

Donor 7055

Genetic Testing Summary

Fairfax Cryobank recommends reviewing this genetic testing summary with your healthcare provider to determine suitability.

Last Updated: 09/24/2025

Donor Reported Ancestry: German, Scottish, Welsh Jewish Ancestry: No

Genetic Test*	Result	Comments/
		Donor's Residual Risk**
Chromosome analysis (karyotype)	Normal male karyotype	No evidence of clinically significant
		chromosome abnormalities
Hemoglobin evaluation	Normal hemoglobin fractionation and	Reduced risk to be a carrier for sickle
	MCV/MCH results	cell anemia, beta thalassemia, alpha
		thalassemia trait (aa/ and a-/a-) and
		other hemoglobinopathies
Expanded Genetic Disease Carrier	Carrier: Biotinidase deficiency (BTD)	Partner testing is recommended before
Screening Panel attached- 514 diseases		using this donor.
by gene sequencing.	Negative for other genes sequenced.	
		Residual risks for negative results can
		be seen here:
		https://fairfaxcryobank.com/invitae-
		<u>residual-risk-table</u>
Special Testing		
Whole Genome Chromosomal	Positive: A duplication of at least 331	This donor was identified to have an
Microarray	kb within cytogenetic band Xq22.2.	extra piece of chromosome material on
	The duplicated interval involves six	his X chromosome. Therefore, all
	genes, of which PLP1 is	female offspring will be a carrier of this
	associated with a known clinical	duplication while no male offspring will
	disorder at present.	have this duplication. Genetic
		Counseling is recommended to help
		you better understand these results.

^{*}No single test can screen for all genetic disorders. A negative screening result significantly reduces, but cannot eliminate, the risk for these conditions in a pregnancy.

^{**}Donor residual risk is the chance the donor is still a carrier after testing negative.

DOB:

Male

Sex assigned at birth:

Gender:

Patient ID (MRN):

Blood Sample type:

03-APR-2023 Sample collection date:

Sample accession date: 04-APR-2023

12-APR-2023 Report date:

Invitae #:

Clinical team:

Reason for testing

Test performed

Gamete donor Invitae Carrier Screen

RESULT: POSITIVE

This carrier test evaluated 514 gene(s) for genetic changes (variants) that are associated with an increased risk of having a child with a genetic condition. Knowledge of carrier status for one of these conditions may provide information that can be used to assist with family planning and/or preparation. Carrier screening is not intended for diagnostic purposes. To identify a potential genetic basis for a condition in the individual being tested, diagnostic testing for the gene(s) of interest is recommended.

This test shows the presence of clinically significant genetic change(s) in this individual in the gene(s) indicated below. No other clinically significant changes were identified in the remaining genes evaluated with this test.

RESULTS	GENE	VARIANT(S)	INHERITANCE	PARTNER TESTING RECOMMENDED
Carrier: Biotinidase deficiency	BTD	c.1330G>C (p.Asp444His)	Autosomal recessive	Yes

Next steps

- See the table above for recommendations regarding testing of this individual's reproductive partner.
- Even for genes that have a negative test result, there is always a small risk that an individual could still be a carrier. This is called "residual risk." See the Carrier detection rates and residual risks document.
- Discussion with a physician and/or genetic counselor is recommended to further review the implications of this test result and to understand these results in the context of any family history of a genetic condition.
- All patients, regardless of result, may wish to consider additional screening for hemoglobinopathies by complete blood count (CBC) and hemoglobin electrophoresis, if this has not already been completed.
- Individuals can register their tests at https://www.invitae.com/patients/ to access online results, educational resources, and next steps.

Invitae #:

DOB:

Clinical summary

RESULT: CARRIER

Biotinidase deficiency

A single Pathogenic variant, c.1330G>C (p.Asp444His), was identified in BTD.

What is biotinidase deficiency?

Biotinidase deficiency (BTD) is a condition in which the body has difficulty recycling a B vitamin called biotin. Symptoms of BTD are variable and typically involve neurologic and skin findings. If untreated, profound BTD typically presents during the first few months of life, and the symptoms may be severe. There is also a milder form of BTD, called partial biotinidase deficiency. Individuals with partial BTD typically do not have any signs or symptoms of the condition (asymptomatic). However, if untreated, symptoms of partial BTD may appear during times of illness or stress and may include low muscle tone (hypotonia), skin rashes, and hair loss (alopecia). BTD is readily treatable, and early treatment, including biotin supplementation, may prevent or reduce the severity of symptoms.

Individuals with partial BTD have one copy of the c.1330G>C (p.Asp444His) variant and a second disease-causing variant in the BTD gene on the opposite chromosome. Some individuals have 2 copies of the c.1330G>C (p.Asp444His) variant (homozygous). These individuals have mild enzyme deficiency, but do not have clinical symptoms of partial BTD.

Follow-up depends on each affected individual's specific situation, and discussion with a healthcare provider should be considered.

Next steps

Carrier testing for the reproductive partner is recommended.

If your partner tests positive:

The various forms of biotinidase deficiency are inherited in an autosomal recessive fashion. In autosomal recessive inheritance, an individual must have disease-causing genetic changes in each copy of the BTD gene to be affected. Carriers, who have a disease-causing genetic change in only one copy of the gene, typically do not have symptoms. When both reproductive partners are carriers of an autosomal recessive condition, there is a 25% chance for each child to have the condition. The form of biotinidase deficiency depends on the specific BTD variants inherited from the reproductive parents.

Autosomal recessive inheritance Carrier father Carrier mother Genetic variant Unaffected child 25% 50% Affected child 25%

If your partner tests negative:

A negative carrier test result reduces, but does not eliminate, the chance that a person may be a carrier. The risk that a person could still be a carrier, even after a negative test result, is called a residual risk. See the table below for your partner's hypothetical residual risk after testing negative for biotinidase deficiency. These values are provided only as a guide, are based on the detection rate for the condition as tested at Invitae, and assume a negative family history, the absence of symptoms, and vary based on the ethnic background of an individual. For genes associated with both dominant and recessive inheritance, the numbers provided apply to the recessive condition(s) associated with the gene.

DISORDER (INHERITANCE)	GENE	ETHNICITY	CARRIER FREQUENCY BEFORE SCREENING	CARRIER RESIDUAL RISK AFTER NEGATIVE RESULT
Biotinidase deficiency (AR) NM_000060.3	BTD	Pan-ethnic	1 in 125	1 in 12400

DOB:

Invitae #:

Results to note

SMN1

Negative result. SMN1: 2 copies; c.*3+80T>G not detected.

Pseudodeficiency allele(s)

- Benign changes, c.550C>T (p.Arg184Cys) and c.1685T>C (p.Ile562Thr), known to be pseudodeficiency alleles, identified in the GALC gene.
 Pseudodeficiency alleles are not known to be associated with disease, including Krabbe disease.
- The presence of a pseudodeficiency allele does not impact this individual's risk to be a carrier. Individuals with pseudodeficiency alleles may exhibit false positive results on related biochemical tests, including newborn screening. However, pseudodeficiency alleles are not known to cause disease, even when there are two copies of the variant (homozygous) or when in combination with another disease-causing variant (compound heterozygous). Carrier testing for the reproductive partner is not indicated based on this result.

Variant details

BTD, Exon 4, c.1330G>C (p.Asp444His), heterozygous, PATHOGENIC

- This sequence change replaces aspartic acid, which is acidic and polar, with histidine, which is basic and polar, at codon 444 of the BTD protein (p.Asp444His).
- This variant is present in population databases (rs13078881, gnomAD 6%), and has an allele count higher than expected for a pathogenic variant.
- In the homozygous state this variant does not cause biotinidase deficiency or partial biotinidase deficiency (PMID: 28682309, 9654207). However, this variant in conjunction with another pathogenic variant is a common cause of partial biotinidase deficiency (PMID: 10206677, 9654207, 12227467, 23644139). This variant has also been observed in individuals affected with profound biotinidase deficiency when this variant is in cis with the p.A171T variant and in trans with a third variant (PMID: 10206677, 9654207).
- In individuals affected with partial biotinidase deficiency who harbor this variant in combination with another BTD variant, serum biotinidase activity was approximately 24% of the mean normal control activity (PMID: 9654207). In individuals affected with profound biotinidase deficiency who harbor this variant in cis with p.A171T and in trans with another BTD variant, serum biotinidase activity was <10% of the mean normal control activity (PMID: 10206677, 9654207). Individuals who are homozygous for this variant typically have an enzyme activity that is approximately 50% of normal (PMID: 20539236, 28682309, 9654207), similar to what is seen for a carrier of a profound allele.
- ClinVar contains an entry for this variant (Variation ID: 1900).
- Advanced modeling of protein sequence and biophysical properties (such as structural, functional, and spatial information, amino acid conservation, physicochemical variation, residue mobility, and thermodynamic stability) performed at Invitae indicates that this missense variant is expected to disrupt BTD protein function.
- For these reasons, this variant has been classified as Pathogenic.

Residual risk

No carrier test can detect 100% of carriers. There still remains a small risk of being a carrier after a negative test (residual risk). Residual risk values assume a negative family history and are inferred from published carrier frequencies and estimated detection rates based on testing technologies used at Invitae. You can view Invitae's complete Carrier detection rates and residual risks document (containing all carrier genes) online at https://www.invitae.com/carrier-residual-risks/. Additionally, the order-specific information for this report is available to download in the portal (under this order's documents) or can be requested by contacting Invitae Client Services. The complete Carrier detection rates and residual risks document will not be applicable for any genes with specimen-specific limitations in sequencing and/or deletion/duplication coverage. Please see the final bullet point in the Limitations section of this report to view if this specimen had any gene-specific coverage gaps.

Invitae #:

DOB:

Genes analyzed

This table represents a complete list of genes analyzed for this individual, including the relevant gene transcript(s). If more than one transcript is listed for a single gene, variants were reported using the first transcript listed unless otherwise indicated in the report. An asterisk (*) indicates that this gene has a limitation. Please see the Limitations section for details. Results are negative, unless otherwise indicated in the report.

CENE	TRANSCRIPT
GENE	TRANSCRIPT
AAAS	NM_015665.5
ABCA12	NM_173076.2
ABCA3	NM_001089.2
ABCA4	NM_000350.2
ABCB11	NM_003742.2
ABCB4	NM_000443.3
ABCC2*	NM_000392.4
ABCC8	NM_000352.4
ACAD9	NM_014049.4
ACADM	NM_000016.5
ACADVL	NM_000018.3
ACAT1	NM_000019.3
ACOX1	NM_004035.6
ACSF3	NM_174917.4
ADA	NM_000022.2
ADAMTS2	NM_014244.4
ADAMTSL4	NM_019032.5
ADGRG1	NM_005682.6
ADGRV1	NM_032119.3
AGA	NM_000027.3
AGL	NM_000642.2
AGPS	NM_003659.3
AGXT	NM_000030.2
AHI1	NM_017651.4
AIPL1*	NM_014336.4
AIRE	NM_000383.3
ALDH3A2	NM_000382.2
ALDH7A1	NM_001182.4
ALDOB	NM_000035.3
ALG1	NM_019109.4
ALG6	NM_013339.3
ALMS1	NM_015120.4
ALPL	NM_000478.5
AMN*	NM_030943.3
AMT	NM_000481.3
ANO10*	NM_018075.3

GENE	TRANSCRIPT
AP1S1	NM_001283.3
AQP2	NM_000486.5
ARG1	NM_000045.3
ARL6	NM_177976.2
ARSA	NM_000487.5
ARSB	NM_000046.3
ASL	NM_000048.3
ASNS	NM_133436.3
ASPA	NM_000049.2
ASS1	NM_000050.4
ATM*	NM_000051.3
ATP6V1B1	NM_001692.3
АТР7В	NM_000053.3
ATP8B1*	NM_005603.4
BBS1	NM_024649.4
BBS10	NM_024685.3
BBS12	NM_152618.2
BBS2	NM_031885.3
BBS4	NM_033028.4
BBS5	NM_152384.2
BBS7	NM_176824.2
BBS9*	NM_198428.2
BCKDHA	NM_000709.3
BCKDHB	NM_183050.2
BCS1L	NM_004328.4
BLM	NM_000057.3
BLOC1S3	NM_212550.4
BLOC1S6	NM_012388.3
ВМР1	NM_006129.4;NM_001199.3
BRIP1	NM_032043.2
BSND	NM_057176.2
BTD	NM_000060.3
CAD	NM_004341.4
CANT1	NM_138793.3
CAPN3	NM_000070.2
CASQ2	NM_001232.3

GENE	TRANSCRIPT
CBS	NM_000071.2
CC2D1A	NM_017721.5
CC2D2A	NM_001080522.2
CCDC103	NM_213607.2
CCDC39	NM_181426.1
CCDC88C	NM_001080414.3
CD3D	NM_000732.4
CD3E	NM_000733.3
CD40	NM_001250.5
CD59	NM_203330.2
CDH23	NM_022124.5
CEP152	NM_014985.3
CEP290	NM_025114.3
CERKL	NM_001030311.2
CFTR*	NM_000492.3
CHAT	NM_020549.4
CHRNE	NM_000080.3
CHRNG	NM_005199.4
CIITA	NM_000246.3
CLCN1	NM_000083.2
CLN3	NM_001042432.1
CLN5	NM_006493.2
CLN6	NM_017882.2
CLN8	NM_018941.3
CLRN1	NM_174878.2
CNGB3	NM_019098.4
COL11A2*	NM_080680.2
COL17A1	NM_000494.3
COL27A1	NM_032888.3
COL4A3	NM_000091.4
COL4A4	NM_000092.4
COL7A1	NM_000094.3
COX15	NM_004376.6
CPS1	NM_001875.4
CPT1A	NM_001876.3
CPT2	NM_000098.2

DOB:

GENE	TRANSCRIPT
CRB1	NM_201253.2
CRTAP	NM_006371.4
CTNS	NM_004937.2
CTSA	NM_000308.3
CTSC	NM_001814.5
CTSD	NM_001909.4
CTSK	NM_000396.3
CYBA	NM_000101.3
CYP11A1	NM_000781.2
CYP11B1	NM_000497.3
CYP11B2	NM_000498.3
CYP17A1	NM_000102.3
CYP19A1	NM_031226.2
CYP1B1	NM_000104.3
CYP21A2*	NM_000500.7
CYP27A1	NM_000784.3
CYP27B1	NM_000785.3
CYP7B1	NM_004820.3
DBT	NM_001918.3
DCAF17	NM_025000.3
DCLRE1C	NM_001033855.2
DDX11*	NM_030653.3
DFNB59	NM_001042702.3
DGAT1	NM_012079.5
DGUOK	NM_080916.2
DHCR7	NM_001360.2
DHDDS	NM_024887.3
DLD	NM_000108.4
DLL3	NM_016941.3
DNAH11	NM_001277115.1
DNAH5	NM_001369.2
DNAI1	NM_012144.3
DNAI2	NM_023036.4
DNMT3B	NM_006892.3
DOK7	NM_173660.4
DUOX2*	NM_014080.4
DYNC2H1	NM_001080463.1
DYSF	NM_003494.3
EIF2AK3	NM_004836.6

CENE	TDANSCRIPT
GENE	TRANSCRIPT
EIF2B1	NM_001414.3
EIF2B2	NM_014239.3
EIF2B3	NM_020365.4
EIF2B4	NM_015636.3
EIF2B5	NM_003907.2
ELP1	NM_003640.3
EPG5	NM_020964.2
ERCC2	NM_000400.3
ERCC6	NM_000124.3
ERCC8	NM_000082.3
ESCO2	NM_001017420.2
ETFA	NM_000126.3
ETFB	NM_001985.2
ETFDH	NM_004453.3
ETHE1	NM_014297.3
EVC	NM_153717.2
EVC2	NM_147127.4
EXOSC3	NM_016042.3
EYS*	NM_001142800.1
FAH*	NM_000137.2
FAM161A	NM_001201543.1
FANCA	NM_000135.2
FANCC	NM_000136.2
FANCD2*	NM_033084.3
FANCE	NM_021922.2
FANCG	NM_004629.1
FANCI	NM_001113378.1
FANCL*	NM_018062.3
FBP1	NM_000507.3
FBXO7	NM_012179.3
FH*	NM_000143.3
FKBP10	NM_021939.3
FKRP	NM_024301.4
FKTN	NM_001079802.1
FMO3	NM_006894.6
FOXN1	NM_003593.2
FOXRED1	NM_017547.3
FRAS1	NM_025074.6
FREM2	NM_207361.5

GENE	TRANSCRIPT
FUCA1	NM_000147.4
G6PC	NM_000151.3
G6PC3	NM_138387.3
GAA	NM_000152.3
GALC*	NM_000153.3
GALE*	NM_000403.3
GALK1	NM_000154.1
GALNS	NM_000512.4
GALNT3	NM_004482.3
GALT	NM_000155.3
GAMT	NM_000156.5
GATM	NM_001482.2
GBA*	NM_001005741.2
GBE1	NM_000158.3
GCDH	NM_000159.3
GCH1	NM_000161.2
GDF5	NM_000557.4
GFM1	NM_024996.5
GHR*	NM_000163.4
GJB2	NM_004004.5
GLB1	NM_000404.2
GLDC	NM_000170.2
GLE1	NM_001003722.1
GNE*	NM_001128227.2
GNPAT	NM_014236.3
GNPTAB	NM_024312.4
GNPTG	NM_032520.4
GNS	NM_002076.3
GORAB	NM_152281.2
GRHPR	NM_012203.1
GRIP1	NM_021150.3
GSS	NM_000178.2
GUCY2D	NM_000180.3
GUSB	NM_000181.3
HADH	NM_005327.4
HADHA	NM_000182.4
HADHB	NM_000183.2
НАМР	NM_021175.2
HAX1	NM_006118.3

55 **DOB**:

GENE	TRANSCRIPT
HBA1*	NM_000558.4
HBA2	NM_000517.4
НВВ	NM_000518.4
HEXA	NM_000520.4
HEXB	NM_000521.3
HGSNAT	NM_152419.2
ну	NM_213653.3
HLCS	NM_000411.6
HMGCL	NM_000191.2
HMOX1	NM_002133.2
HOGA1	NM_138413.3
HPD	NM_002150.2
HPS1	NM_000195.4
HPS3	NM_032383.4
HPS4	NM_022081.5
HPS5	NM_181507.1
HPS6	NM_024747.5
HSD17B3	NM_000197.1
HSD17B4	NM_000414.3
HSD3B2	NM_000198.3
HYAL1	NM_153281.1
HYLS1	NM_145014.2
IDUA	NM_000203.4
IGHMBP2	NM_002180.2
IKBKB	NM_001556.2
IL7R	NM_002185.3
INVS	NM_014425.3
ITGA6	NM_000210.3
ITGB3	NM_000212.2
ITGB4	NM_001005731.2
IVD	NM_002225.3
JAK3	NM_000215.3
KCNJ1	NM_000220.4
KCNJ11	NM_000525.3
LAMA2	NM_000426.3
LAMA3	NM_000227.4
LAMB3	NM_000228.2
LAMC2	NM_005562.2
LARGE1	NM_004737.4

LCA5 NM_181714.3 LDLR NM_000527.4 LDLRAP1 NM_015627.2 LHX3 NM_014564.4 LIFR* NM_002310.5 LIG4 NM_002312.3 LIPA NM_018368.3 LOXHD1 NM_144612.6 LPL NM_000237.2 LRAT NM_004744.4 LRP2 NM_004525.2 LRPPRC NM_133259.3 LYST NM_000081.3 MAK NM_001242957.2 MAN2B1 NM_000528.3 MANBA NM_00528.3 MCEE NM_032601.3 MCOLN1 NM_02653.2 MCPH1 NM_024596.4 MECR NM_016011.3 MED17 NM_016011.3 MED17 NM_004268.4 MESP2 NM_01039958.1 MFSD8 NM_152778.2 MKKS NM_018848.3 MKS1 NM_017777.3 MLC1* NM_015166.3 MLYCD NM_015506.2 MMADHC NM_015702.2	GENE	TRANSCRIPT
LDLRAP1 LHX3 NM_015627.2 LHX3 NM_014564.4 LIFR* NM_002310.5 LIG4 NM_002312.3 LIPA NM_000235.3 LMBRD1 NM_018368.3 LOXHD1 NM_144612.6 LPL NM_000237.2 LRAT NM_004744.4 LRP2 NM_004525.2 LRPPRC NM_133259.3 LYST NM_000081.3 MAK NM_001242957.2 MAN2B1 NM_000528.3 MANBA NM_00528.3 MCEE NM_032601.3 MCOLN1 NM_020533.2 MCPH1 NM_024596.4 MECR NM_016011.3 MED17 NM_001242957.2 MKS NM_01039958.1 MFSD8 NM_152778.2 MKKS NM_018848.3 MKS1 NM_017777.3 MLC1* NM_015166.3 MLYCD NM_015506.2 MMADHC NM_015702.2	LCA5	NM_181714.3
LHX3	LDLR	NM_000527.4
LIFR* NM_002310.5 LIG4 NM_002312.3 LIPA NM_000235.3 LMBRD1 NM_018368.3 LOXHD1 NM_144612.6 LPL NM_000237.2 LRAT NM_004744.4 LRP2 NM_004525.2 LRPPRC NM_133259.3 LYST NM_00081.3 MAK NM_001242957.2 MAN2B1 NM_000528.3 MANBA NM_00528.3 MCEE NM_032601.3 MCOLN1 NM_020533.2 MCPH1 NM_024596.4 MECR NM_016011.3 MED17 NM_004268.4 MESP2 NM_001039958.1 MFSD8 NM_152778.2 MKKS NM_018848.3 MKS1 NM_017777.3 MLC1* NM_015166.3 MLYCD NM_012213.2 MMAA NM_172250.2 MMAB NM_052845.3 MMACHC NM_015702.2	LDLRAP1	NM_015627.2
LIG4 NM_002312.3 LIPA NM_000235.3 LMBRD1 NM_018368.3 LOXHD1 NM_144612.6 LPL NM_000237.2 LRAT NM_004744.4 LRP2 NM_004525.2 LRPPRC NM_133259.3 LYST NM_00081.3 MAK NM_001242957.2 MAN2B1 NM_000528.3 MANBA NM_005908.3 MCEE NM_032601.3 MCOLN1 NM_020533.2 MCPH1 NM_024596.4 MECR NM_016011.3 MED17 NM_004268.4 MESP2 NM_001039958.1 MFSD8 NM_152778.2 MKKS NM_018848.3 MKS1 NM_017777.3 MLC1* NM_015166.3 MLYCD NM_012213.2 MMAA NM_172250.2 MMAB NM_052845.3 MMACHC NM_015702.2	LHX3	NM_014564.4
LIPA NM_000235.3 LMBRD1 NM_018368.3 LOXHD1 NM_144612.6 LPL NM_000237.2 LRAT NM_004744.4 LRP2 NM_004525.2 LRPPRC NM_133259.3 LYST NM_00081.3 MAK NM_001242957.2 MAN2B1 NM_000528.3 MANBA NM_005908.3 MCEE NM_032601.3 MCOLN1 NM_020533.2 MCPH1 NM_024596.4 MECR NM_016011.3 MED17 NM_004268.4 MESP2 NM_001039958.1 MFSD8 NM_152778.2 MKKS NM_018848.3 MKS1 NM_017777.3 MLC1* NM_015166.3 MLYCD NM_012213.2 MMAA NM_172250.2 MMAB NM_052845.3 MMACHC NM_015702.2	LIFR*	NM_002310.5
LMBRD1 NM_018368.3 LOXHD1 NM_144612.6 LPL NM_000237.2 LRAT NM_004744.4 LRP2 NM_004525.2 LRPPRC NM_133259.3 LYST NM_000081.3 MAK NM_001242957.2 MAN2B1 NM_000528.3 MANBA NM_005908.3 MCEE NM_032601.3 MCOLN1 NM_020533.2 MCPH1 NM_024596.4 MECR NM_016011.3 MED17 NM_016011.3 MED17 NM_004268.4 MESP2 NM_001039958.1 MFSD8 NM_152778.2 MKKS NM_018848.3 MKS1 NM_017777.3 MLC1* NM_015166.3 MLYCD NM_01520.2 MMAA NM_172250.2 MMAB NM_052845.3 MMACHC NM_015702.2	LIG4	NM_002312.3
LOXHD1	LIPA	NM_000235.3
LPL NM_000237.2 LRAT NM_004744.4 LRP2 NM_004525.2 LRPPRC NM_133259.3 LYST NM_000081.3 MAK NM_001242957.2 MAN2B1 NM_000528.3 MANBA NM_005908.3 MCEE NM_032601.3 MCOLN1 NM_020533.2 MCPH1 NM_024596.4 MECR NM_016011.3 MED17 NM_004268.4 MESP2 NM_001039958.1 MFSD8 NM_152778.2 MKKS NM_018848.3 MKS1 NM_017777.3 MLC1* NM_015166.3 MLYCD NM_012213.2 MMAA NM_172250.2 MMAB NM_052845.3 MMACHC NM_015702.2	LMBRD1	NM_018368.3
LRAT NM_004744.4 LRP2 NM_004525.2 LRPPRC NM_133259.3 LYST NM_000081.3 MAK NM_001242957.2 MAN2B1 NM_000528.3 MANBA NM_005908.3 MCEE NM_032601.3 MCOLN1 NM_020533.2 MCPH1 NM_024596.4 MECR NM_0116011.3 MED17 NM_004268.4 MESP2 NM_001039958.1 MFSD8 NM_152778.2 MKKS NM_018848.3 MKS1 NM_017777.3 MLC1* NM_015166.3 MLYCD NM_012213.2 MMAA NM_172250.2 MMAB NM_052845.3 MMACHC NM_015702.2	LOXHD1	NM_144612.6
LRP2 LRPPRC NM_133259.3 LYST NM_000081.3 MAK NM_001242957.2 MAN2B1 NM_005908.3 MCEE NM_032601.3 MCOLN1 NM_020533.2 MCPH1 NM_024596.4 MECR NM_016011.3 MED17 NM_004268.4 MESP2 NM_001039958.1 MFSD8 NM_152778.2 MKKS NM_018848.3 MKS1 NM_017777.3 MLC1* NM_015166.3 MLYCD NM_012213.2 MMAA NM_172250.2 MMAB NM_015506.2 MMADHC NM_015702.2	LPL	NM_000237.2
LRPPRC NM_133259.3 LYST NM_000081.3 MAK NM_001242957.2 MAN2B1 NM_000528.3 MANBA NM_005908.3 MCEE NM_032601.3 MCOLN1 NM_020533.2 MCPH1 NM_024596.4 MECR NM_016011.3 MED17 NM_004268.4 MESP2 NM_001039958.1 MFSD8 NM_152778.2 MKKS NM_018848.3 MKS1 NM_017777.3 MLC1* NM_015166.3 MLYCD NM_012213.2 MMAA NM_172250.2 MMAB NM_052845.3 MMACHC NM_015702.2	LRAT	NM_004744.4
LYST NM_000081.3 MAK NM_001242957.2 MAN2B1 NM_000528.3 MANBA NM_005908.3 MCEE NM_032601.3 MCOLN1 NM_020533.2 MCPH1 NM_024596.4 MECR NM_016011.3 MED17 NM_004268.4 MESP2 NM_001039958.1 MFSD8 NM_152778.2 MKKS NM_018848.3 MKS1 NM_017777.3 MLC1* NM_015166.3 MLYCD NM_012213.2 MMAA NM_172250.2 MMAB NM_052845.3 MMACHC NM_015702.2	LRP2	NM_004525.2
MAK NM_001242957.2 MAN2B1 NM_000528.3 MANBA NM_005908.3 MCEE NM_032601.3 MCOLN1 NM_020533.2 MCPH1 NM_016011.3 MECR NM_016011.3 MED17 NM_004268.4 MESP2 NM_0101039958.1 MFSD8 NM_152778.2 MKKS NM_018848.3 MKS1 NM_017777.3 MLC1* NM_015166.3 MLYCD NM_012213.2 MMAA NM_172250.2 MMAB NM_052845.3 MMACHC NM_015702.2	LRPPRC	NM_133259.3
MAN2B1 NM_000528.3 MANBA NM_005908.3 MCEE NM_032601.3 MCOLN1 NM_020533.2 MCPH1 NM_024596.4 MECR NM_016011.3 MED17 NM_004268.4 MESP2 NM_0101039958.1 MFSD8 NM_152778.2 MKKS NM_018848.3 MKS1 NM_017777.3 MLC1* NM_015166.3 MLYCD NM_012213.2 MMAA NM_172250.2 MMAB NM_052845.3 MMACHC NM_015702.2	LYST	NM_000081.3
MANBA NM_005908.3 MCEE NM_032601.3 MCOLN1 NM_020533.2 MCPH1 NM_024596.4 MECR NM_016011.3 MED17 NM_004268.4 MESP2 NM_001039958.1 MFSD8 NM_152778.2 MKKS NM_018848.3 MKS1 NM_017777.3 MLC1* NM_015166.3 MLYCD NM_012213.2 MMAA NM_172250.2 MMAB NM_052845.3 MMACHC NM_015702.2	MAK	NM_001242957.2
MCEE NM_032601.3 MCOLN1 NM_020533.2 MCPH1 NM_024596.4 MECR NM_016011.3 MED17 NM_004268.4 MESP2 NM_001039958.1 MFSD8 NM_152778.2 MKKS NM_018848.3 MKS1 NM_017777.3 MLC1* NM_015166.3 MLYCD NM_012213.2 MMAA NM_172250.2 MMAB NM_052845.3 MMACHC NM_015702.2	MAN2B1	NM_000528.3
MCOLN1 NM_020533.2 MCPH1 NM_024596.4 MECR NM_016011.3 MED17 NM_004268.4 MESP2 NM_01039958.1 MFSD8 NM_152778.2 MKKS NM_018848.3 MKS1 NM_017777.3 MLC1* NM_015166.3 MLYCD NM_012213.2 MMAA NM_172250.2 MMAB NM_052845.3 MMACHC NM_015702.2	MANBA	NM_005908.3
MCPH1 NM_024596.4 MECR NM_016011.3 MED17 NM_004268.4 MESP2 NM_001039958.1 MFSD8 NM_152778.2 MKKS NM_018848.3 MKS1 NM_017777.3 MLC1* NM_015166.3 MLYCD NM_012213.2 MMAA NM_172250.2 MMAB NM_052845.3 MMACHC NM_015702.2	MCEE	NM_032601.3
MECR NM_016011.3 MED17 NM_004268.4 MESP2 NM_01039958.1 MFSD8 NM_152778.2 MKKS NM_018848.3 MKS1 NM_017777.3 MLC1* NM_015166.3 MLYCD NM_012213.2 MMAA NM_172250.2 MMAB NM_052845.3 MMACHC NM_015506.2 MMADHC NM_015702.2	MCOLN1	NM_020533.2
MED17 NM_004268.4 MESP2 NM_001039958.1 MFSD8 NM_152778.2 MKKS NM_018848.3 MKS1 NM_017777.3 MLC1* NM_015166.3 MLYCD NM_012213.2 MMAA NM_172250.2 MMAB NM_052845.3 MMACHC NM_015506.2 MMADHC NM_015702.2	MCPH1	NM_024596.4
MESP2 NM_001039958.1 MFSD8 NM_152778.2 MKKS NM_018848.3 MKS1 NM_017777.3 MLC1* NM_015166.3 MLYCD NM_012213.2 MMAA NM_172250.2 MMAB NM_052845.3 MMACHC NM_015506.2 MMADHC NM_015702.2	MECR	NM_016011.3
MFSD8 NM_152778.2 MKKS NM_018848.3 MKS1 NM_017777.3 MLC1* NM_015166.3 MLYCD NM_012213.2 MMAA NM_172250.2 MMAB NM_052845.3 MMACHC NM_015506.2 MMADHC NM_015702.2	MED17	NM_004268.4
MKKS NM_018848.3 MKS1 NM_017777.3 MLC1* NM_015166.3 MLYCD NM_012213.2 MMAA NM_172250.2 MMAB NM_052845.3 MMACHC NM_015506.2 MMADHC NM_015702.2	MESP2	NM_001039958.1
MKS1 NM_017777.3 MLC1* NM_015166.3 MLYCD NM_012213.2 MMAA NM_172250.2 MMAB NM_052845.3 MMACHC NM_015506.2 MMADHC NM_015702.2	MFSD8	NM_152778.2
MLC1* NM_015166.3 MLYCD NM_012213.2 MMAA NM_172250.2 MMAB NM_052845.3 MMACHC NM_015506.2 MMADHC NM_015702.2	MKKS	NM_018848.3
MLYCD NM_012213.2 MMAA NM_172250.2 MMAB NM_052845.3 MMACHC NM_015506.2 MMADHC NM_015702.2	MKS1	NM_017777.3
MMAA NM_172250.2 MMAB NM_052845.3 MMACHC NM_015506.2 MMADHC NM_015702.2	MLC1*	NM_015166.3
MMAB NM_052845.3 MMACHC NM_015506.2 MMADHC NM_015702.2	MLYCD	NM_012213.2
MMACHC NM_015506.2 MMADHC NM_015702.2	MMAA	NM_172250.2
MMADHC NM_015702.2	MMAB	NM_052845.3
· - · · · ·	MMACHC	NM_015506.2
	MMADHC	NM_015702.2
MOCS1 NM_001358530.2	MOCS1	NM_001358530.2
MOCS2A NM_176806.3	MOCS2A	NM_176806.3
MOCS2B NM_004531.4	MOCS2B	NM_004531.4
MPI NM_002435.2	MPI	NM_002435.2
MPL NM_005373.2	MPL	NM_005373.2
MPV17 NM_002437.4	MPV17	NM_002437.4
MRE11 NM_005591.3	MRE11	NM_005591.3

GENE	TRANSCRIPT
MTHFR*	NM_005957.4
MTR	NM_000254.2
MTRR	NM_002454.2
MTTP	NM_000253.3
MUSK	NM_005592.3
MUT	NM_000255.3
MVK	NM_000431.3
MYO15A	NM_016239.3
MYO7A	NM_000260.3
NAGA	NM_000262.2
NAGLU	NM_000263.3
NAGS	NM_153006.2
NBN	NM_002485.4
NCF2	NM_000433.3
NDRG1	NM_006096.3
NDUFAF2	NM_174889.4
NDUFAF5	NM_024120.4
NDUFS4	NM_002495.3
NDUFS6	NM_004553.4
NDUFS7	NM_024407.4
NDUFV1	NM_007103.3
NEB*	NM_001271208.1
NEU1	NM_000434.3
NGLY1	NM_018297.3
NPC1	NM_000271.4
NPC2	NM_006432.3
NPHP1	NM_000272.3
NPHS1	NM_004646.3
NPHS2	NM_014625.3
NR2E3	NM_014249.3
NSMCE3	NM_138704.3
NTRK1	NM_001012331.1
OAT*	NM_000274.3
OCA2	NM_000275.2
OPA3	NM_025136.3
OSTM1	NM_014028.3
OTOA*	NM_144672.3
OTOF	NM_194248.2;NM_194323.2
P3H1	NM_022356.3

DOB:

GENE	TRANSCRIPT		
PAH	NM_000277.1		
PANK2	NM_153638.2		
PC	NM_000920.3		
PCBD1	NM_000281.3		
PCCA	NM_000282.3		
PCCB	NM_000532.4		
PCDH15	NM_033056.3		
PCNT	NM_006031.5		
PDHB	NM_000925.3		
PEPD	NM_000285.3		
PET100	NM_001171155.1		
PEX1*	NM_000466.2		
PEX10	NM_153818.1		
PEX12	NM_000286.2		
PEX13	NM_002618.3		
PEX16	NM_004813.2		
PEX2	NM_000318.2		
PEX26	NM_017929.5		
PEX5	NM_001131025.1		
PEX6	NM_000287.3		
PEX7	NM_000288.3		
PFKM	NM_000289.5		
PGM3	NM_001199917.1		
PHGDH	NM_006623.3		
РНКВ	NM_000293.2;NM_00103183 5.2		
PHKG2	NM_000294.2		
PHYH	NM_006214.3		
PIGN	NM_176787.4		
PKHD1*	NM_138694.3		
PLA2G6	NM_003560.2		
PLEKHG5	NM_020631.4		
PLOD1	NM_000302.3		
PMM2	NM_000303.2		
PNPO	NM_018129.3		
POLG	NM_002693.2		
POLH	NM_006502.2		
POMGNT1	NM_017739.3		
POMT1	NM_007171.3		
POMT2	NM_013382.5		

GENE	TRANSCRIPT	
POR	NM_000941.2	
POU1F1	NM_000306.3	
PPT1	NM_000310.3	
PRCD	NM_001077620.2	
PRDM5	NM_018699.3	
PRF1	NM_001083116.1	
PROP1	NM_006261.4	
PSAP	NM_002778.3	
PTPRC*	NM_002838.4	
PTS	NM_000317.2	
PUS1	NM_025215.5	
PYGM	NM_005609.3	
QDPR	NM_000320.2	
RAB23	NM_183227.2	
RAG1	NM_000448.2	
RAG2	NM_000536.3	
RAPSN	NM_005055.4	
RARS2	NM_020320.3	
RDH12	NM_152443.2	
RLBP1	NM_000326.4	
RMRP	NR_003051.3	
RNASEH2A	NM_006397.2	
RNASEH2B	NM_024570.3	
RNASEH2C	NM_032193.3	
RPE65	NM_000329.2	
RPGRIP1L	NM_015272.2	
RTEL1	NM_001283009.1	
RXYLT1	NM_014254.2	
RYR1	NM_000540.2	
SACS	NM_014363.5	
SAMD9	NM_017654.3	
SAMHD1	NM_015474.3	
SCO2	NM_005138.2	
SEC23B	NM_006363.4	
SEPSECS	NM_016955.3	
SGCA	NM_000023.2	
SGCB	NM_000232.4	
SGCD	NM_000337.5	
	NM_000231.2	

GENE	TRANSCRIPT		
SGSH	NM_000199.3		
SKIV2L	NM_006929.4		
SLC12A1	NM_000338.2		
SLC12A3	NM_000339.2		
SLC12A6	NM_133647.1		
SLC17A5	NM_012434.4		
SLC19A2	NM_006996.2		
SLC19A3	NM_025243.3		
SLC1A4	NM_003038.4		
SLC22A5	NM_003060.3		
SLC25A13	NM_014251.2		
SLC25A15	NM_014252.3		
SLC25A20	NM_000387.5		
SLC26A2	NM_000112.3		
SLC26A3	NM_000111.2		
SLC26A4	NM_000441.1		
SLC27A4	NM_005094.3		
SLC35A3	NM_012243.2		
SLC37A4	NM_001164277.1		
SLC38A8	NM_001080442.2		
SLC39A4	NM_130849.3		
SLC45A2	NM_016180.4		
SLC4A11	NM_032034.3		
SLC5A5	NM_000453.2		
SLC7A7	NM_001126106.2		
SMARCAL1	NM_014140.3		
SMN1*	NM_000344.3		
SMPD1	NM_000543.4		
SNAP29	NM_004782.3		
SPG11	NM_025137.3		
SPR	NM_003124.4		
SRD5A2	NM_000348.3		
ST3GAL5	NM_003896.3		
STAR	NM_000349.2		
STX11	NM_003764.3		
STXBP2	NM_006949.3		
SUMF1	NM_182760.3		
SUOX	NM_000456.2		
SURF1	NM_003172.3		

Patient name: DONOR 7055 DOB:

GENE	TRANSCRIPT		
SYNE4	NM_001039876.2		
TANGO2	NM_152906.6		
TAT	NM_000353.2		
TBCD	NM_005993.4		
TBCE*	NM_003193.4		
TCIRG1	NM_006019.3		
TCN2	NM_000355.3		
TECPR2	NM_014844.3		
TERT	NM_198253.2		
TF	NM_001063.3		
TFR2	NM_003227.3		
TG*	NM_003235.4		
TGM1	NM_000359.2		
TH	NM_199292.2		
TK2	NM_004614.4		
TMC1	NM_138691.2		
TMEM216	NM_001173990.2		
TMEM67	NM_153704.5		
TMPRSS3	NM_024022.2		
TPO	NM_000547.5		
TPP1	NM_000391.3		
TREX1	NM_033629.4		
TRIM32	NM_012210.3		
TRIM37	NM_015294.4		
TRMU	NM_018006.4		
TSEN54	NM_207346.2		
TSFM*	NM_001172696.1		
TSHB	NM_000549.4		
TSHR	NM_000369.2		
TTC37	NM_014639.3		
TTPA	NM_000370.3		
TULP1	NM_003322.4		
TYMP	NM_001953.4		
TYR*	NM_000372.4		
TYRP1	NM_000550.2		
UBR1	NM_174916.2		
UNC13D	NM_199242.2		
USH1C*	NM_005709.3		
USH2A	NM_206933.2		

GENE	TRANSCRIPT		
VDR	NM_001017535.1		
VLDLR	NM_003383.4		
VPS11	NM_021729.5		
VPS13A*	NM_033305.2		
VPS13B	NM_017890.4		
VPS45	NM_007259.4		
VPS53*	NM_001128159.2		
VRK1	NM_003384.2		
VSX2	NM_182894.2		
WISP3	NM_003880.3		
WNT10A	NM_025216.2		
WRN*	NM_000553.4		
XPA	NM_000380.3		
XPC	NM_004628.4		
ZBTB24	NM_014797.2		
ZFYVE26	NM_015346.3		
ZNF469	NM_001127464.2		

Invitae #:

DOB:

Methods

 Genomic DNA obtained from the submitted sample is enriched for targeted regions using a hybridization-based protocol, and sequenced using Illumina technology. Unless otherwise indicated, all targeted regions are sequenced with ≥50x depth or are supplemented with additional analysis. Reads are aligned to a reference sequence (GRCh37), and sequence changes are identified and interpreted in the context of a single clinically relevant transcript, indicated in the Genes Analyzed table. Enrichment and analysis focus on the coding sequence of the indicated transcripts, 20bp of flanking intronic sequence, and other specific genomic regions demonstrated to be causative of disease at the time of assay design. Promoters, untranslated regions, and other non-coding regions are not otherwise interrogated. Exonic deletions and duplications are called using an in-house algorithm that determines copy number at each target by comparing the read depth for each target in the proband sequence with both mean read-depth and read-depth distribution, obtained from a set of clinical samples. Markers across the X and Y chromosomes are analyzed for quality control purposes and may detect deviations from the expected sex chromosome complement. Such deviations may be included in the report in accordance with internal guidelines. Invitae utilizes a classification methodology to identify next-generation sequencing (NGS)-detected variants that require orthogonal confirmation (Lincoln, et al. J Mol Diagn. 2019 Mar;21(2):318-329). Confirmation of the presence and location of reportable variants is performed as needed based on stringent criteria using one of several validated orthogonal approaches (PubMed ID 30610921). Sequencing is performed by Invitae Corporation (1400 16th Street, San Francisco, CA 94103, #05D2040778). Confirmatory sequencing is performed by Invitae Corporation (1400 16th Street, San Francisco, CA 94103, #05D2040778).

The following additional analyses are performed if relevant to the requisition. For GBA the reference genome has been modified to mask the sites of polymorphic paralog sequence variants (PSVs) in both the gene and pseudogene. For CYP21A2 and GBA, if one or more reportable variants, gene conversion, or fusion event is identified via our NGS pipeline (see Limitations), these variants are confirmed by PacBio sequencing of an amplicon generated by long-range PCR and subsequent short-range PCR. In some cases, it may not be possible to disambiguate between the gene and pseudogene. For GJB2, the reportable range includes large upstream deletions overlapping GJB6. For HBA1/2, the reference genome has been modified to force some sequencing reads derived from HBA1 to align to HBA2, and variant calling algorithms are modified to support an expectation of 4 alleles in these regions. HBA1/2 copy number calling is performed by a custom hypothesis testing algorithm which generates diplotype calls. If sequence data for a sample does not support a unique high confidence match from among hypotheses tested, that sample is flagged for manual review. Copy number variation is only reported for coding sequence of HBA1 and HBA2 and the HS-40 region. This assay does not distinguish among the $-\alpha 3.7$ subtypes, and all $-\alpha 3.7$ variants are called as HBA1 deletions. This assay may not detect overlapping copy gain and copy loss events when the breakpoints of those events are similar. For FMR1, cytosine-guanine-guanine (CGG) triplet repeats in the 5' untranslated region (5' UTR) of the FMR1 gene are detected by triplet repeat-primed PCR (RP-PCR) with fluorescently labeled primers followed by capillary electrophoresis. Reference ranges: Normal: <45 CGG repeats, intermediate: 45-54 CGG repeats, premutation: 55-200 CGG repeats, full mutation: >200 CGG repeats. For alleles with 55-90 triplet repeats, the region surrounding the FMR1 repeat is amplified by PCR. The PCR amplicons are then processed through PacBio SMRTBell library prep and sequenced using PacBio long read technology. The number of AGG interruptions within the 55-90 triplet repeat is read directly from the resulting DNA sequences.

- This report only includes variants that have a clinically significant association with the conditions tested as of the report date. Variants of uncertain significance, benign variants, and likely benign variants are not included in this report. However, if additional evidence becomes available to indicate that the clinical significance of a variant has changed, Invitae may update this report and provide notification.
- A PMID is a unique identifier referring to a published, scientific paper. Search by PMID at http://www.ncbi.nlm.nih.gov/pubmed.
- An rsID is a unique identifier referring to a single genomic position, and is used to associate population frequency information with sequence changes at that position. Reported population frequencies are derived from a number of public sites that aggregate data from large-scale population sequencing projects, including ExAC (http://exac.broadinstitute.org), gnomAD (http://gnomad.broadinstitute.org), and dbSNP (http://ncbi.nlm.nih.gov/SNP).

Disclaimer

DNA studies do not constitute a definitive test for the selected condition(s) in all individuals. It should be realized that there are possible sources of error. Errors can result from trace contamination, rare technical errors, rare genetic variants that interfere with analysis, recent scientific developments, and alternative classification systems. This test should be one of many aspects used by the healthcare provider to help with a diagnosis and treatment plan, but it is not a diagnosis itself. This test was developed and its performance characteristics determined by Invitae. It has not been cleared or approved by

DOB:

Invitae #:

the FDA. The laboratory is regulated under the Clinical Laboratory Improvement Act (CLIA) as qualified to perform high-complexity clinical tests (CLIA ID: 05D2040778). This test is used for clinical purposes. It should not be regarded as investigational or for research.

Limitations

- Based on validation study results, this assay achieves >99% analytical sensitivity and specificity for single nucleotide variants, insertions and deletions <15bp in length, and exon-level deletions and duplications. Invitae's methods also detect insertions and deletions larger than 15bp but smaller than a full exon but sensitivity for these may be marginally reduced. Invitae's deletion/duplication analysis determines copy number at a single exon resolution at virtually all targeted exons. However, in rare situations, single-exon copy number events may not be analyzed due to inherent sequence properties or isolated reduction in data quality. Certain types of variants, such as structural rearrangements (e.g. inversions, gene conversion events, translocations, etc.) or variants embedded in sequence with complex architecture (e.g. short tandem repeats or segmental duplications), may not be detected. Additionally, it may not be possible to fully resolve certain details about variants, such as mosaicism, phasing, or mapping ambiguity. Unless explicitly guaranteed, sequence changes in the promoter, non-coding exons, and other non-coding regions are not covered by this assay. Please consult the test definition on our website for details regarding regions or types of variants that are covered or excluded for this test. This report reflects the analysis of an extracted genomic DNA sample. While this test is intended to reflect the analysis of extracted genomic DNA from a referred patient, in very rare cases the analyzed DNA may not represent that individual's constitutional genome, such as in the case of a circulating hematolymphoid neoplasm, bone marrow transplant, blood transfusion, chimerism, culture artifact or maternal cell contamination.
- TBCE: Sequencing analysis for exons 2 includes only cds +/- 10 bp. PTPRC: Sequencing analysis is not offered for exons 3, 15. ABCC2: Deletion/ duplication analysis is not offered for exons 24-25. OTOA: Deletion/duplication and sequencing analysis is not offered for exons 20-28. DUOX2: Deletion/duplication and sequencing analysis is not offered for exons 6-7. GALE: Sequencing analysis for exons 10 includes only cds +/- 5 bp. DDX11: NM_030653.3:c.1763-1G>C variant only. SMN1: Systematic exon numbering is used for all genes, including SMN1, and for this reason the exon typically referred to as exon 7 in the literature (PMID: 8838816) is referred to as exon 8 in this report. This assay unambiguously detects SMN1 exon 8 copy number. The presence of the g.27134T>G variant (also known as c.*3+80T>G) is reported if SMN1 copy number = 2. SMN1 or SMN2: NM_000344.3:c.*3+80T>G variant only. VPS13A: Deletion/duplication analysis is not offered for exons 2-3, 27-28. NEB: Deletion/ duplication analysis is not offered for exons 82-105. NEB variants in this region with no evidence towards pathogenicity are not included in this report, but are available upon request. PKHD1: Deletion/duplication analysis is not offered for exon 13. GNE: Sequencing analysis for exons 8 includes only cds +/- 10 bp. GHR: Deletion/duplication and sequencing analysis is not offered for exon 3. BBS9: Deletion/duplication analysis is not offered for exon 4. CFTR: Sequencing analysis for exons 7 includes only cds +/- 10 bp. EYS: Sequencing analysis for exons 30 includes only cds +/- 0 bp. FH: Sequencing analysis for exons 9 includes only cds +/- 10 bp. WRN: Deletion/duplication analysis is not offered for exons 10-11. Sequencing analysis for exons 8, 10-11 includes only cds +/- 10 bp. OAT: Deletion/duplication analysis is not offered for exon 2. VPS53: Sequencing analysis for exons 14 includes only cds +/- 5 bp. FANCD2: Deletion/duplication analysis is not offered for exons 14-17, 22 and sequencing analysis is not offered for exons 15-17. Sequencing analysis for exons 6, 14, 18, 20, 23, 25, 34 includes only cds +/- 10 bp. COL11A2: Deletion/duplication analysis is not offered for exon 36. GBA: c.84dupG (p.Leu29Alafs*18), c.115+1G>A (Splice donor), c.222_224delTAC (p.Thr75del), c.475C>T (p.Arg159Trp), c.595_596delCT (p.Leu199Aspfs*62), c.680A>G (p.Asn227Ser), c.721G>A (p.Gly241Arg), c.754T>A (p.Phe252lle), c.1226A>G (p.Asn409Ser), c.1246G>A (p.Gly416Ser), c.1263_1317del (p.Leu422Profs*4), c.1297G>T (p.Val433Leu), c.1342G>C (p.Asp448His), c.1343A>T (p.Asp448Val), c.1448T>C (p.Leu483Pro), c.1504C>T (p.Arg502Cys), c.1505G>A (p.Arg502His), c.1603C>T (p.Arg535Cys), c.1604G>A (p.Arg535His) variants only. Rarely, sensitivity to detect these variants may be reduced. When sensitivity is reduced, zygosity may be reported as "unknown". HBA1/2: This assay is designed to detect deletions and duplications of HBA1 and/or HBA2, resulting from the -alpha20.5, --MED, --SEA, --FIL/--THAI, -alpha3.7, -alpha4.2, anti3.7 and anti4.2. Sensitivity to detect other copy number variants may be reduced. Detection of overlapping deletion and duplication events will be limited to combinations of events with significantly differing boundaries. In addition, deletion of the enhancer element HS-40 and the sequence variant, Constant Spring (NM_000517.4:c.427T>C), can be identified by this assay. MTHFR: The NM_005957.4:c.665C>T (p.Ala222Val) (aka 677C>T) and c.1286A>C (p.Glu429Ala) (aka 1298A>C) variants are not reported in our primary report. TSFM: Sequencing analysis is not offered for exon 5. ANO10: Sequencing analysis for exons 8 includes only cds +/-0 bp. ATP8B1: Sequencing analysis for exons 19 includes only cds +/- 10 bp. CYP21A2: Analysis includes the most common variants (c.92C>T(p.Pro31Leu), c.293-13C>G (intronic), c.332_339delGAGACTAC (p.Gly111Valfs*21), c.518T>A (p.Ile173Asn), c.710T>A (p.Ile237Asn), c.713T>A (p.Val238Glu), c.719T>A (p.Met240Lys), c.844G>T (p.Val282Leu), c.923dupT (p.Leu308Phefs*6), c.955C>T (p.Gln319*), c.1069C>T(p.Arg357Trp), c.1360C>T (p.Pro454Ser) and the 30Kb deletion) as well as select rare HGMD variants only (list available upon request). Full gene duplications are reported only in the presence of a pathogenic variant(s). When a duplication and a pathogenic variant(s) is identified, phase (cis/trans) cannot be determined. Full gene deletion analysis is not offered. Sensitivity to detect these variants, if they result from complex gene conversion/fusion events, may be reduced. AIPL1: Sequencing analysis for exons 2 includes only cds +/- 10 bp. LIFR: Sequencing analysis for

DOB:

Invitae #:

exons 3 includes only cds +/- 5 bp. TYR: Deletion/duplication and sequencing analysis is not offered for exon 5. USH1C: Deletion/duplication analysis is not offered for exon 5. USH1C: Deletion/duplication analysis is not offered for exon 1. MLC1: Sequencing analysis for exons 11 includes only cds +/- 10 bp. PEX1: Sequencing analysis for exons 16 includes only cds +/- 0 bp. TG: Deletion/duplication analysis is not offered for exon 18. Sequencing analysis for exons 44 includes only cds +/- 10 bp. FANCL: Sequencing analysis for exons 4, 10 includes only cds +/- 10 bp. FAH: Deletion/duplication analysis is not offered for exon 14. GALC: Deletion/duplication analysis is not offered for exon 6. ATM: Sequencing analysis for exons 6, 24, 43 includes only cds +/- 10 bp.

This report has been reviewed and approved by:

Matteo Vatta, Ph.D., FACMG

Marke Wand

Clinical Molecular Geneticist

7055, DONOR

Age Fasting:

Specimen

Requisition:
Lab Reference ID

Report Status: FINAL / SEE REPORT

Collected: 04/03/2023 00:00 Received: 04/04/2023 17:00 Reported: 04/10/2023 19:41

Hemoglobinopathy Evaluation

Lab: AMD

	,		
Analyte	Value		
Hemoglobinopathy Evaluation		7	(FINAL)
Red Blood Cell Count	4.86	Reference Range: 4.20-5.80 Mill/uL	(FINAL)
HEMOGLOBIN	15.3	Reference Range: 13.2-17.1 g/dL	(FINAL)
Hematocrit			(FINAL)
Hematocrit	46.1	Reference Range: 38.5-50.0 %	(FINAL)
MCV	94.9	Reference Range: 80.0-100.0 fL	(FINAL)
мсн	31.5	Reference Range: 27.0-33.0 pg	(FINAL)
RDW	12.1	Reference Range: 11.0-15.0 %	(FINAL)
Hemoglobinopathy Evaluation			(FINAL)
Hemoglobin A	97.5	Reference Range: >96.0 %	FINAL
Hemoglobin F	0.0	Reference Range: <2.0 %	(FINAL)
Hemoglobin A2 (Quant)	2.5	Reference Range: 2.2-3.2 %	FINAL
Interpretation			(FINAL)

NORMAL PATTERN

There is a normal pattern of hemoglobins and normal levels of Hb A2 and Hb F are present. No variant hemoglobins are observed. This is consistent with A/A phenotype.

If iron deficiency coexists with a mild/silent beta thalassemia trait Hb A2 may be in the normal range. Rare variant hemoglobins have no separation from hemoglobin A by capillary zone electrophoresis (CZE) or high-performance liquid chromatography (HPLC). If clinically indicated, Thalassemia and Hemoglobinopathy Comprehensive (TC 17365) should be considered.

Chromosome Analysis, Blood

Lab: AMD

Analyte

Value

7055,DONOR

1/2

Chromosome Analysis, Blood

Order ID:

FINAL

Specimen Type:

Blood

Clinical Indication:

Gamete donor

RESULT:

NORMAL MALE KARYOTYPE

INTERPRETATION:

Chromosome analysis revealed normal G-band patterns within the limits of standard cytogenetic analysis.

Please expect the results of any other concurrent study in a separate report.

NOMENCLATURE:

46, XY

ASSAY INFORMATION:

Method:

G-Band (Digital Analysis:

MetaSystems/Ikaros)

Cells Counted: Band Level: Cells Analyzed: Cells Karyotyped: 20

This test does not address genetic disorders that cannot be detected by standard cytogenetic methods or rare events such as low level mosaicism or subtle rearrangements.

Steven A. Schonberg, Ph.D., FACMG, Technical Director, Cytogenetics and Genomics, 703-802-7156

Electronic Signature:

4/10/2023 6:56 PM

For additional information, please refer to http://education.questdiagnostics.com/faq/chromsblood (This link is being provided for informational/ educational purposes only).

550

5

Performing Sites

AMD Quest Diagnostics Nichols Institute, 14225 Newbrook Drive, Chantilly, VA 20151 Laboratory Director: Patrick W Mason, MD PhD

Key

Triority Out of Range A Out of Range (PEND) Pending Result (PRE) Preliminary Result (FINAL) Final Result (RE) Reissued Result

Quest, Quest Diagnostics, the associated logo, Nichols Institute, Interactive Insights and all associated Quest Diagnostics marks are the registered trademarks of Quest Diagnostics. All third party marks - '89' and '174" - are the property of their respective owners. Privacy policy can be found at: http://questdiagnostics.com/home/privacy-policy/online-privacy.html . © 2022 Quest Diagnostics Incorporated. All rights reserved.

7055,DONOR 2/2 4/13/23

7055, Donor

DOB

Accession

Submitter Patient ID(s) None

Sample

Source: OraCollect Buccal Date Collected: 8/20/2025 Date Received: 8/28/2025

Testing

Date Started: 9/5/2025 Date Reported: 9/19/2025 **Provider**

Account #: Wieloch, Shannon

Test(s) Requested

Microarray Dx: Whole Genome Chromosomal Microarray

Result: Positive

ISCN	Туре	Size (kb)	Classification
arr[GRCh37] Xq22.2(102965837_103297021)x2	Duplication	331	Pathogenic Variant

Sex: Male

Interpretation

This is a duplication of at least 331 kb within cytogenetic band Xg22.2. The duplicated interval involves six genes, of which PLP1 is associated with a known clinical disorder at present.

Pathogenic variants in the X-linked PLP1 gene cause disorders of central nervous system myelin formation, including Pelizaeus Merzbacher disease (PMD) and spastic paraplegia 2 (SPG2) (PMID: 20301361). Patients with PMD typically present in infancy or early childhood with nystagmus, hypotonia, and cognitive impairment, followed by progressive spasticity and ataxia (PMID: 15712223, 35885014). Males who are hemizygous for a pathogenic variant in PLP1 are expected to exhibit at least some features of a PLP1-related disorder, which can vary from the more severe PMD to the less severe SPG2. Duplications including the entire PLP1 gene are common among PLP1 pathogenic variants (PMID: 24139698, 20301361). In some cases, the duplicated segment can be inserted elsewhere in the genome (PMID: 26329556). Skewed X-inactivation has been suggested to play a role in phenotypic manifestation in females (PMID: 12297985). Some studies indicate that carrier females in families with mildly affected males are more likely to exhibit features of a PLP1-related disorder than carrier females from families with severely affected males (PMID: 20301361).

Region(s) of Homozygosity

Significant regions of homozygosity or uniparental isodisomy were not observed.

Recommendation

- Genetic counseling is recommended to discuss the implications of this report.
- Clinical correlation between this result and the patient's phenotype is recommended.
- As inherited X-linked duplications in males are typically maternal in origin, targeted testing of a maternal sample for this variant can be performed for an additional charge.

Methods

Whole-genome chromosomal microarray analysis (CMA) is performed using the Affymetrix CytoScan HD microarray system. The array contains 2.67 million probes placed throughout the genome that are spaced an average 880 bases apart in genic regions and 1,700 bases apart in non-genic regions. There are 1.9 million non-polymorphic probes for detection of copy number variants (CNVs) and 750,000 single nucleotide polymorphism (SNP) probes. The array can identify deletions of > or = 25 kb including at least 25 consecutive probes and duplications of > or = 50 kb including at least 50 consecutive probes. Unless otherwise indicated, CNVs are classified with respect to autosomal dominant disease association and are reported if they have a clear or suspected clinical relevance. Benign and likely benign variants and carrier status for autosomal recessive disorders are not routinely reported. The array also identifies regions of homozygosity (ROH), which may be indicative of UPD or identity by descent. Autosomal ROH is reported when at least one region of homozygosity of > or = 10 Mb or two regions that are each > or = 8 Mb are identified. Any additional ROH calls > or = 5 Mb are included in the report. As needed,

7055, Donor

DOB

Accession

Submitter Patient ID(s) None

confirmation of copy number changes and parental origin determination may be performed by MLPA, qPCR, repeat array, or a sequence-based technology. The array design is based on human genome build GRCh37/UCSC hq19, and results are reported according to the current ISCN guidelines. A complete list of copy number variation detected on the array is available upon request. Gene-disease associations are based on an internally curated database that uses information from OMIM, HGMD, and the primary literature. Available evidence for variant classification may change over time and variant(s) may be reclassified according to the ACMG/ClinGen standards (PMID: 31690835), which may lead to issuing a revised report.

Disclaimer

Genetic testing using the methods applied at GeneDx is expected to be highly accurate. Normal findings do not rule out the diagnosis of a genetic disorder since some genetic abnormalities may be undetectable by this test. Unless otherwise indicated, the methods used cannot reliably detect deletions of 20bp to 500bp in size, or insertions of 10bp to 500bp in size. Sequencing cannot detect low-level mosaicism. Copy number assessment methods cannot reliably detect mosaicism and cannot identify balanced chromosome aberrations. Regions of certain genes have inherent sequence properties (for example: repeat, homology, or pseudogene regions, high GC content, rare polymorphisms) that yield suboptimal data, potentially impairing accuracy of the results. Inaccurate results may occur in the setting of allogeneic bone marrow/stem cell transplantation, active or chronic hematologic conditions, recent blood transfusion, suboptimal DNA quality, or in other rare circumstances. DNA extracted at other laboratories may negatively affect test performance. Rarely, incidental findings of large chromosomal rearrangements outside the gene of interest may be identified. As the ability to detect genetic variants and naming conventions can differ among laboratories, rare false negative results may occur when no positive control is provided for testing of a specific variant identified at another laboratory. In addition, the chance of an erroneous result due to laboratory errors incurred during any phase of testing cannot be completely excluded. The clinical sensitivity of this test depends in part on the patient's clinical presentation and is expected to be highest for individuals with a clearly defined phenotype and/or family history. Interpretations are made with the assumption that any clinical information provided, including family relationships, are accurate. Consultation with a genetics professional is recommended for interpretation of results. This test was developed and its performance characteristics determined by GeneDx.

This test has not been cleared or approved by the U.S. Food and Drug Administration. The FDA has determined that such clearance or approval is not necessary. The test is used for clinical purposes and should not be regarded as investigational or for research. The laboratory is certified under the Clinical Laboratory Improvement Amendments of 1988 (CLIA) as qualified to perform high-complexity clinical testing.

References

ClinVar

ClinGen Dosage Sensitivity

Database for Genomic Variants (DGV)

DECIPHER

gnomAD

MITOMAP

OMIM

Provean

The Human Gene Mutation Database (HGMD)

https://www.ncbi.nlm.nih.gov/clinvar/

https://search.clinicalgenome.org/kb/gene-dosage

http://dgv.tcag.ca/dgv/app/home

https://www.deciphergenomics.org/

https://gnomad.broadinstitute.org/

https://www.mitomap.org/MITOMAP

https://www.omim.org/

E: support@genedx.com

https://www.jcvi.org/research/provean

https://www.hgmd.cf.ac.uk/ac/index.php

To find publications referenced in the report using PubMed ID (PMID), please search PubMed (https://pubmed.ncbi.nlm.nih.gov/).

Report Electronically Signed By

Evica Rajcan-Separovic Ph.D., FACMG Associate Director, Clinical Genetics

Helpful Resources

Combined with the information provided by your genetic test report, these groups* can connect you with resources and other families like yours.

For condition- and gene-specific advocacy groups, please visit GeneDx.com/advocacy

Advocacy organizations supporting broad communities

The following advocacy organizations provide support to families affected by rare disorders and other conditions. These organizations also support the undiagnosed community. These organizations serve as a central hub, offering relevant information on their websites and through webinars, conferences, and other events.

- Child Neurology Foundation | www.ChildNeurologyFoundation.org | (859) 551-4977
- Courageous Parents Network | www.CourageousParentsNetwork.org
- Global Genes | www.GlobalGenes.org | (949) 248-7273
- National Organization for Rare Disorders | www.RareDiseases.org | (617) 249-7300

Disease-specific organizations

Disease-specific organizations focus on a particular disorder or class of genetic conditions. These organizations often provide resources and support to families affected by that specific class of conditions, including educational materials, research updates, or family calls and meetings. Please visit GeneDx.com/advocacy for a list of organizations focused on diseases such as epilepsy, autism, cerebral palsy, and more.

Gene-specific organizations

Gene-specific advocacy organizations are dedicated to supporting families affected by a specific genetic variant (sometimes called a mutation). These organizations may offer resources like educational materials and research updates tailored to the genetic variant. Some also host family calls or meetings. If you or a family member have received a positive genetic test result, there may be an advocacy organization dedicated to people with similar results. Please visit GeneDx.com/advocacy for instructions on how to find these organizations.

Information exchange and connection

You may wish to share your genetic test results with a registry or similar project. Sharing this information can help the medical community understand how genes affect health and perhaps even contribute to the discovery of new genes. GenomeConnect (www.GenomeConnect.org) is one such organization.

You may also wish to explore MyGene2 (www.MyGene2.org), which allows you to search for and contact other families who have the same condition or variants in the same gene to share information and offer support, as well as opt to make yourself available for contact by researchers.

*These clinician and family resources are of an informational nature only. While GeneDx helps ensure its accuracy, this information is not meant to endorse a particular group, be a complete list, nor serve as medical advice. GeneDx presents this opportunity as a courtesy to clinicians and families who may wish to obtain more details. All GeneDx genetic test reports include this Resource page, no matter the positive or negative result