM_000228.2 LAMC2 NM_005562.2	HPS6	NM_024747.5
HSD3B2 NM_000198.3 HYAL1 NM_153281.1 HYLS1 NM_145014.2 IDUA NM_000203.4 IGHMBP2 NM_002180.2 IKBKB NM_001556.2 IL7R NM_002185.3 INVS NM_014425.3 ITGA6 NM_000210.3 ITGB3 NM_000212.2 ITGB4 NM_001005731.2 IVD NM_002225.3 JAK3 NM_000215.3 KCNJ1 NM_000215.3 KCNJ1 NM_000220.4 KCNJ11 NM_000525.3 LAMA2 NM_000426.3 LAMA3 NM_000227.4 LAMB3 NM_000228.2 LAMC2 NM_005566.2	HSD17B3	NM_000197.1
HYAL1 NM_153281.1 HYLS1 NM_145014.2 IDUA NM_000203.4 IGHMBP2 NM_002180.2 IKBKB NM_001556.2 IL7R NM_002185.3 INVS NM_014425.3 ITGA6 NM_000210.3 ITGB3 NM_000212.2 ITGB4 NM_001005731.2 IVD NM_002225.3 JAK3 NM_000215.3 KCNJ1 NM_000220.4 KCNJ11 NM_000525.3 LAMA2 NM_000426.3 LAMA3 NM_000227.4 LAMB3 NM_000228.2 LAMC2 NM_005566.2	HSD17B4	NM_000414.3
HYLS1 NM_145014.2 IDUA NM_000203.4 IGHMBP2 NM_002180.2 IKBKB NM_001556.2 IL7R NM_002185.3 INVS NM_014425.3 ITGA6 NM_000210.3 ITGB3 NM_000212.2 ITGB4 NM_001005731.2 IVD NM_002225.3 JAK3 NM_000215.3 KCNJ1 NM_000220.4 KCNJ11 NM_000525.3 LAMA2 NM_000426.3 LAMA3 NM_000227.4 LAMB3 NM_000228.2 LAMC2 NM_005566.2	HSD3B2	NM_000198.3
IDUA NM_000203.4 IGHMBP2 NM_002180.2 IKBKB NM_001556.2 IL7R NM_002185.3 INVS NM_014425.3 ITGA6 NM_000210.3 ITGB3 NM_000212.2 ITGB4 NM_001005731.2 IVD NM_002225.3 JAK3 NM_000215.3 KCNJ1 NM_000220.4 KCNJ11 NM_000525.3 LAMA2 NM_000426.3 LAMA3 NM_000227.4 LAMB3 NM_000228.2 LAMC2 NM_005566.2	HYAL1	NM_153281.1
IGHMBP2 NM_002180.2 IKBKB NM_001556.2 IL7R NM_002185.3 INVS NM_014425.3 ITGA6 NM_000210.3 ITGB3 NM_000212.2 ITGB4 NM_001005731.2 IVD NM_002225.3 JAK3 NM_000215.3 KCNJ1 NM_000220.4 KCNJ11 NM_000525.3 LAMA2 NM_000426.3 LAMA3 NM_000227.4 LAMB3 NM_000526.2 LAMC2 NM_005566.2	HYLS1	NM_145014.2
IKBKB NM_001556.2 IL7R NM_002185.3 INVS NM_014425.3 ITGA6 NM_000210.3 ITGB3 NM_000212.2 ITGB4 NM_001005731.2 IVD NM_002225.3 JAK3 NM_000215.3 KCNJ1 NM_000220.4 KCNJ11 NM_000525.3 LAMA2 NM_000426.3 LAMA3 NM_000227.4 LAMB3 NM_0005562.2	IDUA	NM_000203.4
IL7R NM_002185.3 INVS NM_014425.3 ITGA6 NM_000210.3 ITGB3 NM_000212.2 ITGB4 NM_001005731.2 IVD NM_002225.3 JAK3 NM_000215.3 KCNJ1 NM_000220.4 KCNJ11 NM_000525.3 LAMA2 NM_000426.3 LAMA3 NM_000227.4 LAMB3 NM_000228.2 LAMC2 NM_005566.2	IGHMBP2	NM_002180.2
INVS NM_014425.3 ITGA6 NM_000210.3 ITGB3 NM_000212.2 ITGB4 NM_001005731.2 IVD NM_002225.3 JAK3 NM_000215.3 KCNJ1 NM_000220.4 KCNJ11 NM_000525.3 LAMA2 NM_000426.3 LAMA3 NM_000227.4 LAMB3 NM_000228.2 LAMC2 NM_005566.2	IKBKB	NM_001556.2
ITGA6 NM_000210.3 ITGB3 NM_000212.2 ITGB4 NM_001005731.2 IVD NM_002225.3 JAK3 NM_000215.3 KCNJ1 NM_000220.4 KCNJ11 NM_000525.3 LAMA2 NM_000426.3 LAMA3 NM_000227.4 LAMB3 NM_000228.2 LAMC2 NM_005566.2	IL7R	NM_002185.3
ITGB3 NM_000212.2 ITGB4 NM_001005731.2 IVD NM_002225.3 JAK3 NM_000215.3 KCNJ1 NM_000220.4 KCNJ11 NM_000525.3 LAMA2 NM_000426.3 LAMA3 NM_000227.4 LAMB3 NM_000228.2 LAMC2 NM_005566.2	INVS	NM_014425.3
ITGB4 NM_001005731.2 IVD NM_002225.3 JAK3 NM_000215.3 KCNJ1 NM_000220.4 KCNJ11 NM_000525.3 LAMA2 NM_000426.3 LAMA3 NM_000227.4 LAMB3 NM_000228.2 LAMC2 NM_005566.2	ITGA6	NM_000210.3
IVD NM_002225.3 JAK3 NM_000215.3 KCNJ1 NM_000220.4 KCNJ11 NM_000525.3 LAMA2 NM_000426.3 LAMA3 NM_000227.4 LAMB3 NM_000228.2 LAMC2 NM_005562.2	ITGB3	NM_000212.2
JAK3 NM_000215.3 KCNJ1 NM_000220.4 KCNJ11 NM_000525.3 LAMA2 NM_000426.3 LAMA3 NM_000227.4 LAMB3 NM_000228.2 LAMC2 NM_005566.2	ITGB4	NM_001005731.2
KCNJ1 NM_000220.4 KCNJ11 NM_000525.3 LAMA2 NM_000426.3 LAMA3 NM_000227.4 LAMB3 NM_000228.2 LAMC2 NM_005566.2	IVD	NM_002225.3
KCNJ11 NM_000525.3 LAMA2 NM_000426.3 LAMA3 NM_000227.4 LAMB3 NM_000228.2 LAMC2 NM_005562.2	JAK3	NM_000215.3
LAMA2 NM_000426.3 LAMA3 NM_000227.4 LAMB3 NM_000228.2 LAMC2 NM_005562.2	KCNJ1	NM_000220.4
LAMA3 NM_000227.4 LAMB3 NM_000228.2 LAMC2 NM_005562.2	KCNJ11	NM_000525.3
LAMB3 NM_000228.2 LAMC2 NM_005562.2	LAMA2	NM_000426.3
LAMC2 NM_005562.2	LAMA3	NM_000227.4
	LAMB3	NM_000228.2
LARGE1 NM_004737.4	LAMC2	NM_005562.2
	LARGE1	NM_004737.4

GENE	TRANSCRIPT
LCA5	NM_181714.3
LDLR	NM_000527.4
LDLRAP1	NM_015627.2
LHX3	NM_014564.4
LIFR*	NM_002310.5
LIG4	NM_002312.3
LIPA	NM_000235.3
LMBRD1	NM_018368.3
LOXHD1	NM_144612.6
LPL	NM_000237.2
LRAT	NM_004744.4
LRP2	NM_004525.2
LRPPRC	NM_133259.3
LYST	NM_000081.3
MAK	NM_001242957.2
MAN2B1	NM_000528.3
MANBA	NM_005908.3
MCEE	NM_032601.3
MCOLN1	NM_020533.2
MCPH1	NM_024596.4
MECR	NM_016011.3
MED17	NM_004268.4
MESP2	NM_001039958.1
MFSD8	NM_152778.2
MKKS	NM_018848.3
MKS1	NM_017777.3
MLC1*	NM_015166.3
MLYCD	NM_012213.2
MMAA	NM_172250.2
MMAB	NM_052845.3
MMACHC	NM_015506.2
MMADHC	NM_015702.2
MOCS1	NM_001358530.2
MOCS2A	NM_176806.3
MOCS2B	NM_004531.4
MPI	NM_002435.2
MADI	
MPL	NM_005373.2
	NM_005373.2 NM_002437.4

GENE	TRANSCRIPT
MTHFR*	NM_005957.4
MTR	NM_000254.2
MTRR	NM_002454.2
MTTP	NM_000253.3
MUSK	NM_005592.3
MUT	NM_000255.3
MVK	NM_000431.3
MYO15A	NM_016239.3
MYO7A	NM_000260.3
NAGA	NM_000262.2
NAGLU	NM_000263.3
NAGS	NM_153006.2
NBN	NM_002485.4
NCF2	NM_000433.3
NDRG1	NM_006096.3
NDUFAF2	NM_174889.4
NDUFAF5	NM_024120.4
NDUFS4	NM_002495.3
NDUFS6	NM_004553.4
NDUFS7	NM_024407.4
NDUFV1	NM_007103.3
NEB*	NM_001271208.1
NEU1	NM_000434.3
NGLY1	NM_018297.3
NPC1	NM_000271.4
NPC2	NM_006432.3
NPHP1	NM_000272.3
NPHS1	NM_004646.3
NPHS2	NM_014625.3
NR2E3	NM_014249.3
NSMCE3	NM_138704.3
NTRK1	NM_001012331.1
OAT*	NM_000274.3
OCA2	NM_000275.2
OPA3	NM_025136.3
OSTM1	NM_014028.3
OTOA*	NM_144672.3
OTOF	NM_194248.2;NM_194323.2
P3H1	NM_022356.3

DOB:

GENE	TRANSCRIPT
PAH	NM_000277.1
PANK2	NM_153638.2
PC	NM_000920.3
PCBD1	NM_000281.3
PCCA	NM_000282.3
PCCB	NM_000532.4
PCDH15	NM_033056.3
PCNT	NM_006031.5
PDHB	NM_000925.3
PEPD	NM_000285.3
PET100	NM_001171155.1
PEX1*	NM_000466.2
PEX10	NM_153818.1
PEX12	NM_000286.2
PEX13	NM_002618.3
PEX16	NM_004813.2
PEX2	NM_000318.2
PEX26	NM_017929.5
PEX5	NM_001131025.1
PEX6	NM_000287.3
PEX7	NM_000288.3
PFKM	NM_000289.5
PGM3	NM_001199917.1
PHGDH	NM_006623.3
РНКВ	NM_000293.2;NM_00103183 5.2
PHKG2	NM_000294.2
PHYH	NM_006214.3
PIGN	NM_176787.4
PKHD1*	NM_138694.3
PLA2G6	NM_003560.2
PLEKHG5	NM_020631.4
PLOD1	NM_000302.3
PMM2	NM_000303.2
PNPO	NM_018129.3
POLG	NM_002693.2
POLH	NM_006502.2
POMGNT1	NM_017739.3
POMT1	NM_007171.3
POMT2	NM_013382.5

GENE	TRANSCRIPT
POR	NM_000941.2
POU1F1	NM_000306.3
PPT1	NM_000310.3
PRCD	NM_001077620.2
PRDM5	NM_018699.3
PRF1	NM_001083116.1
PROP1	NM_006261.4
PSAP	NM_002778.3
PTPRC*	NM_002838.4
PTS	NM_000317.2
PUS1	NM_025215.5
PYGM	NM_005609.3
QDPR	NM_000320.2
RAB23	NM_183227.2
RAG1	NM_000448.2
RAG2	NM_000536.3
RAPSN	NM_005055.4
RARS2	NM_020320.3
RDH12	NM_152443.2
RLBP1	NM_000326.4
RMRP	NR_003051.3
RNASEH2A	NM_006397.2
RNASEH2B	NM_024570.3
RNASEH2C	NM_032193.3
RPE65	NM_000329.2
RPGRIP1L	NM_015272.2
RTEL1	NM_001283009.1
RXYLT1	NM_014254.2
RYR1	NM_000540.2
SACS	NM_014363.5
SAMD9	NM_017654.3
SAMHD1	NM_015474.3
SCO2	NM_005138.2
SEC23B	NM_006363.4
SEPSECS	NM_016955.3
SGCA	NM_000023.2
SGCB	NM_000232.4
SGCD	NM_000337.5
SGCG	NM_000231.2

GENE	TRANSCRIPT
SGSH	NM_000199.3
SKIV2L	NM_006929.4
SLC12A1	NM_000338.2
SLC12A3	NM_000339.2
SLC12A6	NM_133647.1
SLC17A5	NM_012434.4
SLC19A2	NM_006996.2
SLC19A3	NM_025243.3
SLC1A4	NM_003038.4
SLC22A5	NM_003060.3
SLC25A13	NM_014251.2
SLC25A15	NM_014252.3
SLC25A20	NM_000387.5
SLC26A2	NM_000112.3
SLC26A3	NM_000111.2
SLC26A4	NM_000441.1
SLC27A4	NM_005094.3
SLC35A3	NM_012243.2
SLC37A4	NM_001164277.1
SLC38A8	NM_001080442.2
SLC39A4	NM_130849.3
SLC45A2	NM_016180.4
SLC4A11	NM_032034.3
SLC5A5	NM_000453.2
SLC7A7	NM_001126106.2
SMARCAL1	NM_014140.3
SMN1*	NM_000344.3
SMPD1	NM_000543.4
SNAP29	NM_004782.3
SPG11	NM_025137.3
SPR	NM_003124.4
SRD5A2	NM_000348.3
ST3GAL5	NM_003896.3
STAR	NM_000349.2
STX11	NM_003764.3
STXBP2	NM_006949.3
SUMF1	NM_182760.3
SUOX	NM_000456.2
SURF1	NM_003172.3

Patient name: DONOR 7050 DOB:

GENE	TRANSCRIPT
SYNE4	NM_001039876.2
TANGO2	NM_152906.6
TAT	NM_000353.2
TBCD	NM_005993.4
TBCE*	NM_003193.4
TCIRG1	NM_006019.3
TCN2	NM_000355.3
TECPR2	NM_014844.3
TERT	NM_198253.2
TF	NM_001063.3
TFR2	NM_003227.3
TG*	NM_003235.4
TGM1	NM_000359.2
TH	NM_199292.2
TK2	NM_004614.4
TMC1	NM_138691.2
TMEM216	NM_001173990.2
TMEM67	NM_153704.5
TMPRSS3	NM_024022.2
TPO	NM_000547.5
TPP1	NM_000391.3
TREX1	NM_033629.4
TRIM32	NM_012210.3
TRIM37	NM_015294.4
TRMU	NM_018006.4
TSEN54	NM_207346.2
TSFM*	NM_001172696.1
TSHB	NM_000549.4
TSHR	NM_000369.2
TTC37	NM_014639.3
TTPA	NM_000370.3
TULP1	NM_003322.4
TYMP	NM_001953.4
TYR*	NM_000372.4
TYRP1	NM_000550.2
UBR1	NM_174916.2
UNC13D	NM_199242.2
USH1C*	NM_005709.3
USH2A	NM_206933.2

GENE	TRANSCRIPT
VDR	NM_001017535.1
VLDLR	NM_003383.4
VPS11	NM_021729.5
VPS13A*	NM_033305.2
VPS13B	NM_017890.4
VPS45	NM_007259.4
VPS53*	NM_001128159.2
VRK1	NM_003384.2
VSX2	NM_182894.2
WISP3	NM_003880.3
WNT10A	NM_025216.2
WRN*	NM_000553.4
XPA	NM_000380.3
XPC	NM_004628.4
ZBTB24	NM_014797.2
ZFYVE26	NM_015346.3
ZNF469	NM_001127464.2

DOB:

Invitae #:

Patient name: DONOR 7050

Methods

■ Genomic DNA obtained from the submitted sample is enriched for targeted regions using a hybridization-based protocol, and sequenced using Illumina technology. Unless otherwise indicated, all targeted regions are sequenced with ≥50x depth or are supplemented with additional analysis. Reads are aligned to a reference sequence (GRCh37), and sequence changes are identified and interpreted in the context of a single clinically relevant transcript, indicated in the Genes Analyzed table. Enrichment and analysis focus on the coding sequence of the indicated transcripts, 20bp of flanking intronic sequence, and other specific genomic regions demonstrated to be causative of disease at the time of assay design. Promoters, untranslated regions, and other non-coding regions are not otherwise interrogated. Exonic deletions and duplications are called using an in-house algorithm that determines copy number at each target by comparing the read depth for each target in the proband sequence with both mean read-depth and read-depth distribution, obtained from a set of clinical samples. Markers across the X and Y chromosomes are analyzed for quality control purposes and may detect deviations from the expected sex chromosome complement. Such deviations may be included in the report in accordance with internal guidelines. Invitae utilizes a classification methodology to identify next-generation sequencing (NGS)-detected variants that require orthogonal confirmation (Lincoln, et al. J Mol Diagn. 2019 Mar;21(2):318-329). Confirmation of the presence and location of reportable variants is performed as needed based on stringent criteria using one of several validated orthogonal approaches (PubMed ID 30610921). Sequencing is performed by Invitae Corporation (1400 16th Street, San Francisco, CA 94103, #05D2040778).

The following additional analyses are performed if relevant to the requisition. For GBA the reference genome has been modified to mask the sites of polymorphic paralog sequence variants (PSVs) in both the gene and pseudogene. For CYP21A2 and GBA, if one or more reportable variants, gene conversion, or fusion event is identified via our NGS pipeline (see Limitations), these variants are confirmed by PacBio sequencing of an amplicon generated by long-range PCR and subsequent short-range PCR. In some cases, it may not be possible to disambiguate between the gene and pseudogene. For GJB2, the reportable range includes large upstream deletions overlapping GJB6. For HBA1/2, the reference genome has been modified to force some sequencing reads derived from HBA1 to align to HBA2, and variant calling algorithms are modified to support an expectation of 4 alleles in these regions. HBA1/2 copy number calling is performed by a custom hypothesis testing algorithm which generates diplotype calls. If sequence data for a sample does not support a unique high confidence match from among hypotheses tested, that sample is flagged for manual review. Copy number variation is only reported for coding sequence of HBA1 and HBA2 and the HS-40 region. This assay does not distinguish among the -α3.7 subtypes, and all -α3.7 variants are called as HBA1 deletions. This assay may not detect overlapping copy gain and copy loss events when the breakpoints of those events are similar. For FMR1, cytosine-guanine-guanine (CGG) triplet repeats in the 5' untranslated region (5' UTR) of the FMR1 gene are detected by triplet repeat-primed PCR (RP-PCR) with fluorescently labeled primers followed by capillary electrophoresis. Reference ranges: Normal: <45 CGG repeats, intermediate: 45-54 CGG repeats, premutation: 55-200 CGG repeats, full mutation: >200 CGG repeats. For alleles with 55-90 triplet repeats, the region surrounding the FMR1 repeat is amplified by PCR. The PCR amplicons are then processed through PacBio SMRTBell library prep and sequenced using PacBio long read technology. The number of AGG interruptions within the 55-90 triplet repeat is read directly from the resulting DNA sequences.

- This report only includes variants that have a clinically significant association with the conditions tested as of the report date. Variants of uncertain significance, benign variants, and likely benign variants are not included in this report. However, if additional evidence becomes available to indicate that the clinical significance of a variant has changed, Invitae may update this report and provide notification.
- A PMID is a unique identifier referring to a published, scientific paper. Search by PMID at http://www.ncbi.nlm.nih.gov/pubmed.
- An rsID is a unique identifier referring to a single genomic position, and is used to associate population frequency information with sequence changes at that position. Reported population frequencies are derived from a number of public sites that aggregate data from large-scale population sequencing projects, including ExAC (http://exac.broadinstitute.org), gnomAD (http://gnomad.broadinstitute.org), and dbSNP (http://ncbi.nlm.nih.gov/SNP).

Disclaimer

DNA studies do not constitute a definitive test for the selected condition(s) in all individuals. It should be realized that there are possible sources of error. Errors can result from trace contamination, rare technical errors, rare genetic variants that interfere with analysis, recent scientific developments, and alternative classification systems. This test should be one of many aspects used by the healthcare provider to help with a diagnosis and treatment plan, but it is not a diagnosis itself. This test was developed and its performance characteristics determined by Invitae. It has not been cleared or approved by

DOB:

Invitae #:

the FDA. The laboratory is regulated under the Clinical Laboratory Improvement Act (CLIA) as qualified to perform high-complexity clinical tests (CLIA ID: 05D2040778). This test is used for clinical purposes. It should not be regarded as investigational or for research.

Limitations

- Based on validation study results, this assay achieves >99% analytical sensitivity and specificity for single nucleotide variants, insertions and deletions <15bp in length, and exon-level deletions and duplications. Invitae's methods also detect insertions and deletions larger than 15bp but smaller than a full exon but sensitivity for these may be marginally reduced. Invitae's deletion/duplication analysis determines copy number at a single exon resolution at virtually all targeted exons. However, in rare situations, single-exon copy number events may not be analyzed due to inherent sequence properties or isolated reduction in data quality. Certain types of variants, such as structural rearrangements (e.g. inversions, gene conversion events, translocations, etc.) or variants embedded in sequence with complex architecture (e.g. short tandem repeats or segmental duplications), may not be detected. Additionally, it may not be possible to fully resolve certain details about variants, such as mosaicism, phasing, or mapping ambiguity. Unless explicitly guaranteed, sequence changes in the promoter, non-coding exons, and other non-coding regions are not covered by this assay. Please consult the test definition on our website for details regarding regions or types of variants that are covered or excluded for this test. This report reflects the analysis of an extracted genomic DNA sample. While this test is intended to reflect the analysis of extracted genomic DNA from a referred patient, in very rare cases the analyzed DNA may not represent that individual's constitutional genome, such as in the case of a circulating hematolymphoid neoplasm, bone marrow transplant, blood transfusion, chimerism, culture artifact or maternal cell contamination.
- GALE: Sequencing analysis for exons 10 includes only cds +/- 5 bp. DDX11: NM_030653.3:c.1763-1G>C variant only. VPS13A: Deletion/ duplication analysis is not offered for exons 2-3, 27-28. GNE: Sequencing analysis for exons 8 includes only cds +/- 10 bp. NEB: Deletion/ duplication analysis is not offered for exons 82-105. NEB variants in this region with no evidence towards pathogenicity are not included in this report, but are available upon request. PKHD1: Deletion/duplication analysis is not offered for exon 13. SMN1: Systematic exon numbering is used for all genes, including SMN1, and for this reason the exon typically referred to as exon 7 in the literature (PMID: 8838816) is referred to as exon 8 in this report. This assay unambiguously detects SMN1 exon 8 copy number. The presence of the g.27134T>G variant (also known as c.*3+80T>G) is reported if SMN1 copy number = 2. SMN1 or SMN2: NM_000344.3:c.*3+80T>G variant only. DUOX2: Deletion/duplication and sequencing analysis is not offered for exons 6-7. TBCE: Sequencing analysis for exons 2 includes only cds +/- 10 bp. PTPRC: Sequencing analysis is not offered for exons 3, 15. ABCC2: Deletion/duplication analysis is not offered for exons 24-25. OTOA: Deletion/duplication and sequencing analysis is not offered for exons 20-28. BBS9: Deletion/duplication analysis is not offered for exon 4. GHR: Deletion/duplication and sequencing analysis is not offered for exon 3. EYS: Sequencing analysis for exons 30 includes only cds +/- 0 bp. FH: Sequencing analysis for exons 9 includes only cds +/- 10 bp. CFTR: Sequencing analysis for exons 7 includes only cds +/- 10 bp. OAT: Deletion/duplication analysis is not offered for exon 2. WRN: Deletion/duplication analysis is not offered for exons 10-11. Sequencing analysis for exons 8, 10-11 includes only cds +/- 10 bp. ANO10: Sequencing analysis for exons 8 includes only cds +/- 0 bp. ATP8B1: Sequencing analysis for exons 19 includes only cds +/- 10 bp. FANCD2: Deletion/duplication analysis is not offered for exons 14-17, 22 and sequencing analysis is not offered for exons 15-17. Sequencing analysis for exons 6, 14, 18, 20, 23, 25, 34 includes only cds +/- 10 bp. COL11A2: Deletion/duplication analysis is not offered for exon 36. GBA: c.84dupG (p.Leu29Alafs*18), c.115+1G>A (Splice donor), c.222_224delTAC (p.Thr75del), c.475C>T (p.Arg159Trp), c.595_596delCT (p.Leu199Aspfs*62), c.680A>G (p.Asn227Ser), c.721G>A (p.Gly241Arg), c.754T>A (p.Phe252lle), c.1226A>G (p.Asn409Ser), c.1246G>A (p.Gly241Asg), c.1263_1317del (p.Leu422Profs*4), c.1297G>T (p.Val433Leu), c.1342G>C (p.Asp448His), c.1343A>T (p.Asp448Val), c.1448T>C (p.Leu483Pro), c.1504C>T (p.Arg502Cys), c.1505G>A (p.Arg502His), c.1603C>T (p.Arg535Cys), c.1604G>A (p.Arg535His) variants only. Rarely, sensitivity to detect these variants may be reduced. When sensitivity is reduced, zygosity may be reported as "unknown". HBA1/2: This assay is designed to detect deletions and duplications of HBA1 and/or HBA2, resulting from the -alpha20.5, --MED, --SEA, --FIL/--THAI, -alpha3.7, -alpha4.2, anti3.7 and anti4.2. Sensitivity to detect other copy number variants may be reduced. Detection of overlapping deletion and duplication events will be limited to combinations of events with significantly differing boundaries. In addition, deletion of the enhancer element HS-40 and the sequence variant, Constant Spring (NM_000517.4:c.427T>C), can be identified by this assay. MTHFR: The NM_005957.4:c.665C>T (p.Ala222Val) (aka 677C>T) and c.1286A>C (p.Glu429Ala) (aka 1298A>C) variants are not reported in our primary report. TSFM: Sequencing analysis is not offered for exon 5. VPS53: Sequencing analysis for exons 14 includes only cds +/- 5 bp. CYP21A2: Analysis includes the most common variants (c.92C>T(p.Pro31Leu), c.293-13C>G (intronic), c.332_339delGAGACTAC (p.Gly111Valfs*21), c.518T>A (p.Ile173Asn), c.710T>A (p.Ile237Asn), c.713T>A (p.Val238Glu), c.719T>A (p.Met240Lys), c.844G>T (p.Val282Leu), c.923dupT (p.Leu308Phefs*6), c.955C>T (p.Gln319*), c.1069C>T(p.Arg357Trp), c.1360C>T (p.Pro454Ser) and the 30Kb deletion) as well as select rare HGMD variants only (list available upon request). Full gene duplications are reported only in the presence of a pathogenic variant(s). When a duplication and a pathogenic variant(s) is identified, phase (cis/trans) cannot be determined. Full gene deletion analysis is not offered. Sensitivity to detect these variants, if they result from complex gene conversion/fusion events, may be reduced. AIPL1: Sequencing analysis for exons 2 includes only cds +/- 10 bp. LIFR: Sequencing analysis for

DOB:

Invitae #:

exons 3 includes only cds +/- 5 bp. TYR: Deletion/duplication and sequencing analysis is not offered for exon 5. TG: Deletion/duplication analysis is not offered for exon 18. Sequencing analysis for exons 44 includes only cds +/- 0 bp. FANCL: Sequencing analysis for exons 4, 10 includes only cds +/- 10 bp. FAH: Deletion/duplication analysis is not offered for exon 14. GALC: Deletion/duplication analysis is not offered for exon 6. ATM: Sequencing analysis for exons 6, 24, 43 includes only cds +/- 10 bp. USH1C: Deletion/duplication analysis is not offered for exons 5-6. AMN: Deletion/duplication analysis is not offered for exon 1. MLC1: Sequencing analysis for exons 11 includes only cds +/- 10 bp. PEX1: Sequencing analysis for exons 16 includes only cds +/- 0 bp.

This report has been reviewed and approved by:

Matteo Vatta, Ph.D., FACMG

Marke Wand

Clinical Molecular Geneticist

7050, DONOR **▲**

Age:

Specimen:
Requisition
Lab Reference ID
Report Status: FINAL / SEE REPORT

Collected: 03/21/2023 00:00 Received: 03/22/2023 14:21 Reported: 03/30/2023 17:16

Lab: AMD ▲ Hemoglobinopathy Evaluation (FINAL) (FINAL) Hemoglobinopathy Evaluation No Historical Data Red Blood Cell Count (FINAL) 5.72 Reference Range: 4.20-5.80 Mill/uL 4.20 5.80 No Historical Data (FINAL) **▲** HEMOGLOBIN 17.9 Reference Range: 13.2-17.1 g/dL 13.2 17.1 No Historical Data (FINAL) Hematocrit No Historical Data **A** Hematocrit (FINAL) 51.6 Reference Range: 38.5-50.0 % 38.5 No Historical Data (FINAL) MCV 90.2 Reference Range: 80.0-100.0 fL 80.0 100.0 No Historical Data MCH (FINAL) 31.3 Reference Range: 27.0-33.0 pg 27.0 33.0 No Historical Data (FINAL) RDW 12.4 Reference Range: 11.0-15.0 % 11.0 15.0 No Historical Data (FINAL) Hemoglobinopathy Evaluation No Historical Data (FINAL) Hemoglobin A 97.3 Reference Range: >96.0 % >96.0 No Historical Data (FINAL) Hemoglobin F 0.0 Reference Range: <2.0 % <2.0 No Historical Data

NORMAL PHENOTYPE

There are no variant peaks identified. The patient's hemogram shows elevated hemoglobin/hematocrit. It should be pointed out that elevated hemoglobin/hematocrit can be caused by a variety of conditions including high oxygen affinity hemoglobins which may not be detected by high-performance liquid chromatography (HPLC) and/or capillary zone electrophoresis (CZE). Rare variants hemoglobins have no separation from hemoglobin A by capillary zone electrophoresis (CZE) or high-performance liquid chromatography (HPLC).
If clinically indicated, Thalassemia and Hemoglobinopathy Comprehensive (TC 17365) should be

Results reviewed and interpreted by Suhua Han, M.D

If physician or health provider needs additional information, please call 1-703-802-6900 ext 67016.

Chromosome Analysis, Blood

(FINAL)

Lab: AMD

Chromosome Analysis, Blood

No Historical Data

(FINAL)

Order ID:

considered.

Specimen Type:

Blood

Clinical Indication:

Gamete donor, rule out chromosome

abnormality

RESULT:

NORMAL MALE KARYOTYPE

INTERPRETATION:

Chromosome analysis revealed normal G-band patterns within the limits of standard cytogenetic analysis.

NOMENCLATURE:

46,XY

ASSAY INFORMATION:

Method:

G-Band (Digital Analysis:

MetaSystems/Ikaros)
Cells Counted: 20
Band Level: 550
Cells Analyzed: 5
Cells Karyotyped: 3

This test does not address genetic disorders that cannot be detected by standard cytogenetic methods or rare events such as low level mosaicism or subtle rearrangements.

Malini Sathanoori, Ph.D., FACMG, Technical Director, Cytogenetics and Genomics, 703-802-7156

Electronic Signature:

3/30/2023 4:32 PM

For additional information, please refer to http://education.questdiagnostics.com/faq/chromsblood (This link is being provided for informational/educational purposes only).

7050,DONOR 2 / 3 3/31/23